Patents by Inventor Yang Wei

Yang Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190173033
    Abstract: A method of making a photodetector includes: providing a substrate and forming an interdigital electrode layer on a surface of the substrate; and forming a photoactive layer on a surface of the interdigital electrode layer.
    Type: Application
    Filed: January 21, 2019
    Publication date: June 6, 2019
    Inventors: HAO-MING WEI, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 10259703
    Abstract: The disclosure relates to a method for making an actuator based on carbon nanotubes. The method includes: providing a carbon nanotube layer; depositing a vanadium oxide (VOx) layer on the carbon nanotube layer; and annealing the VOx layer in an oxygen atmosphere to form a vanadium dioxide layer (VO2) layer. Because the drastic reversible phase transition of VO2, the actuator has giant deformation amplitude and fast response.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: April 16, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: He Ma, Yang Wei, Kai Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10249836
    Abstract: A photodetector includes a substrate, an interdigital electrode layer and a photoactive layer. The interdigital electrode layer is located or sandwiched between the substrate and the photoactive layer. The interdigital electrode layer includes a first interdigital electrode and a second interdigital electrode. The first interdigital electrode and the second interdigital electrode are spaced from and staggered with each other.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 2, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Hao-Ming Wei, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10251006
    Abstract: A method for making thermoacoustic device includes following steps. A substrate having a first surface and second surface is provided. The first surface defines a plurality of grids. Grooves are formed on each of the plurality of grids. A first electrode and a second electrode are formed on each grid. The first electrode is spaced from the second electrode. One of the grooves is located between the first electrode and the second electrode. A number of carbon nanotube wires are applied on the first surface and electrically connected to the first electrode and the second electrode. A thermoacoustic device array is formed on the substrate by separating the carbon nanotube wires. A number of thermoacoustic device is formed by cutting the substrate according to the grids.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: April 2, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Xiao-Yang Lin, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20190091296
    Abstract: The present invention provides modified glucagon-like peptide 1 (GLP1) polypeptides, fusion proteins comprising modified GLP1 polypeptides, and methods of use thereof. In various embodiments of the invention, the fusion proteins are GLP1 receptor agonists that comprise a modified GLP1 fused to a stabilizing domain. In some embodiments, the fusion proteins comprising modified GLP1 are useful for treating or ameliorating a symptom or indication of a disorder such as obesity and diabetes.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 28, 2019
    Inventors: Yang Wei, Haruka Okamoto, Jesper Gromada, Samuel Davis, Andrew J. Murphy
  • Publication number: 20190074408
    Abstract: An epitaxial structure and a method for making the same are provided. The epitaxial structure includes a substrate, an epitaxial layer and a carbon nanotube layer. The epitaxial layer is located on the substrate. The carbon nanotube layer is located in the epitaxial layer. The method includes following. A substrate having an epitaxial growth surface is provided. A carbon nanotube layer is suspended above the epitaxial growth surface. An epitaxial layer is epitaxially grown from the epitaxial growth surface to enclose the carbon nanotube layer therein. The epitaxial layer is a substantially homogenous material from the substrate.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Patent number: 10224400
    Abstract: A semiconductor device includes a first electrode, a second electrode, a semiconductor element, an insulating layer and a third electrode. The semiconductor element is electrically connected to the first electrode and the second electrode. The third electrode is insulated from the semiconductor structure, the first electrode and the second electrode through the insulating layer. The semiconductor element includes a semiconductor structure, a carbon nanotube and a conductive film. The semiconductor structure includes a P-type semiconductor layer and an N-type semiconductor layer and defines a first surface and a second surface. The carbon nanotube is located on the first surface of the semiconductor. The conductive film is located on the second surface of the semiconductor. The conductive film is formed on the second surface by a depositing method or a coating method.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 5, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10217952
    Abstract: The present disclosure relates to a nano-scale transistor. The nano-scale transistor includes a source electrode, a drain electrode, a gate electrode and a nano-heterostructure. The nano-heterostructure is electrically coupled with the source electrode and the drain electrode. The gate electrode is insulated from the nano-heterostructure, the source electrode and the drain electrode via an insulating layer. The nano-heterostructure includes a first carbon nanotube, a second carbon nanotube and a semiconductor layer. The semiconductor layer includes a first surface and a second surface opposite to the first surface. The first carbon nanotube is located on the first surface, the second carbon nanotube is located on the second surface.
    Type: Grant
    Filed: June 3, 2017
    Date of Patent: February 26, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10205098
    Abstract: A semiconductor structure includes a semiconductor layer, a carbon nanotube and a conductive film. The semiconductor layer includes a first surface and a second surface. A thickness of the semiconductor layer ranges from 1 nanometer to 100 nanometers. The carbon nanotube is located on the first surface of the semiconductor. The conductive film is located on the second surface of the semiconductor. The conductive film is formed on the second surface by a depositing method. The carbon nanotube, the semiconductor layer and the conductive film are stacked with each other to form a three-layered stereoscopic structure.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: February 12, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10205096
    Abstract: The present disclosure relates to a method for making nanoscale heterostructure. The method includes: providing a support and forming a first carbon nanotube layer on the support, and the first carbon nanotube layer comprises a plurality of first source carbon nanotubes; forming a semiconductor layer on the first carbon nanotube layer; covering a second carbon nanotube layer on the semiconductor layer, and the second carbon nanotube layer comprises a plurality of second source carbon nanotubes; finding and labeling a first carbon nanotube in the first carbon nanotube layer and a second carbon nanotube in the second carbon nanotube layer; removing the plurality of first source carbon nanotubes and the plurality of second source carbon nanotubes; and annealing the multilayer structure.
    Type: Grant
    Filed: June 3, 2017
    Date of Patent: February 12, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10177275
    Abstract: An epitaxial structure and a method for making the same are provided. The epitaxial structure includes a substrate, an epitaxial layer and a carbon nanotube layer. The epitaxial layer is located on the substrate. The carbon nanotube layer is located in the epitaxial layer. The method includes following steps. A substrate having an epitaxial growth surface is provided. A carbon nanotube layer is suspended above the epitaxial growth surface. An epitaxial layer is epitaxially grown from the epitaxial growth surface to enclose the carbon nanotube layer therein.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: January 8, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20180342580
    Abstract: A semiconductor device includes a first electrode, a second electrode, a semiconductor element, an insulating layer and a third electrode. The semiconductor element is electrically connected to the first electrode and the second electrode. The third electrode is insulated from the semiconductor structure, the first electrode and the second electrode through the insulating layer. The semiconductor element includes a semiconductor structure, a carbon nanotube and a conductive film. The semiconductor structure includes a P-type semiconductor layer and an N-type semiconductor layer and defines a first surface and a second surface. The carbon nanotube is located on the first surface of the semiconductor. The conductive film is located on the second surface of the semiconductor. The conductive film is formed on the second surface by a depositing method or a coating method.
    Type: Application
    Filed: March 9, 2018
    Publication date: November 29, 2018
    Inventors: JIN ZHANG, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20180342690
    Abstract: A light detector includes a semiconductor element, a first electrode, a second electrode and a current detecting element electrically connected with each other to form a circuit. The semiconductor element includes a semiconductor structure, a carbon nanotube and a transparent conductive film. The semiconductor structure includes a P-type semiconductor layer and an N-type semiconductor layer and defines a first surface and a second surface. The carbon nanotube is located on the first surface of the semiconductor. The transparent conductive film is located on the second surface of the semiconductor. The transparent conductive film is formed on the second surface by a depositing method or a coating method.
    Type: Application
    Filed: March 9, 2018
    Publication date: November 29, 2018
    Inventors: JIN ZHANG, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20180342579
    Abstract: A semiconductor element includes a semiconductor structure, a carbon nanotube and a conductive film. The semiconductor structure includes a P-type semiconductor layer and an N-type semiconductor layer and defines a first surface and a second surface. A thickness of the semiconductor structure ranges from 1 nanometer to 100 nanometers. The carbon nanotube is located on the first surface of the semiconductor. The conductive film is located on the second surface of the semiconductor. The conductive film is formed on the second surface by a depositing method or a coating method. The carbon nanotube, the semiconductor structure and the conductive film are stacked with each other to form a multi-layered stereoscopic structure.
    Type: Application
    Filed: March 9, 2018
    Publication date: November 29, 2018
    Inventors: JIN ZHANG, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20180342632
    Abstract: A solar battery includes a first electrode, a second electrode, a solar cell, an insulating layer and a gate electrode. The solar cell includes a semiconductor structure, a carbon nanotube and a transparent conductive film. The semiconductor structure includes a P-type semiconductor layer and an N-type semiconductor layer and defines a first surface and a second surface. The carbon nanotube is located on the first surface of the semiconductor. The transparent conductive film is located on the second surface of the semiconductor. The transparent conductive film is formed on the second surface by a depositing method or a coating method.
    Type: Application
    Filed: March 9, 2018
    Publication date: November 29, 2018
    Inventors: JIN ZHANG, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20180342679
    Abstract: A semiconductor structure includes a semiconductor layer, a carbon nanotube and a conductive film. The semiconductor layer includes a first surface and a second surface. A thickness of the semiconductor layer ranges from 1 nanometer to 100 nanometers. The carbon nanotube is located on the first surface of the semiconductor. The conductive film is located on the second surface of the semiconductor. The conductive film is formed on the second surface by a depositing method. The carbon nanotube, the semiconductor layer and the conductive film are stacked with each other to form a three-layered stereoscopic structure.
    Type: Application
    Filed: March 9, 2018
    Publication date: November 29, 2018
    Inventors: JIN ZHANG, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20180342578
    Abstract: A semiconductor device includes a gate electrode, an insulating layer, a first carbon nanotube, a second carbon nanotube, a P-type semiconductor layer, an N-type semiconductor layer, a conductive film, a first electrode, a second electrode and a third electrode. The insulating layer is located on a surface of the gate electrode. The first carbon nanotube and the second carbon nanotube are located on a surface of the insulating layer. The P-type semiconductor layer and the N-type semiconductor layer are located on the surface of the insulating layer and apart from each other. The conductive film is located on surfaces of the P-type semiconductor layer and the N-type semiconductor layer. The first electrode is electrically connected with the first carbon nanotube. The second electrode is electrically connected with the second carbon nanotube. The third electrode is electrically connected with the conductive film.
    Type: Application
    Filed: March 9, 2018
    Publication date: November 29, 2018
    Inventors: JIN ZHANG, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 10132767
    Abstract: A method for in-situ measuring electrical properties of carbon nanotubes includes placing a first electrode in a chamber, wherein the first electrode defines a cavity. A growth substrate is suspend inside of the cavity, and a catalyst layer is located on the growth substrate. A measuring meter having a first terminal and a second terminal opposite to the first terminal is provided. The first terminal is electrically connected to the first electrode, and the second terminal is electrically connected to the growth substrate. A carbon source gas, a protective gas, and hydrogen are supplied to the cavity, to grow the carbon nanotubes on the catalyst layer. The electrical properties of the carbon nanotubes are obtained by the measuring meter.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: November 20, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Xiang Jin, Peng Liu, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10135035
    Abstract: A method for forming an organic light emitting diode array is provided. A substrate is provided. A plurality of first electrodes is formed on a substrate surface. A patterned mask layer is disposed on the substrate surface to cover the substrate and expose at least a portion of each first electrode. An evaporating source is provided. The evaporating source comprises a carbon nanotube film structure and an organic semiconductor material. The evaporating source is spaced from the plurality of first electrodes. The carbon nanotube film structure is heated to gasify the organic light emitting material and form a plurality of organic light emitting layers on a exposed surface of the plurality of first electrodes. A plurality of second electrodes are formed on a surface of the plurality of organic light emitting layers. The patterned mask layer is removed to form an organic light emitting diode array.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: November 20, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Hao-Ming Wei, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10121564
    Abstract: A method for making a transparent conductive layer comprising: providing a carbon nanotube film comprising a plurality of carbon nanotubes; providing a conductive substrate and applying an insulating layer on the conductive substrate; laying the carbon nanotube film on a surface of the insulating layer, and placing the carbon nanotube film under a scanning electron microscope; adjusting the scanning electron microscope, and taking photos of the carbon nanotube film with the scanning electron microscope; obtaining a photo of the carbon nanotube film, wherein the photo shows the plurality of carbon nanotubes and a background, a plurality of first carbon nanotubes of the plurality of carbon nanotubes have lighter color than a color of the background, a plurality of second carbon nanotubes of the plurality of carbon nanotubes have deeper color than the color of the background; and removing the plurality of second carbon nanotubes.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: November 6, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Dong-Qi Li, Yang Wei, Kai-Li Jiang, Shou-Shan Fan