Patents by Inventor Yanxiang Liu

Yanxiang Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9076791
    Abstract: A process and device are provided for a high-k gate-dielectric operating as a built-in e-fuse. Embodiments include: providing first and second active regions of a transistor, separated by a gate region of the transistor, on a substrate; forming an interfacial layer on the gate region; minimizing the interfacial layer; forming a high-k gate dielectric layer on the interfacial layer to operate as an e-fuse element, the high-k gate dielectric layer and interfacial layer having a combined breakdown voltage less than three times a circuit operating voltage associated with the transistor; and forming a metal gate on the high-k gate dielectric layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: July 7, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Min-hwa Chi, Yanxiang Liu
  • Patent number: 9064868
    Abstract: One illustrative device disclosed herein includes a transistor comprising a gate electrode and a drain region formed in a semiconducting substrate, an isolation structure formed in the substrate, wherein the isolation structure is laterally positioned between the gate electrode and the drain region, and a Faraday shield that is positioned laterally between the gate electrode and the drain region and above the isolation structure, wherein the Faraday shield has a long axis that is oriented substantially vertically relative to an upper surface of the substrate.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: June 23, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Yanxiang Liu, Vara Vakada, Jerome Ciavatti
  • Patent number: 9064888
    Abstract: Methods for forming stacking faults in sources, or sources and drains, of TFETs to improve tunneling efficiency and the resulting devices are disclosed. Embodiments may include designating areas within a substrate that will subsequently correspond to a source region and a drain region, selectively forming a stacking fault within the substrate corresponding to the source region, and forming a tunneling field-effect transistor incorporating the source region and the drain region.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 23, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Yanxiang Liu, Min-hwa Chi
  • Publication number: 20150137235
    Abstract: There is set forth herein in one embodiment a FinFET semiconductor device having a fin extending from a bulk silicon substrate, wherein there is formed wrapped around a portion of the fin a gate, and wherein proximate a channel area of the fin aligned to the gate there is formed a local buried oxide region aligned to the gate. In one embodiment, the local buried oxide region is formed below a channel area of the fin.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Applicant: GLOBALFOUNDRIES Inc
    Inventors: Yanxiang LIU, Min-hwa CHI
  • Publication number: 20150137236
    Abstract: Embodiments of the invention provide a semiconductor structure including a finFET having an epitaxial semiconductor region in direct physical contact with a plurality of fins, wherein the epitaxial semiconductor region traverses an insulator layer and is in direct physical contact with the semiconductor substrate. The gate of the finFET is disposed over an insulator layer, such as a buried oxide layer. Methods of forming the semiconductor structure are also included.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 21, 2015
    Applicant: GLOBALFOUNDERIES Inc.
    Inventors: Yanxiang Liu, Min-hwa Chi
  • Patent number: 9034737
    Abstract: Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 19, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Johannes M. van Meer, Michael J. Hargrove, Christian Gruensfelder, Yanxiang Liu, Srikanth B. Samavedam
  • Patent number: 9007803
    Abstract: Methods and apparatus are provided for an integrated circuit with a programmable electrical connection. The apparatus includes an inactive area with a memory line passing over the inactive area. The memory line includes a programmable layer. An interlayer dielectric is positioned over the memory line and the inactive area, and an extending member extends through the interlayer dielectric. The extending member is electrically connected to the programmable layer of the memory line at a point above the inactive area.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: April 14, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Yanxiang Liu, Min-hwa Chi
  • Publication number: 20150062996
    Abstract: An OTP anti-fuse memory array without additional selectors and a manufacturing method are provided. Embodiments include forming wells of a first polarity in a substrate, forming a bitline of the first polarity in each well, and forming plural metal gates across each bitline, wherein no source/drain regions are formed between the metal gates.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Yanxiang LIU, Min-hwa CHI, Anurag MITTAL
  • Patent number: 8956948
    Abstract: A semiconductor device is formed with extended STI regions. Embodiments include implanting oxygen under STI trenches prior to filling the trenches with oxide and subsequently annealing. An embodiment includes forming a recess in a silicon substrate, implanting oxygen into the silicon substrate below the recess, filling the recess with an oxide, and annealing the oxygen implanted silicon. The annealed oxygen implanted silicon extends the STI region, thereby reducing leakage current between N+ diffusions and N-well and between P+ diffusions and P-well, without causing STI fill holes and other defects.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: February 17, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Yanxiang Liu, Bin Yang
  • Publication number: 20150037945
    Abstract: Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Johannes M. van Meer, Michael J. Hargrove, Christian Gruensfelder, Yanxiang Liu, Srikanth B. Samavedam
  • Publication number: 20150034941
    Abstract: Integrated circuits that have a FinFET and methods of fabricating the integrated circuits are provided herein. In an embodiment, a method of fabricating an integrated circuit having a FinFET includes providing a substrate comprising fins. The fins include semiconductor material. A first metal oxide layer is formed over sidewall surfaces of the fins. The first metal oxide layer includes a first metal oxide. The first metal oxide layer is recessed to a depth below a top surface of the fins to form a recessed first metal oxide layer. The top surface and sidewall surfaces of the fins at a top portion of the fins are free from the first metal oxide layer. A gate electrode structure is formed over the top surface and sidewall surfaces of the fins at the top portion of the fins. The recessed first metal oxide layer is recessed beneath the gate electrode structure.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Michael HARGROVE, Yanxiang LIU, Christian GRUENSFELDER
  • Publication number: 20150024557
    Abstract: There is set forth herein a semiconductor device fabricated on a bulk wafer having a local buried oxide region underneath a channel region of a MOSFET. In one embodiment the local buried oxide region can be self-aligned to a gate, and a source/drain region can be formed in a bulk substrate. A local buried oxide region can be formed in a semiconductor device by implantation of oxygen into a bulk region of the semiconductor device followed by annealing.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 22, 2015
