Patents by Inventor Yen-Hao Shih

Yen-Hao Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8846549
    Abstract: A non-volatile memory device on a semiconductor substrate may include a bottom oxide layer over the substrate, a middle layer of silicon nitride over the bottom oxide layer, and a top oxide layer over the middle layer. The bottom oxide layer may have a hydrogen concentration of up to 5E19 cm?3 and an interface trap density of up to 5E11 cm?2 eV?1. The three-layer structure may be a charge-trapping structure for the memory device, and the memory device may further include a gate over the structure and source and drain regions in the substrate.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: September 30, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Yen-Hao Shih, Hang-Ting Lue, Erh-Kun Lai, Kuang Yeu Hsieh
  • Patent number: 8847299
    Abstract: A non-volatile memory cell comprising a substrate, a charge-trapping layer, a control gate, a first conductive state of source and drain, a lightly doped region and a second conductive state of pocket-doped region. The charge-trapping layer and the control gate are disposed over the substrate. A dielectric layer is disposed between the substrate, the charge-trapping layer and the control gate. The source and drain are disposed in the substrate on each side of the charge-trapping layer. The lightly doped region is disposed on the substrate surface between the source and the charge-trapping layer. The pocket-doped region is disposed within the substrate between the drain and the charge-trapping layer. Because there are asymmetrical configuration and different doped conductive states of implant structures, the programming speed of the memory cell is increased, the neighboring cell disturb issue is prevented, and the area occupation of the bit line selection transistor is reduced.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: September 30, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Tzu-Hsuan Hsu, Yen-Hao Shih
  • Publication number: 20140264546
    Abstract: For certain three dimensionally stacked memory devices, bit lines or word lines for memory cells are stacked in spaced apart ridge like structures arranged to extend in a first direction. In such structures, complementary wordlines or bit lines, can be damascene features between the spaced apart. The damascene conductors can be formed using double patterned masks to etch sub-lithographic sacrificial lines, forming a fill over the sacrificial lines, and then removing the sacrificial lines to leave trenches that act as the damascene molds in the fill. Then the trenches are filled with the conductor material. The 3D memory array can include dielectric charge trapping memory cells, which have a high-K blocking dielectric layer, and in which the conductor material comprises a high work function material.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 18, 2014
    Applicant: MACRONIX INTENATIONAL CO., LTD.
    Inventors: ERH-KUN LAI, YEN-HAO SHIH, GUANRU LEE
  • Publication number: 20140269077
    Abstract: A semiconductor device includes a plurality of active strips, where active strips in the plurality are coupled together at one end by a pad and terminated at another end by a conductive line. The device includes memory cells at cross-points between the plurality of active strips and a plurality of word lines. The device includes string select structures arranged in an interlaced configuration as side gates for active strips. The device includes control circuitry, configured to turn on a particular active strip by applying a turn-on voltage to two string select structures arranged as side gates for the particular active strip, and to turn off a second particular active strip by applying a turn-off bias to at least one string select structure arranged as a side gate for the second particular active strip. The turn-off bias includes one of a ground voltage, a non-negative voltage, and a floating condition.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 18, 2014
    Applicant: Macronix International Co., Ltd.
    Inventors: YEN-HAO SHIH, YI-HSUAN HSIAO
  • Patent number: 8816423
    Abstract: A semiconducting multi-layer structure comprising a plurality of first conductive layers, a plurality of first insulating layers and a second conductive layer is disclosed. The first conductive layers are separately disposed. Each of the first conductive layers has an upper surface, a bottom surface opposite to the upper surface and a lateral surface. The first insulating layers surround the peripherals of the first conductive layers. Each of the first insulating layers covers at least a part of the upper surface of each of the first conductive layers, at least a part of the bottom surface of each of the first conductive layers and the two lateral surface of each of the first conductive layers. The second conductive layer covers the first conductive layers and the first insulating layers.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: August 26, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Yen-Hao Shih
  • Publication number: 20140217518
    Abstract: A method of forming an interlayer conductor structure. The method includes forming a stack of semiconductor pads coupled to respective active layers for a circuit. The semiconductor pads include outside perimeters each having one side coupled to a respective active layer. Impurities are implanted along the outside perimeters to form outside lower resistance regions on the pads. Openings are then formed in the stack of the semiconductor pads to expose a landing area for interlayer conductors on a corresponding semiconductor pad and to define an inside perimeter on at least one of the semiconductor pads. Inside lower resistance regions are formed along the inside perimeters by implanting impurities for interlayer conductor contacts and configured to overlap and be continuous with the corresponding outside lower resistance region.
