Patents by Inventor Wilhelm Ulrich

Wilhelm Ulrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070171558
    Abstract: A projection lens for imaging a pattern arranged in an object plane onto an image plane using electromagnetic radiation from the extreme-ultraviolet (EUV) spectral region has several imaging mirrors between its object plane and image plane that define an optical axis of the projection lens and have reflective coatings. At least one of those mirrors has a graded reflective coating that has a film-thickness gradient that is rotationally symmetric with respect to a coating axis, where that coating axis is acentrically arranged with respect to the optical axis of the projection lens. Providing at least one acentric, graded, reflective coating allows designing projection lenses that allow highly uniform field illumination, combined with high total transmittance.
    Type: Application
    Filed: March 22, 2007
    Publication date: July 26, 2007
    Applicant: CARL ZEISS SMT AG
    Inventors: Hans-Juergen Mann, Wilhelm Ulrich, Russel Hudyma
  • Publication number: 20070153398
    Abstract: A photolithographic reduction projection catadioptric objective includes a first optical group having an even number of at least four mirrors and having a positive overall magnigying power, and a second substantially refractive optical group more image forward than the first optical group having a number of lenses. The second optical group has a negative overall magnifying power for providing image reduction. The first optical group provides compensative aberrative correction for the second optical group. The objective forms an image with a numerical aperture of at least substantially 0.65, and preferably greater than 0.70 or still more preferably greater than 0.75.
    Type: Application
    Filed: March 14, 2007
    Publication date: July 5, 2007
    Applicant: Carl Zeiss Stiftung
    Inventors: David Shafer, Russell Hudyma, Wilhelm Ulrich
  • Publication number: 20070120072
    Abstract: There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength ?193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.
    Type: Application
    Filed: January 3, 2007
    Publication date: May 31, 2007
    Applicant: Carl Zeiss SMT AG
    Inventors: Hans-Juergen Mann, Wolfgang Singer, Joerg Schultz, Johannes Wangler, Karl-Heinz Schuster, Udo Dinger, Martin Antoni, Wilhelm Ulrich
  • Patent number: 7218445
    Abstract: A photolithographic reduction projection catadioptric objective includes a first optical group having an even number of at least four mirrors and having a positive overall magnifying power, and a second substantially refractive optical group more image forward than the first optical group having a number of lenses. The second optical group has a negative overall magnifying power for providing image reduction. The first optical group provides compensative aberrative correction for the second optical group. The objective forms an image with a numerical aperture of at least substantially 0.65, and preferably greater than 0.70 or still more preferably greater than 0.75.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: May 15, 2007
    Assignee: Carl-Zeiss Stiftung
    Inventors: David R. Shafer, Russell Hudyma, Wilhelm Ulrich
  • Patent number: 7209292
    Abstract: A method of adjusting a projection objective permits the projection objective to be adjusted between an immersion configuration and a dry configuration. The projection objective includes optical elements arranged along an optical axis thereof, which include a first group of elements following the object plane and a last optical element following the first group, which is arranged near the image plane. The last optical element defines an exit surface of the projection objective, which is arranged at a working distance from the image plane. The last optical element is substantially without refracting power and has no or only slight curvature. The method includes varying the thickness of the last optical element, changing the refractive index of the space between the exit surface and the image plane by introducing or removing an immersion medium, and axially displacing the last optical element to set a working distance.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: April 24, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Alexander Epple, Paul Graeupner, Winfried Kaiser, Reiner Garreis, Wilhelm Ulrich
  • Patent number: 7209286
    Abstract: In accordance with the present invention, a projection exposure apparatus includes an illuminating system to illuminate a drivable micromirror array and an objective which projects the drivable micromirror array onto the photosensitive substrate. The objective includes mirrors which are arranged coaxial with respect to a common optical axis. The objective can be a catoptric objective and can have a numerical aperture at the substrate greater than 0.1 and can have an imaging scale ratio of greater than 20:1. The objective can also include at least two partial objectives with an intermediate image plane between the at least two partial objectives and can consist of mirrors that are coated with reflecting layers which are adapted to reflect two mutually separated operating wavelengths.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: April 24, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Hans-Jurgen Mann, Wilhelm Ulrich
  • Patent number: 7199922
    Abstract: A projection lens for imaging a pattern arranged in an object plane onto an image plane using electromagnetic radiation from the extreme-ultraviolet (EUV) spectral region has several imaging mirrors between its object plane and image plane that define an optical axis of the projection lens and have reflective coatings. At least one of those mirrors has a graded reflective coating that has a film-thickness gradient that is rotationally symmetric with respect to a coating axis, where that coating axis is acentrically arranged with respect to the optical axis of the projection lens. Providing at least one acentric, graded, reflective coating allows designing projection lenses that allow highly uniform field illumination, combined with high total transmittance.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: April 3, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Hans-Juergen Mann, Wilhelm Ulrich, Russell M. Hudyma
  • Publication number: 20070058269
    Abstract: In general, in a first aspect, the invention features a system that includes a microlithography projection optical system. The microlithography projection optical system includes a plurality of elements arranged so that during operation the plurality of elements image radiation at a wavelength ? from an object plane to an image plane. At least one of the elements is a reflective element that has a rotationally-asymmetric surface positioned in a path of the radiation. The rotationally-asymmetric surface deviates from a rotationally-symmetric reference surface by a distance of about ? or more at one or more locations of the rotationally-asymmetric surface.