    Inventors: Yanxiang LIU, Min-hwa CHI
  • Publication number: 20150021702
    Abstract: A semiconductor structure with an improved shallow trench isolation (STI) region and method of fabrication is disclosed. The STI region comprises a lower portion filled with oxide and an upper portion comprising a high Young's modulus (HYM) liner disposed on the lower portion and trench sidewalls and filled with oxide. The HYM liner is disposed adjacent to source-drain regions, and serves to reduce stress relaxation within the shallow trench isolation (STI) oxide, which has a relatively low Young's modulus and is soft. Hence, the HYM liner serves to increase the desired stress imparted by the embedded stressor source-drain regions, which enhances carrier mobility, thus increasing semiconductor performance.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Yanxiang Liu, Johannes M. van Meer, Xiaodong Yang, Manfred J. Eller
  • Publication number: 20150016174
    Abstract: Methods and apparatus are provided for an integrated circuit with a programmable electrical connection. The apparatus includes an inactive area with a memory line passing over the inactive area. The memory line includes a programmable layer. An interlayer dielectric is positioned over the memory line and the inactive area, and an extending member extends through the interlayer dielectric. The extending member is electrically connected to the programmable layer of the memory line at a point above the inactive area.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 15, 2015
    Inventors: Yanxiang Liu, Min-hwa Chi
  • Publication number: 20150001594
    Abstract: Methods for forming stacking faults in sources, or sources and drains, of TFETs to improve tunneling efficiency and the resulting devices are disclosed. Embodiments may include designating areas within a substrate that will subsequently correspond to a source region and a drain region, selectively forming a stacking fault within the substrate corresponding to the source region, and forming a tunneling field-effect transistor incorporating the source region and the drain region.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Yanxiang LIU, Min-hwa CHI
  • Publication number: 20140361365
    Abstract: One illustrative device includes a source region and a drain region formed in a substrate, wherein the source/drain regions are doped with a first type of dopant material, a gate structure positioned above the substrate that is laterally positioned between the source region and the drain region and a drain-side well region positioned in the substrate under a portion, but not all, of the entire lateral width of the drain region, wherein the drain-side well region is also doped with the first type of dopant material. The device also includes a source-side well region positioned in the substrate under an entire width of the source region and under a portion, but not all, of the drain region and a part of the extension portion of the drain region is positioned under a portion of the gate structure.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Jerome Ciavatti, Yanxiang Liu
  • Patent number: 8846476
    Abstract: One illustrative method disclosed herein involves forming an integrated circuit product comprised of first and second N-type transistors formed in and above first and second active regions, respectively. The method generally involves performing a common threshold voltage adjusting ion implantation process on the first and second active regions, forming the first and second transistors, performing an amorphization ion implantation process to selectively form regions of amorphous material in the first active region but not in the second active region, after performing the amorphization ion implantation process, forming a capping material layer above the first and second transistors and performing a re-crystallization anneal process to convert at least portions of the regions of amorphous material to a crystalline material. In some cases, the capping material layer may be formed of a material having a Young's modulus of at least 180 GPa.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: September 30, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Yanxiang Liu, Manfred Eller, Johannes van Meer
  • Patent number: 8841732
    Abstract: CMOS devices (60, 61, 61?) having improved latch-up robustness are provided by including with one or both WELL regions (22, 29) underlying the source-drains (24, 25; 31, 32) and the body contacts (27, 34), one or more further regions (62, 62?, 62-2) doped with deep acceptors or deep donors (or both) of the same conductivity type as the corresponding WELL region and whose ionization substantially increases as operating temperature increases. The increase in conductivity exhibited by these further regions as a result of the increasing ionization of the deep acceptors or donors off-sets, in whole or part, the temperature driven increase in gain of the parasitic NPN and/or PNP bipolar transistors inherent in prior art CMOS structures. By clamping or lowering the gain of the parasitic bipolar transistors, the CMOS devices (60, 61, 61?) are less likely to go into latch-up with increasing operating temperature.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: September 23, 2014
    Assignees: Globalfoundries, Inc., International Business Machines Corporation
    Inventors: Yanxiang Liu, Xiaodong Yang, Gan Wang
  • Publication number: 20140264613
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a semiconductor substrate includes a shallow trench isolation structure disposed therein. A gate electrode structure overlies semiconductor material of the semiconductor substrate. A first sidewall spacer is formed adjacent to the gate electrode structure, with a first surface of the shallow trench isolation structure exposed and spaced from the first sidewall spacer by a region of the semiconductor material. The first surface of the shallow trench isolation structure is masked with an isolation structure mask. The region of the semiconductor material is free from the isolation structure mask. A recess is etched in the region of the semiconductor material, with the isolation structure mask in place. A semiconductor material is epitaxially grown within the recess to form an epitaxially-grown semiconductor region adjacent to the gate electrode structure.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES, INC.
    Inventors: Xiaodong Yang, Jin Ping Liu, Yanxiang Liu, Xusheng Wu
  • Publication number: 20140264633
    Abstract: Fin field-effect transistor devices and methods of forming the fin field-effect transistor devices are provided herein. In an embodiment, a fin field-effect transistor device includes a semiconductor substrate that has a fin. A gate electrode structure overlies the fin. Source and drain halo and/or extension regions and epitaxially-grown source regions and drain regions are formed in the fin and are disposed adjacent to the gate electrode structure. A body contact is disposed on a contact surface of the fin, and the body contact is spaced separately from the halo and/or extension regions and the epitaxially-grown source regions and drain regions.
    Type: Application
    Filed: February 10, 2014
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Yanxiang Liu, Michael Hargrove, Christian Gruensfelder