    Type: Application
    Filed: May 31, 2013
    Publication date: August 7, 2014
    Inventors: Yen-Hao SHIH, Yi-Hsuan HSIAO, Chih-Ping CHEN
  • Publication number: 20140197516
    Abstract: An integrated circuit device includes a substrate including a first region and a second region. A pit is formed in the first region. A stack of active layers alternating with insulating layers is deposited in the pit. The stack includes a particular insulating layer. The particular insulating layer has a first thickness, where a sum of the first thickness, thickness of active layers, and thicknesses of other insulating layers is essentially equal to a depth of the pit. The first thickness is different than the thicknesses of the other insulating layers by an amount within a range of process variations for the depth of the pit, for the thicknesses of the active layers, and for the thicknesses of other insulating layers. The device includes a planarized surface over the first and second regions, where an uppermost one of the active layers has a top surface below the planarized surface.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Inventors: Hang-Ting Lue, Yi-Hsuan Hsiao, Shih-Hung Chen, Yen-Hao Shih
  • Patent number: 8772747
    Abstract: A layer of phase change material with silicon or another semiconductor, or a silicon-based or other semiconductor-based additive, is formed using a composite sputter target including the silicon or other semiconductor, and the phase change material. The concentration of silicon or other semiconductor is more than five times greater than the specified concentration of silicon or other semiconductor in the layer being formed. For silicon-based additive in GST-type phase change materials, sputter target may comprise more than 40 at % silicon. Silicon-based or other semiconductor-based additives can be formed using the composite sputter target with a flow of reactive gases, such as oxygen or nitrogen, in the sputter chamber during the deposition.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: July 8, 2014
    Assignees: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Huai-Yu Cheng, Chieh-Fang Chen, Hsiang-Lan Lung, Yen-Hao Shih, Simone Raoux, Matthew J. Breitwisch
  • Patent number: 8759899
    Abstract: An integrated circuit device includes a substrate including a first region and a second region. A pit is formed in the first region. A stack of active layers alternating with insulating layers is deposited in the pit. The stack includes a particular insulating layer. The particular insulating layer has a first thickness, where a sum of the first thickness, thickness of active layers, and thicknesses of other insulating layers is essentially equal to a depth of the pit. The first thickness is different than the thicknesses of the other insulating layers by an amount within a range of process variations for the depth of the pit, for the thicknesses of the active layers, and for the thicknesses of other insulating layers. The device includes a planarized surface over the first and second regions, where an uppermost one of the active layers has a top surface below the planarized surface.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: June 24, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Hang-Ting Lue, Yi-Hsuan Hsiao, Shih-Hung Chen, Yen-Hao Shih
  • Publication number: 20140154881
    Abstract: A method of manufacturing a metal silicide is disclosed below. A substrate having a first region and a second region is provided. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer having a planar surface. A part of the silicon layer is removed to form a plurality of first gates on the first region and to form a plurality of second gates on the second region. The height of the first gates is greater than the height of the second gates, and top surfaces of the first gates and the second gates have the same height level. A dielectric layer covering the first gates and the second gates is formed and exposes the top surfaces of the first gates and the second gates. A metal silicide is formed on the top surfaces of the first gates and the second gates.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: Macronix International Co., Ltd.
    Inventors: Yen-Hao Shih, Ying-Tso Chen, Shih-Chang Tsai, Chun-Fu Chen
  • Patent number: 8735969
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes a stacked structure, a plurality of first conductive blocks, a plurality of first conductive layers, a plurality of second conductive layers, and a plurality of conductive damascene structures. The stacked structure, comprising a plurality of conductive strips and a plurality of insulating strips, is formed on a substrate, and the conductive strips and the insulating strips are interlaced. The first conductive blocks are formed on the stacked structure. The first conductive layers and the second conductive layers are formed on two sidewalls of the stacked structure, respectively. The conductive damascene structures are formed on two sides of the stacked structure, wherein each of the first conductive blocks is electrically connected to each of the conductive damascene structures via each of the first conductive strips and each of the second conductive strips.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: May 27, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Yen-Hao Shih, Shih-Chang Tsai
  • Publication number: 20140140131
    Abstract: A device on an integrated circuit includes a stack of alternating semiconductor lines and insulating lines, and a gate structure over the stack of semiconductor lines. The gate structure includes a vertical portion adjacent the stack on the at least one side, and horizontal extension portions between the semiconductor lines. Sides of the insulating lines can be recessed relative to sides of the semiconductor lines, so at least one side of the stack includes recesses between semiconductor lines. The horizontal extension portions can be in the recesses. The horizontal extension portions have inside surfaces adjacent the sides of the insulating lines, and outside surfaces that can be flush with the sides of the semiconductor lines. The device may include a second gate structure spaced away from the first mentioned gate structure, and an insulating element between horizontal extension portions of the second gate structure and the first mentioned gate structure.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Inventors: Teng-Hao Yeh, Yen-Hao Shih, Yan-Ru Chen
  • Publication number: 20140131838
    Abstract: A semiconductor structure and a method for manufacturing the same are provided. The method comprises following steps. Semiconductor units are arranged on a substrate. A material layer is formed on the semiconductor units. A first patterned mask layer is formed on the semiconductor units. The first patterned mask layer has a mask opening corresponding to a portion of the semiconductor units and exposing the material layer. A portion of the material layer exposed by the mask opening is removed to remain a portion of the material layer on a sidewall of each of the semiconductor units exposed by the mask opening to form spacer structures.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: SEMICONDUCTOR STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
    Inventors: Chih-Wei Hu, Teng-Hao Yeh, Yen-Hao Shih
  • Publication number: 20140124945
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes a stacked structure, a plurality of first conductive blocks, a plurality of first conductive layers, a plurality of second conductive layers, and a plurality of conductive damascene structures. The stacked structure, comprising a plurality of conductive strips and a plurality of insulating strips, is formed on a substrate, and the conductive strips and the insulating strips are interlaced. The first conductive blocks are formed on the stacked structure. The first conductive layers and the second conductive layers are formed on two sidewalls of the stacked structure, respectively. The conductive damascene structures are formed on two sides of the stacked structure, wherein each of the first conductive blocks is electrically connected to each of the conductive damascene structures via each of the first conductive strips and each of the second conductive strips.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Erh-Kun Lai, Yen-Hao Shih, Shih-Chang Tsai
  • Publication number: 20140119110
    Abstract: An integrated circuit phase change memory can be pre-coded by inducing a first resistance state in some cells and the memory, and a second resistance state and some other cells in the memory to represent a data set. The integrated circuit phase change memory is mounted on a substrate after coding the data set. After mounting the integrated circuit phase change memory, the data set is read by sensing the first and second resistance states, and changing cells in the first resistance state to a third resistance state and changing cells in the second resistance state to a fourth resistance state. The first and second resistance states maintain a sensing margin after solder bonding or other thermal cycling process. The third and fourth resistance states are characterized by the ability to cause a transition using higher speed and lower power, suitable for a mission function of a circuit.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: HSIANG-LAN LUNG, MING-HSIU LEE, YEN-HAO SHIH, TIEN-YEN WANG, CHAO-I WU
  • Publication number: 20140119127
    Abstract: A memory cell array of dielectric charge trapping memory cells and method for performing program, read and erase operations on the memory cell array that includes bits stored at charge trapping sites in adjacent memory cells. A bit of information is stored at a first charge trapping site in a first memory cell and a second charge trapping site in a second adjacent memory cell. Storing charge at two trapping sites in adjacent memory cells increases data retention rates of the array of memory cells as each charge trapping site can be read to represent the data that is stored at the data site. Each corresponding charge trapping site can be read independently and in parallel so that the results can be compared to determine the data value that is stored at the data site in an array of dielectric charge trapping memory cells.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Inventors: Hsiang-Lan Lung, YEN-HAO SHIH, ERH-KUN LAI, MING-HSIU LEE
  • Publication number: 20140110766
    Abstract: A semiconductor structure has a second portion with an appendage on one side of the second portion and extruding along the longitudinal direction of the second portion. Moreover the semiconductor structure also has a gate line longitudinally parallel to the second portion, wherein the length of the gate line equals to the longitudinal length of the second portion.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: TENG-HAO YEH, YEN-HAO SHIH
  • Patent number: 8704205
    Abstract: A semiconductor structure with improved capacitance of bit lines includes a substrate, a stacked memory structure, a plurality of bit lines, a first stair contact structure, a first group of transistor structures and a first conductive line. The first stair contact structure is formed on the substrate and includes conductive planes and insulating planes stacked alternately. The conductive planes are separated from each other by the insulating planes for connecting the bit lines to the stacked memory structure by stairs. The first group of transistor structures is formed in a first bulk area where the bit lines pass through and then connect to the conductive planes. The first group of transistor structures has a first gate around the first bulk area. The first conductive line is connected to the first gate to control the voltage applied to the first gate.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 22, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Hung Chen, Hang-Ting Lue, Kuang-Yeu Hsieh, Erh-Kun Lai, Yen-Hao Shih
  • Publication number: 20140103530
    Abstract: A three dimensional stacked semiconductor structure comprises a stack including plural oxide layers and conductive layers arranged alternately, at least a contact hole formed vertically to the oxide layers and the conductive layers, and extending to one of the conductive layers, an insulator formed at the sidewall of the contact hole, a conductor formed in the contact hole and connecting the corresponding conductive layer, and the corresponding conductive layer comprises a silicide. The silicide could be formed at edges or an entire body of the corresponding conductive layer. Besides the silicide, the corresponding conductive layer could, partially or completely, further comprise a conductive material connected to the conductor. The corresponding conductive layer which the contact hole extends to has higher conductivity than other conductive layers. Also, the 3D stacked semiconductor structure could be applied to a fan-out region of a 3D flash memory.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Erh-Kun Lai, Yen-Hao Shih
  • Patent number: 8674410
    Abstract: A method of manufacturing a metal silicide is disclosed below. A substrate having a first region and a second region is proviced. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer having a planar surface. A part of the silicon layer is removed to form a plurality of first gates on the first region and to form a plurality of second gates on the second region. The height of the first gates is greater than the height of the second gates, and top surfaces of the first gates and the second gates have the same height level. A dielectric layer covering the first gates and the second gates is formed and exposes the top surfaces of the first gates and the second gates. A metal silicide is formed on the top surfaces of the first gates and the second gates.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: March 18, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Yen-Hao Shih, Ying-Tso Chen, Shih-Chang Tsai, Chun-Fu Chen