    Type: Application
    Filed: September 13, 2006
    Publication date: March 15, 2007
    Inventors: Hans-Juergen Mann, Wilhelm Ulrich, Marco Pretorius
  • Patent number: 7190527
    Abstract: Refractive projection objective with a numerical aperture greater than 0.7, consisting of a first convexity, a second convexity, and a waist arranged between the two convexities. The first convexity has a maximum diameter denoted by D1, and the second convexity has a maximum diameter denoted by D2, and 0.8<D1/D2<1.1.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: March 13, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Hans-Juergen Rostalski, Karl-Heinz Schuster, Russell Hudyma, Wilhelm Ulrich, Rolf Freimann
  • Patent number: 7186983
    Abstract: There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength ?193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: March 6, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Hans-Juergen Mann, Wolfgang Singer, Joerg Schultz, Johannes Wangler, Karl-Heinz Schuster, Udo Dinger, Martin Antoni, Wilhelm Ulrich
  • Publication number: 20070047069
    Abstract: A projection objective provides a light path for a light bundle from an object field in an object plane to an image field in an image plane. The projection objective includes eight mirrors. The light path is provided via the eight mirrors, and is free of obscuration.
    Type: Application
    Filed: November 2, 2006
    Publication date: March 1, 2007
    Applicant: Carl Zeiss SMT AG
    Inventors: Hans-Jurgen Mann, Wilhelm Ulrich, Gunther Seitz
  • Patent number: 7180667
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: February 20, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Patent number: 7177076
    Abstract: There is provided a microlithographic projector lens for EUV-lithography with a wavelegth in a range of 10–30 nm, an incident aperture diaphragm and an emergent aperture diaphragm for the transformation of an object field in an object plane into an image field in an image plane. The invention has a microlithographic projector lens that includes a first, second, third, fourth, fifth, sixth, seventh and eighth mirror, and a beam path from the object plane to the image plane that is free from obscuration.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: February 13, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Hans-Jürgen Mann, Wilhelm Ulrich, Günther Seitz
  • Publication number: 20070019305
    Abstract: A method for correcting at least one image defect of a projection objective of a lithography projection exposure machine, the projection objective comprising an optical arrangement composed of a plurality of lenses and at least one mirror, the at least one mirror having an optically operative surface that can be defective and is thus responsible for the at least one image defect, comprises the steps of: at least approximately determining a ratio VM of principal ray height hMH to marginal ray height hMR at the optically operative surface of the at least one mirror, at least approximately determining at least one optically operative lens surface among the lens surfaces of the lenses, at which the magnitude of a ratio VL of principal ray height hLH to marginal ray height hLR comes at least closest to the ratio VM, and selecting the at least one determined lens surface for the correction of the image defect.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 25, 2007
    Inventors: Wilhelm Ulrich, Thomas Okon, Norbert Wabra, Toralf Gruner, Boris Bittner, Volker Graeschus
  • Patent number: 7167251
    Abstract: A method of processing an optical substrate having a convex surface comprises an interferometric measurement using a beam of diverging measuring light traversing the substrate and reflected from a concave mirror.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: January 23, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Wilhelm Ulrich, Bernd Doerband, Rudolf Tannert
  • Publication number: 20070013882
    Abstract: In a method of manufacturing projection objectives including defining an initial design for a projection objective and optimizing the design using a merit function, a set of related projection objectives including a first projection objective and at least one second projection objective is defined. Further, a plurality of merit function components, each of which reflects a particular quality parameter, is defined. One of these merit function components defines a common module requirement requiring that the first projection objective and the second projection objective each include at least one common optical module that is constructed to be substantially identical for the first and the second projection objective. The method results in a set of projection objectives having at least one common optical module. Employing the method in the manufacturing of complex projection objectives, such as projection objectives for microlithography, facilitates the manufacturing process and allows substantial cost savings.
    Type: Application
    Filed: June 7, 2006
    Publication date: January 18, 2007
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Heiko Feldmann
  • Patent number: 7154678
    Abstract: A projection objective has at least five lens groups (G1 to G5) and has several lens surfaces. At least two aspheric lens surfaces are arranged so as to be mutually adjacent. These mutually adjacently arranged lens surfaces are characterized as a double asphere. This at least one double asphere (21) is mounted at a minimum distance from an image plane (0?) which is greater than the maximum lens diameter (D2) of the objective.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: December 26, 2006
    Assignee: Carl Zeiss Semiconductor Manufacturing Technologies AG
    Inventors: Karl-Heinz Schuster, David R. Shafer, Wilhelm Ulrich, Helmut Beierl, Wolfgang Singer
  • Patent number: 7145720
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 5, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Patent number: 7136220
    Abstract: A catadioptric projection lens for imaging a pattern arranged in an object plane onto an image plane, preferably while creating a real intermediate image, including a catadioptric first lens section having a concave mirror and a physical beamsplitter having a beamsplitting surface, as well as a second lens section that is preferably refractive and follows the beamsplitter, between its object plane and image plane. Positive refractive power is arranged in an optical near-field of the object plane, which is arranged at a working distance from the first optical surface of the projection lens. The beamsplitter lies in the vicinity of low marginal-ray heights, which allows configuring projection lenses that are fully corrected for longitudinal chromatic aberration, while employing small quantities of materials, particularly those materials needed for fabricating their beamsplitters.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: November 14, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Wilhelm Ulrich, David R. Shafer, Alexander Epple, Helmut Beierl, Aurelian Dodoc
  • Patent number: 7126765
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: October 24, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek