Patents by Inventor Yi Yan

Yi Yan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210363183
    Abstract: De novo, artificial intelligence (AI) designed antimicrobial peptides (AMPs), antibacterial products comprising the AMPs and methods for treating bacterial infections using the products are provided. In one or more embodiments, the AMPs were designed using conditional latent attribute space sampling (CLaSS). The AMPs comprise up to twenty natural amino acids in length, including one with twelve and another with thirteen natural amino acids in length. The AMPs demonstrate low-toxicity and show high antimicrobial potency against diverse pathogens including multi-medication-resistant Gram negative Klebsiella pneumoniae.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 25, 2021
    Inventors: Payel Das, Flaviu Cipcigan, James L. Hedrick, Yi Yan Yang, Kahini Wadhawan, Inkit Padhi, Enara C Vijil, Pang Kern Jeremy Tan
  • Patent number: 11179475
    Abstract: Techniques regarding the transportation of molecular cargo across the BBB are provided. For example, one or more embodiments described herein can comprise a chemical compound to facilitate molecular encapsulation of the molecular cargo. The chemical compound can comprise a diblock copolymer having a molecular backbone comprising a polycarbonate structure and a polyethylene glycol structure. Also, the polycarbonate structure can be functionalized with boronic acid.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 23, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: James L. Hedrick, Nathaniel H. Park, Yi Yan Yang, Zhi Xiang Voo, Jeremy Tan
  • Patent number: 11180608
    Abstract: A biodegradable cationic polymer is disclosed, comprising first repeat units derived from a first cyclic carbonyl monomer by ring-opening polymerization, wherein more than 0% of the first repeat units comprise a side chain moiety comprising a quaternary amine group; a subunit derived from a monomeric diol initiator for the ring-opening polymerization; and an optional endcap group. The biodegradable cationic polymers have low cytotoxicity and form complexes with biologically active materials useful in gene therapeutics and drug delivery.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: November 23, 2021
    Assignees: International Business Machines Corporation, Agency For Science, Technology And Research
    Inventors: Kazuki Fukushima, James L. Hedrick, Yi Yan Yang
  • Publication number: 20210359095
    Abstract: A semiconductor structure includes a semiconductor substrate; fin active regions protruded above the semiconductor substrate; and a gate stack disposed the fin active regions; wherein the gate stack includes a high-k dielectric material layer, and various metal layers disposed on the high-k dielectric material layer. The gate stack has an uneven profile in a sectional view with a first dimension D1 at a top surface, a second dimension D2 at a bottom surface, and a third dimension D3 at a location between the top surface and the bottom surface, and wherein each of D1 and D2 is greater than D3.
    Type: Application
    Filed: April 2, 2021
    Publication date: November 18, 2021
    Inventors: Chi-Sheng Lai, Yu-Fan Peng, Li-Ting Chen, Yu-Shan Lu, Yu-Bey Wu, Wei-Chung Sun, Yuan-Ching Peng, Kuei-Yu Kao, Shih-Yao Lin, Chih-Han Lin, Pei-Yi Liu, Jing Yi Yan
  • Patent number: 11174171
    Abstract: A hierarchical porous honeycombed nickel oxide microsphere and a preparation method thereof are disclosed. The method includes mixing nickel sulfate hexahydrate, urea, water and glycerol, to obtain a mixed solution; subjecting the mixed solution to a hydrothermal reaction, to obtain a precursor; and calcining the precursor, to obtain the hierarchical porous honeycombed nickel oxide microspheres.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: November 16, 2021
    Assignee: Northwestern Polytechnical University
    Inventors: Wangchang Geng, Shilu Xu, Yi Yan, Qiuyu Zhang
  • Patent number: 11174289
    Abstract: De novo, artificial intelligence (AI) designed antimicrobial peptides (AMPs), antibacterial products comprising the AMPs and methods for treating bacterial infections using the products are provided. In one or more embodiments, the AMPs were designed using conditional latent attribute space sampling (CLaSS). The AMPs comprise up to twenty natural amino acids in length, including one with twelve and another with thirteen natural amino acids in length. The AMPs demonstrate low-toxicity and show high antimicrobial potency against diverse pathogens including multi-medication-resistant Gram negative Klebsiella pneumoniae.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: November 16, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Payel Das, Flaviu Cipcigan, James L. Hedrick, Yi Yan Yang, Kahini Wadhawan, Inkit Padhi, Enara C Vijil, Pang Kern Jeremy Tan
  • Patent number: 11167036
    Abstract: The subject disclosure is directed to techniques for enhancing the selectivity and efficacy of therapeutic polymers against a broad spectrum of pathogens and cancer cell lines. According to an embodiment, a method is provided that comprises forming a therapeutic polymer based on polymerization of a plurality of therapeutic monomers, wherein the therapeutic polymer provides a therapeutic functionality. The method further comprises attaching biotin to the therapeutic polymer, resulting in a biotin-functionalized therapeutic polymer, wherein the biotin-functionalized therapeutic polymer provides greater therapeutic efficacy relative to the therapeutic polymer.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: November 9, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: James L. Hedrick, Nathaniel H. Park, Yi Yan Yang, Zhi Xiang Voo
  • Patent number: 11149114
    Abstract: A biodegradable cationic polymer is disclosed, comprising first repeat units derived from a first cyclic carbonyl monomer by ring-opening polymerization, wherein more than 0% of the first repeat units comprise a side chain moiety comprising a quaternary amine group; a subunit derived from a monomeric diol initiator for the ring-opening polymerization; and an optional endcap group. The biodegradable cationic polymers have low cytotoxicity and form complexes with biologically active materials useful in gene therapeutics and drug delivery.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: October 19, 2021
    Assignees: International Business Machines Corporation, Agency For Science, Technology And Research
    Inventors: Kazuki Fukushima, James L. Hedrick, Yi Yan Yang
  • Publication number: 20210299160
    Abstract: Techniques regarding a chemical composition that can be utilized within one or more combination therapies to treat a microbial infection are provided. For example, one or more embodiments described herein can comprise a chemical composition that includes a first triblock polymer comprising a quaternary ammonium functionalized polycarbonate block and exhibiting anticancer activity via a lytic mechanism. The chemical composition can also include a second triblock polymer comprising a guanidinium functionalized polycarbonate block and exhibiting anticancer activity via a translocation mechanism.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Inventors: James L. Hedrick, Yi Yan Yang, Nathaniel H. Park, Jiayu Leong, Chuan Yang, Xin Ding, Yiran Zhen, Cherylette Anne Alexander, Jye Yng Teo
  • Publication number: 20210289782
    Abstract: Techniques regarding polymers with antimicrobial functionality are provided. For example, one or more embodiments described herein can regard a polymer, which can comprise a repeating ionene unit. The repeating ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. Further, the repeating ionene unit can have antimicrobial functionality.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 23, 2021
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Publication number: 20210276883
    Abstract: A hierarchical porous honeycombed nickel oxide microsphere and a preparation method thereof are disclosed. The method includes mixing nickel sulfate hexahydrate, urea, water and glycerol, to obtain a mixed solution; subjecting the mixed solution to a hydrothermal reaction, to obtain a precursor; and calcining the precursor, to obtain the hierarchical porous honeycombed nickel oxide microspheres.
    Type: Application
    Filed: January 14, 2021
    Publication date: September 9, 2021
    Applicant: Northwestern Polytechnical University
    Inventors: Wangchang GENG, Shilu XU, Yi YAN, Qiuyu ZHANG
  • Publication number: 20210246309
    Abstract: Techniques regarding guanidinium functionalized polylysine polymers that can have antimicrobial and/or anticancer activity are provided. For example, one or more embodiments described herein can comprise a chemical composition, which can comprise a polymer comprising a molecular backbone covalently bonded to a pendent guanidinium functional group, wherein the molecular backbone can comprise a polylysine structure.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 12, 2021
    Inventors: Nathaniel H. Park, James L. Hedrick, Victoria A. Piunova, Gavin Jones, Yi Yan Yang, Pang Kern Jeremy Tan, Chuan Yang, Cherylette Anne Alexander
  • Patent number: 11065367
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. In particular, a method for forming an organocatalyzed polythioether coating is provided in which a first solution including a bis-silylated dithiol and a fluoroarene is prepared. A second solution including an organocatalyst is prepared. The first solution and the second solution are mixed to form a mixed solution. The mixed solution is applied to a substrate, and the substrate is cured.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: July 20, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Amos Cahan, Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20210212314
    Abstract: Techniques regarding chemical compounds with antimicrobial functionality are provided. For example, one or more embodiments describe herein can comprise a monomer that can comprise a molecular backbone. The molecular backbone can comprise a bis(urea)guanidinium structure covalently bonded to a functional group, which can comprise a radical. Also, the monomer can have supramolecular assembly functionality.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Inventors: James L. Hedrick, Mareva B. Fevre, Nathaniel H. Park, Victoria A. Piunova, Yi Yan Yang, Pang Kern Jeremy Tan
  • Publication number: 20210214493
    Abstract: Compositions and methods regarding guanidinium functionalized polycarbonates that provide potent antimicrobial activity against multidrug resistant (MDR) bacteria, including Klebsiella pneumoniae (K. pneumoniae) are provided. According to an embodiment, an antimicrobial guanidinium-functionalized polymer is provided that comprises a hydrophobic molecular backbone with cationic guanidinium moieties respectively bound to the hydrophobic molecular backbone via butyl spacer groups. The antimicrobial guanidinium-functionalized polymer self-assembles into a micelle structure with hydrophobic residuals of the antimicrobial guanidinium-functionalized polymer buried inside the micelle structure and the cationic guanidinium moieties exposed on an external surface of the micelle structure to target pathogens.
    Type: Application
    Filed: March 31, 2021
    Publication date: July 15, 2021
    Inventors: James L. Hedrick, Yi Yan Yang, Chuan Yang
  • Patent number: 11058110
    Abstract: Techniques regarding polymers with antimicrobial functionality are provided. For example, one or more embodiments described herein can regard a polymer, which can comprise a repeating ionene unit. The repeating ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. Further, the repeating ionene unit can have antimicrobial functionality.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: July 13, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Publication number: 20210207105
    Abstract: The disclosure discloses a strain and method for producing rosmarinic acid, and belongs to the technical field of bioengineering. The disclosure constructs a recombinant cell or a combination of recombinant cells expressing 4-coumarate: CoA ligase, rosmarinic acid synthase, polyphosphate kinase 2-I (PPK2-I) and polyphosphate kinase 2-II (PPK2-II), and utilizes the recombinant cell or the combination of recombinant cells to catalyze Danshensu and caffeic acid for synthesizing rosmarinic acid. The disclosure has good industrial application prospects.
    Type: Application
    Filed: March 23, 2021
    Publication date: July 8, 2021
    Inventors: Yujie CAI, Yi YAN, Yanrui DING, Yajun BAI, Xiaohui ZHENG
  • Patent number: 11045552
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 29, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Yang Chuan, Ashlynn Lee, Zhen Chang Liang, Shaoqiong Liu, Yi Yan Yang
  • Patent number: 11028264
    Abstract: Techniques regarding guanidinium functionalized polylysine polymers that can have antimicrobial and/or anticancer activity are provided. For example, one or more embodiments described herein can comprise a chemical composition, which can comprise a polymer comprising a molecular backbone covalently bonded to a pendent guanidinium functional group, wherein the molecular backbone can comprise a polylysine structure.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: June 8, 2021
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Nathaniel H. Park, James L. Hedrick, Victoria A. Piunova, Gavin Jones, Yi Yan Yang, Pang Kern Jeremy Tan, Chuan Yang, Cherylette Anne Alexander
  • Publication number: 20210145970
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Application
    Filed: December 22, 2020
    Publication date: May 20, 2021
    Inventors: Dylan J. BODAY, Jeannette M. GARCIA, James L. HEDRICK, Nathaniel PARK, Rudy J. WOJTECKI, Yang CHUAN, Ashlynn LEE, Zhen Chang LIANG, Shaoqiong LIU, Yi Yan YANG