Patents by Inventor Yiheng Xu

Yiheng Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9385062
    Abstract: A structure and method for fabricating a continuous cooling channel in the back end of line wiring levels of an integrated circuit (IC) chip is provided. This continuous cooling channel may provide a path for a cooling source such as a fluid pumped from an external fluidic-cooling circulation driver to make physical contact locally with and cool the back end levels within the IC chip that may generate heat as a byproduct of the IC device's routine operations. Such a cooling structure is achieved by removing a horizontal portion of a barrier layer from an intermediate region of an interlevel interconnect structure, selective to a vertical portion of the barrier layer located on a sidewall of the interlevel interconnect structure, using gas cluster ion beam etching as well as removing the bulk conductor by additional means.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: July 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Vincent J. McGahay, Joyeeta Nag, Yiheng Xu
  • Publication number: 20160190312
    Abstract: Vertical GAA FET structures are disclosed in which a current-carrying nanowire is oriented substantially perpendicular to the surface of a silicon substrate. The vertical GAA FET is intended to meet design and performance criteria for the 7 nm technology generation. In some embodiments, electrical contacts to the drain and gate terminals of the vertically oriented GAA FET can be made via the backside of the substrate. Examples are disclosed in which various n-type and p-type transistor designs have different contact configurations. In one example, a backside gate contact extends through the isolation region between adjacent devices. Other embodiments feature dual gate contacts for circuit design flexibility. The different contact configurations can be used to adjust metal pattern density.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: John H. ZHANG, Carl RADENS, Lawrence A. CLEVENGER, Yiheng XU
  • Publication number: 20160181153
    Abstract: A structure and method for fabricating a continuous cooling channel in the back end of line wiring levels of an integrated circuit (IC) chip is provided. This continuous cooling channel may provide a path for a cooling source such as a fluid pumped from an external fluidic-cooling circulation driver to make physical contact locally with and cool the back end levels within the IC chip that may generate heat as a byproduct of the IC device's routine operations. Such a cooling structure is achieved by removing a horizontal portion of a barrier layer from an intermediate region of an interlevel interconnect structure, selective to a vertical portion of the barrier layer located on a sidewall of the interlevel interconnect structure, using gas cluster ion beam etching as well as removing the bulk conductor by additional means.
    Type: Application
    Filed: March 11, 2016
    Publication date: June 23, 2016
    Inventors: Lawrence A. Clevenger, Vincent J. McGahay, Joyeeta Nag, Yiheng Xu
  • Publication number: 20160181173
    Abstract: A structure and method for fabricating a continuous cooling channel in the back end of line wiring levels of an integrated circuit (IC) chip is provided. This continuous cooling channel may provide a path for a cooling source such as a fluid pumped from an external fluidic-cooling circulation driver to make physical contact locally with and cool the back end levels within the IC chip that may generate heat as a byproduct of the IC device's routine operations. Such a cooling structure is achieved by removing a horizontal portion of a barrier layer from an intermediate region of an interlevel interconnect structure, selective to a vertical portion of the barrier layer located on a sidewall of the interlevel interconnect structure, using gas cluster ion beam etching as well as removing the bulk conductor by additional means.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Lawrence A. Clevenger, Vincent J. McGahay, Joyeeta Nag, Yiheng Xu
  • Patent number: 9373561
    Abstract: A structure and method for fabricating a continuous cooling channel in the back end of line wiring levels of an integrated circuit (IC) chip is provided. This continuous cooling channel may provide a path for a cooling source such as a fluid pumped from an external fluidic-cooling circulation driver to make physical contact locally with and cool the back end levels within the IC chip that may generate heat as a byproduct of the IC device's routine operations. Such a cooling structure is achieved by removing a horizontal portion of a barrier layer from an intermediate region of an interlevel interconnect structure, selective to a vertical portion of the barrier layer located on a sidewall of the interlevel interconnect structure, using gas cluster ion beam etching as well as removing the bulk conductor by additional means.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: June 21, 2016
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Vincent J. McGahay, Joyeeta Nag, Yiheng Xu
  • Patent number: 9362230
    Abstract: Electrically conductive structures and methods of making electrically conductive structures. The methods include providing a dielectric layer of a material having a top surface and a dielectric constant of less than 3; rastering a gas cluster ion beam to form a patterned modified surface region of the top surface of the dielectric layer; and selectively forming an electrically conductive thin film on the patterned modified surface region using atomic layer deposition.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: June 7, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Lawrence A. Clevenger, Vincent J. McGahay, Joyeeta Nag, Yiheng Xu
  • Patent number: 9337087
    Abstract: Various embodiments facilitate die protection for an integrated circuit. In one embodiment, a multilayer structure is formed in multiple levels and along the edges of a die to prevent and detect damages to the die. The multilayer structure includes a support layer, a first plurality of dielectric pillars overlying the support layer, a metal layer that fills spaces between the first plurality of dielectric pillars, an insulation layer overlying the first plurality of dielectric pillars and the metal layer, a second plurality of dielectric pillars overlying the insulation layer, and a second metal layer that fills spaces between the second plurality of dielectric pillars.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: May 10, 2016
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Byoung Youp Kim, Walter Kleemeier
  • Patent number: 9324793
    Abstract: An ashing chemistry employing a combination of Cl2 and N2 is provided, which removes residual material from sidewalls of a patterned metallic hard mask layer without residue such that the sidewalls of the patterned metallic hard mask layer are vertical. The vertical profiled of the sidewalls of the patterned metallic hard mask layer can be advantageously employed to reduce pattern factor dependency in the etch bias between the pattern transferred into an underlying layer and the pattern as formed on the metallic hard mask layer. Further, the ashing chemistry can be employed to enhance removal of stringers in vertical portions of a metallic material layer.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 26, 2016
    Assignees: International Business Machines Corporation, STMICROELECTRONICS, INC.
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Richard S. Wise, Edem Wornyo, Yiheng Xu, John Zhang
  • Publication number: 20160064326
    Abstract: Nanoscale efuses, antifuses, and planar coil inductors are disclosed. A copper damascene process can be used to make all of these circuit elements. A low-temperature copper etch process can be used to make the efuses and efuse-like inductors. The circuit elements can be designed and constructed in a modular fashion by linking a matrix of metal columns in different configurations and sizes. The number of metal columns, or the size of a dielectric mesh included in the circuit element, determines its electrical characteristics. Alternatively, the efuses and inductors can be formed from interstitial metal that is either deposited into a matrix of dielectric columns, or left behind after etching columnar openings in a block of metal. Arrays of metal columns also serve a second function as features that can improve polish uniformity in place of conventional dummy structures. Use of such modular arrays provides flexibility to integrated circuit designers.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 3, 2016
    Inventors: John H. Zhang, Yiheng Xu, Lawrence A. Clevenger, Carl Radens, Edem Wornyo
  • Publication number: 20160020105
    Abstract: An ashing chemistry employing a combination of Cl2 and N2 is provided, which removes residual material from sidewalls of a patterned metallic hard mask layer without residue such that the sidewalls of the patterned metallic hard mask layer are vertical. The vertical profiled of the sidewalls of the patterned metallic hard mask layer can be advantageously employed to reduce pattern factor dependency in the etch bias between the pattern transferred into an underlying layer and the pattern as formed on the metallic hard mask layer. Further, the ashing chemistry can be employed to enhance removal of stringers in vertical portions of a metallic material layer.
    Type: Application
    Filed: September 30, 2015
    Publication date: January 21, 2016
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Richard S. Wise, Edem Wornyo, Yiheng Xu, John Zhang
  • Patent number: 9240375
    Abstract: Nanoscale efuses, antifuses, and planar coil inductors are disclosed. A copper damascene process can be used to make all of these circuit elements. A low-temperature copper etch process can be used to make the efuses and efuse-like inductors. The circuit elements can be designed and constructed in a modular fashion by linking a matrix of metal columns in different configurations and sizes. The number of metal columns, or the size of a dielectric mesh included in the circuit element, determines its electrical characteristics. Alternatively, the efuses and inductors can be formed from interstitial metal that is either deposited into a matrix of dielectric columns, or left behind after etching columnar openings in a block of metal. Arrays of metal columns also serve a second function as features that can improve polish uniformity in place of conventional dummy structures. Use of such modular arrays provides flexibility to integrated circuit designers.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: January 19, 2016
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Edem Wornyo
  • Patent number: 9214429
    Abstract: Ultra-low-k dielectric materials used as inter-layer dielectrics in high-performance integrated circuits are prone to be structurally unstable. The Young's modulus of such materials is decreased, resulting in porosity, poor film strength, cracking, and voids. An alternative dual damascene interconnect structure incorporates deep air gaps into a high modulus dielectric material to maintain structural stability while reducing capacitance between adjacent nanowires. Incorporation of a deep air gap having k=1.0 compensates for the use of a higher modulus film having a dielectric constant greater than the typical ultra-low-k (ULK) dielectric value of about 2.2. The higher modulus film containing the deep air gap is used as an insulator and a means of reducing fringe capacitance between adjacent metal lines. The dielectric layer between two adjacent metal lines thus forms a ULK/high-modulus dielectric bi-layer.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: December 15, 2015
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Hsueh-Chung Chen, Lawrence A. Clevenger, Yann Mignot, Carl Radens, Richard Stephen Wise, Yannick Loquet, Yiheng Xu
  • Patent number: 9209036
    Abstract: An ashing chemistry employing a combination of Cl2 and N2 is provided, which removes residual material from sidewalls of a patterned metallic hard mask layer without residue such that the sidewalls of the patterned metallic hard mask layer are vertical. The vertical profiled of the sidewalls of the patterned metallic hard mask layer can be advantageously employed to reduce pattern factor dependency in the etch bias between the pattern transferred into an underlying layer and the pattern as formed on the metallic hard mask layer. Further, the ashing chemistry can be employed to enhance removal of stringers in vertical portions of a metallic material layer.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: December 8, 2015
    Assignees: International Business Machines Corporation, STMICROELECTRONICS, INC.
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Richard S. Wise, Edem Wornyo, Yiheng Xu, John Zhang
  • Publication number: 20150311113
    Abstract: An integrated circuit includes a substrate with an interlevel dielectric layer positioned above the substrate. First trenches having a first depth are formed in the interlevel dielectric layer and a metal material fills the first trenches to form first interconnection lines. Second trenches having a second depth are also formed in the interlevel dielectric layer and filled with a metal material to form second interconnection lines. The first and second interconnection lines have a substantially equal pitch, which in a preferred implementation is a sub-lithographic pitch, and different resistivities due to the difference in trench depth. The first and second trenches are formed with an etching process through a hard mask having corresponding first and second openings of different depths. A sidewall image transfer process is used to define sub-lithographic structures for forming the first and second openings in the hard mask.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 29, 2015
    Applicants: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John Hongguang Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise
  • Publication number: 20150279780
    Abstract: A wavy line interconnect structure that accommodates small metal lines and enlarged diameter vias is disclosed. The enlarged diameter vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. The enlarged diameter vias make direct contact with at least three sides of the underlying metal lines, and can be aligned asymmetrically with respect to the metal line to increase the packing density of the metal pattern. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. An interconnect structure having enlarged diameter vias can also feature air gaps to reduce the chance of dielectric breakdown. By allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 1, 2015
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Akil K. Sutton, Terry Allen SPOONER, Nicole A. SAULNIER
  • Publication number: 20150279784
    Abstract: A wavy line interconnect structure that accommodates small metal lines and large vias is disclosed. A lithography mask design used to pattern metal line trenches uses optical proximity correction (OPC) techniques to approximate wavy lines using rectangular opaque features. The large vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. Instead, a sacrificial layer allows etching of an underlying thick dielectric block, while protecting narrow features of the trenches that correspond to the metal line interconnects. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. By lifting the shrink constraint for vias, thereby allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Richard Stephen Wise, Terry Spooner, Nicole A. Saulnier
  • Publication number: 20150243510
    Abstract: An ashing chemistry employing a combination of Cl2 and N2 is provided, which removes residual material from sidewalls of a patterned metallic hard mask layer without residue such that the sidewalls of the patterned metallic hard mask layer are vertical. The vertical profiled of the sidewalls of the patterned metallic hard mask layer can be advantageously employed to reduce pattern factor dependency in the etch bias between the pattern transferred into an underlying layer and the pattern as formed on the metallic hard mask layer. Further, the ashing chemistry can be employed to enhance removal of stringers in vertical portions of a metallic material layer.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicants: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Richard S. Wise, Edem Wornyo, Yiheng Xu, John Zhang
  • Patent number: 9082625
    Abstract: Embodiments of present invention provide a method of forming device pattern. The method includes defining a device pattern to be created in a device layer; forming a sacrificial layer on top of the device layer; identifying an imprinting mold that, at a position along a height thereof, has a horizontal cross-sectional shape that represents the device pattern; pushing the imprinting mold uniformly into the sacrificial layer until at least the position of the imprinting mold reaches a level inside the sacrificial layer that is being pushed by the imprinting mold; removing the imprinting mold away from the sacrificial layer; forming a hard mask in recesses created by the imprinting mold in the sacrificial layer, the hard mask has a pattern representing the device pattern; and transferring the pattern of the hard mask into underneath the device layer.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: July 14, 2015
    Assignees: International Business Machines Corporation, STMICROELECTRONICS, Inc.
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Richard S. Wise, Yiheng Xu, John Zhang
  • Publication number: 20150162277
    Abstract: Ultra-low-k dielectric materials used as inter-layer dielectrics in high-performance integrated circuits are prone to be structurally unstable. The Young's modulus of such materials is decreased, resulting in porosity, poor film strength, cracking, and voids. An alternative dual damascene interconnect structure incorporates air gaps into a high modulus dielectric material to maintain structural stability while reducing capacitance between adjacent nanowires. Incorporation of an air gap having k=1.0 compensates for the use of a higher modulus film having a dielectric constant greater than the typical ultra-low-k (ULK) dielectric value of about 2.2. The higher modulus film containing the air gap is used as an insulator between adjacent metal lines, while a ULK film is retained to insulate vias. The dielectric layer between two adjacent metal lines thus forms a ULK/high-modulus dielectric bi-layer.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 11, 2015
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: John H. Zhang, Yann Mignot, Lawrence A. Clevenger, Carl Radens, Richard Stephen Wise, Yiheng Xu, Yannick Loquet, Hsueh-Chung Chen
  • Publication number: 20150162194
    Abstract: Embodiments of present invention provide a method of forming device pattern. The method includes defining a device pattern to be created in a device layer; forming a sacrificial layer on top of the device layer; identifying an imprinting mold that, at a position along a height thereof, has a horizontal cross-sectional shape that represents the device pattern; pushing the imprinting mold uniformly into the sacrificial layer until at least the position of the imprinting mold reaches a level inside the sacrificial layer that is being pushed by the imprinting mold; removing the imprinting mold away from the sacrificial layer; forming a hard mask in recesses created by the imprinting mold in the sacrificial layer, the hard mask has a pattern representing the device pattern; and transferring the pattern of the hard mask into underneath the device layer.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 11, 2015
    Applicants: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Richard S. Wise, Yiheng Xu, John Zhang