Patents by Inventor Yanli Zhang

Yanli Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9177966
    Abstract: A monolithic three dimensional NAND string device includes a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes extending substantially parallel to the major surface of the substrate in different device levels, a blocking dielectric located in contact with the plurality of control gate electrodes, at least one charge storage region located in contact with the blocking dielectric, and a tunnel dielectric located between the at least one charge storage region and the semiconductor channel. The semiconductor channel is a hollow body surrounding a middle region and at least one of an air gap or a low-k insulating material having a dielectric constant of less than 3.9 is located in the middle region.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: November 3, 2015
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Peter Rabkin, Wei Zhao, Yanli Zhang, Jayavel Pachamuthu
  • Patent number: 9159739
    Abstract: A monolithic three dimensional NAND string includes a semiconductor channel, with at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, and a plurality of copper containing control gate electrodes extending substantially parallel to the major surface of the substrate. The plurality of control gate electrodes include at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over the major surface of the substrate and below the first device level. The NAND string also includes a blocking dielectric located over the plurality of control gates, a tunnel dielectric in contact with the semiconductor channel, and at least one charge storage region located between the blocking dielectric and the tunnel dielectric.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: October 13, 2015
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Raghuveer S. Makala, Yanli Zhang, Yao-Sheng Lee, Senaka Krishna Kanakamedala, Rahul Sharangpani, George Matamis, Johann Alsmeier, Seiji Shimabukuro, Genta Mizuno, Naoki Takeguchi
  • Patent number: 9099202
    Abstract: Programming NAND strings in a 3D stacked storage device to a conductive state. Storage elements may be erased by raising their Vt and programmed by lowering their Vt. Programming may include applying a series of increasing voltages to selected bit lines until the selected memory cell is programmed. Unselected bit lines may be held at about ground, or close to ground. The selected word line may be grounded, or be held close to ground. Unselected word lines between the selected word line and the bit line may receive about the selected bit line voltage. Unselected word lines between the source line and the selected word line may receive about half the selected bit line voltage. Programming may be achieved without boosting channels of unselected NAND strings to inhibit them from programming. Therefore, program disturb associated with leakage of boosted channel potential may be avoided.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: August 4, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Andrei Mihnea, Xiying Costa, Yanli Zhang
  • Patent number: 9099047
    Abstract: Some embodiments describe techniques that relate to power efficient, high frequency displays with motion blur mitigation. In one embodiment, the refresh rate of a display device may be dynamically modified, e.g., to reduce power consumption and/or reduce motion blur. Other embodiments are also described.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: August 4, 2015
    Assignee: Intel Corporation
    Inventors: Maximino Vasquez, Akihiro Takagi, Yanli Zhang, Achintya K. Bhowmik
  • Patent number: 9093466
    Abstract: A pair of horizontal-step-including trenches are formed in a semiconductor layer by forming a pair of first trenches having a first depth around a gate structure on the semiconductor layer, forming a disposable spacer around the gate structure to cover proximal portions of the first trenches, and by forming a pair of second trenches to a second depth greater than the first depth. The disposable spacer is removed, and selective epitaxy is performed to form an integrated epitaxial source and source extension region and an integrated epitaxial drain and drain extension region. A replacement gate structure can be formed after deposition and planarization of a planarization dielectric layer and subsequent removal of the gate structure and laterally expand the gate cavity over epitaxial source and drain extension regions. Alternately, a contact-level dielectric layer can be deposited directly on the integrated epitaxial regions and contact via structures can be formed therein.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 9076817
    Abstract: A pair of horizontal-step-including trenches are formed in a semiconductor layer by forming a pair of first trenches having a first depth around a gate structure on the semiconductor layer, forming a disposable spacer around the gate structure to cover proximal portions of the first trenches, and by forming a pair of second trenches to a second depth greater than the first depth. The disposable spacer is removed, and selective epitaxy is performed to form an integrated epitaxial source and source extension region and an integrated epitaxial drain and drain extension region. A replacement gate structure can be formed after deposition and planarization of a planarization dielectric layer and subsequent removal of the gate structure and laterally expand the gate cavity over expitaxial source and drain extension regions. Alternately, a contact-level dielectric layer can be deposited directly on the integrated epitaxial regions and contact via structures can be formed therein.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: July 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Chengwen Pei, Geng Wang, Yanli Zhang
  • Publication number: 20150056760
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 26, 2015
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Publication number: 20150041895
    Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: William F. CLARK, JR., Qizhi LIU, John J. Pekarik, Yun SHI, Yanli ZHANG
  • Publication number: 20150037950
    Abstract: A NAND device has at least a 3×3 array of vertical NAND strings in which the control gate electrodes are continuous in the array and do not have an air gap or a dielectric filled trench in the array. The NAND device is formed by first forming a lower select gate level having separated lower select gates, then forming plural memory device levels containing a plurality of NAND string portions, and then forming an upper select gate level over the memory device levels having separated upper select gates.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Johann Alsmeier, Raghuveer S. Makala, Xiying Costa, Yanli Zhang
  • Patent number: 8916440
    Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Qizhi Liu, John J. Pekarik, Yun Shi, Yanli Zhang
  • Publication number: 20140353738
    Abstract: A method of making a monolithic three dimensional NAND string including providing a stack of alternating first material layers and second material layers over a substrate. The first material layers comprise an insulating material and the second material layers comprise sacrificial layers. The method also includes forming a back side opening in the stack, selectively removing the second material layers through the back side opening to form back side recesses between adjacent first material layers and forming a blocking dielectric inside the back side recesses and the back side opening. The blocking dielectric has a clam shaped regions inside the back side recesses. The method also includes forming a plurality of copper control gate electrodes in the respective clam shell shaped regions of the blocking dielectric in the back side recesses.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Raghuveer S. Makala, Yanli Zhang, Yao-Sheng Lee, Senaka Krishna Kanakamedala, Rahul Sharangpani, George Matamis, Johann Alsmeier, Seiji Shimabukuro, Genta Mizuno, Naoki Takeguchi
  • Patent number: 8878278
    Abstract: A NAND device has at least a 3×3 array of vertical NAND strings in which the control gate electrodes are continuous in the array and do not have an air gap or a dielectric filled trench in the array. The NAND device is formed by first forming a lower select gate level having separated lower select gates, then forming plural memory device levels containing a plurality of NAND string portions, and then forming an upper select gate level over the memory device levels having separated upper select gates.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: November 4, 2014
    Assignee: Sandisk Technologies Inc.
    Inventors: Johann Alsmeier, Raghuveer S. Makala, Xiying Costa, Yanli Zhang
  • Patent number: 8835994
    Abstract: A structural alternative to retro doping to reduce transistor leakage is provided by providing a liner in a trench, undercutting a conduction channel region in an active semiconductor layer, etching a side, corner and/or bottom of the conduction channel where the undercut exposes semiconductor material in the active layer and replacing the removed portion of the conduction channel with insulator. This shaping of the conduction channel increases the distance to adjacent circuit elements which, if charged, could otherwise induce a voltage and cause a change in back-channel threshold in regions of the conduction channel and narrows and reduces cross-sectional area of the channel where the conduction in the channel is not well-controlled; both of which effects significantly reduce leakage of the transistor.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joseph Ervin, Jeffrey B. Johnson, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang
  • Publication number: 20140247288
    Abstract: Content adaptive power management technologies of projector systems are described. One method analyzes image data to be displayed by a projector system. A projector brightness of a light source of the projector system is adjusted based on the analyzed image data. The pixel values of the image data input into an imager of the projector system are adjusted based on the analyzed image data.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Inventor: Yanli Zhang
  • Patent number: 8809953
    Abstract: A field effect transistor (FET) structure on a semiconductor substrate which includes a gate structure having a spacer on a semiconductor substrate; an extension implant underneath the gate structure; a recessed source and a recessed drain filled with a doped epitaxial material; halo implanted regions adjacent a bottom of the recessed source and drain and being underneath the gate stack. In an exemplary embodiment, there is implanted junction butting underneath the bottom of each of the recessed source and drain, the junction butting being separate and distinct from the halo implanted regions. In another exemplary embodiment, the doped epitaxial material is graded from a lower dopant concentration at a side of the recessed source and drain to a higher dopant concentration at a center of the recessed source and drain. In a further exemplary embodiment, the semiconductor substrate is a semiconductor on insulator substrate.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: David M. Fried, Jeffrey B. Johnson, Kevin McStay, Paul Parries, Chengwen Pei, Gan Wang, Geng Wang, Yanli Zhang
  • Publication number: 20140218349
    Abstract: Some embodiments describe techniques that relate to power efficient, high frequency displays with motion blur mitigation. In one embodiment, the refresh rate of a display device may be dynamically modified, e.g., to reduce power consumption and/or reduce motion blur. Other embodiments are also described.
    Type: Application
    Filed: November 4, 2013
    Publication date: August 7, 2014
    Inventors: Maximino Vasquez, Akihiro Takagi, Yanli Zhang, Achintya K. Bhowmik
  • Patent number: 8791894
    Abstract: Systems and methods may provide for determining an operating mode of a display device that may include a flat panel display and a controller coupled to the flat panel display. The controller may be configured to determine an operating mode for the flat panel display among a plurality of operating modes including at least a first operating mode and a second operating mode. In the first operating mode, the controller may set the flat panel display to utilize a first frame rate and a first inversion mode to save power. In the second operating mode, the controller may set the flat panel display to utilize a second frame rate, a second inversion mode, and black frame insertion to improve image quality. The second frame rate may be faster than the first frame rate. The second inversion mode and black frame insertion may be mutually configured to maintain a DC balanced operation of the flat panel display.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: July 29, 2014
    Assignee: Intel Corporation
    Inventors: Akihiro Takagi, Cheng-Shih Chin, Yanli Zhang, Maximino Vasquez
  • Patent number: 8741780
    Abstract: A structural alternative to retro doping to reduce transistor leakage is provided by providing a liner in a trench, undercutting a conduction channel region in an active semiconductor layer, etching a side, corner and/or bottom of the conduction channel where the undercut exposes semiconductor material in the active layer and replacing the removed portion of the conduction channel with insulator. This shaping of the conduction channel increases the distance to adjacent circuit elements which, if charged, could otherwise induce a voltage and cause a change in back-channel threshold in regions of the conduction channel and narrows and reduces cross-sectional area of the channel where the conduction in the channel is not well-controlled; both of which effects significantly reduce leakage of the transistor.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joseph Ervin, Jeffrey B. Johnson, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang
  • Publication number: 20140131782
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 8723243
    Abstract: A method of forming a trench structure that includes forming a metal containing layer on at least the sidewalls of a trench, and forming an undoped semiconductor fill material within the trench. The undoped semiconductor fill material and the metal containing layer are recessed to a first depth within the trench with a first etch. The undoped semiconductor fill material is then recessed to a second depth within the trench that is greater than a first depth with a second etch. The second etch exposes at least a sidewall portion of the metal containing layer. The trench is filled with a doped semiconductor containing material fill, wherein the doped semiconductor material fill is in direct contact with the at least the sidewall portion of the metal containing layer.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brian W. Messenger, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang