Patents by Inventor Yong Meng Lee

Yong Meng Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250020716
    Abstract: A structure and method for the wafer level testing of interposer-based photonic integrated circuits is described that includes the formation of an upturned mirror structure and the method of utilizing the interposer-based mirror structure for electrical and optical testing of optoelectrical circuits that include emitting components such as lasers, detecting components such as photodetectors, and both emitting and detecting components. Electrical activation of the optoelectrical emitting or sending devices and the subsequent detection and measurement of the optical signals in detecting or receiving devices provides information on the operability or functionality of the PIC on the die at the wafer level, prior to die separation or singulation, using the electrical and optical components of the PIC circuit.
    Type: Application
    Filed: September 30, 2024
    Publication date: January 16, 2025
    Inventors: Lucas Soldano, Jing Yang, Yong Meng Lee, Suresh Venkatesan
  • Patent number: 12105141
    Abstract: A structure and method for the wafer level testing of interposer-based photonic integrated circuits is described that includes the formation of an upturned mirror structure and the method of utilizing the interposer-based mirror structure for electrical and optical testing of optoelectrical circuits that include emitting components such as lasers, detecting components such as photodetectors, and both emitting and detecting components. Electrical activation of the optoelectrical emitting or sending devices and the subsequent detection and measurement of the optical signals in detecting or receiving devices provides information on the operability or functionality of the PIC on the die at the wafer level, prior to die separation or singulation, using the electrical and optical components of the PIC circuit.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: October 1, 2024
    Inventors: Lucas Soldano, Jing Yang, Yong Meng Lee, Suresh Venkatesan
  • Patent number: 11921156
    Abstract: A structure and method for the wafer level testing of interposer-based photonic integrated circuits is described that includes the formation of an upturned mirror structure and the method of utilizing the interposer-based mirror structure for electrical and optical testing of optoelectrical circuits that include emitting components such as lasers, detecting components such as photodetectors, and both emitting and detecting components. Electrical activation of the optoelectrical emitting or sending devices and the subsequent detection and measurement of the optical signals in detecting or receiving devices provides information on the operability or functionality of the PIC on the die at the wafer level, prior to die separation or singulation, using the electrical and optical components of the PIC circuit.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: March 5, 2024
    Inventors: Lucas Soldano, Jing Yang, Yong Meng Lee, Suresh Venkatesan
  • Publication number: 20240004147
    Abstract: A structure and method for the formation of a reflector structure having three-dimensional surface curvature is disclosed. Beam narrowing upon reflection from the three-dimensionally curved surface in embodiments can provide improved coupling efficiency in addition to the directional change provided by the reflector.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 4, 2024
    Inventors: Lucas Soldano, Jing Yang, Yong Meng Lee, Suresh Venkatesan
  • Publication number: 20240004148
    Abstract: A structure and method for the formation of a reflector structure having three-dimensional surface curvature is disclosed. Beam narrowing upon reflection from the three-dimensionally curved surface in embodiments can provide improved coupling efficiency in addition to the directional change provided by the reflector.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 4, 2024
    Inventors: Lucas Soldano, Jing Yang, Yong Meng Lee, Suresh Venkatesan
  • Publication number: 20210356518
    Abstract: A structure and method for the wafer level testing of interposer-based photonic integrated circuits is described that includes the formation of an upturned mirror structure and the method of utilizing the interposer-based mirror structure for electrical and optical testing of optoelectrical circuits that include emitting components such as lasers, detecting components such as photodetectors, and both emitting and detecting components. Electrical activation of the optoelectrical emitting or sending devices and the subsequent detection and measurement of the optical signals in detecting or receiving devices provides information on the operability or functionality of the PIC on the die at the wafer level, prior to die separation or singulation, using the electrical and optical components of the PIC circuit.
    Type: Application
    Filed: April 28, 2021
    Publication date: November 18, 2021
    Inventors: Lucas Soldano, Jing Yang, Yong Meng Lee, Suresh Venkatesan
  • Publication number: 20210356519
    Abstract: A structure and method for the wafer level testing of interposer-based photonic integrated circuits is described that includes the formation of an upturned mirror structure and the method of utilizing the interposer-based mirror structure for electrical and optical testing of optoelectrical circuits that include emitting components such as lasers, detecting components such as photodetectors, and both emitting and detecting components. Electrical activation of the optoelectrical emitting or sending devices and the subsequent detection and measurement of the optical signals in detecting or receiving devices provides information on the operability or functionality of the PIC on the die at the wafer level, prior to die separation or singulation, using the electrical and optical components of the PIC circuit.
    Type: Application
    Filed: April 28, 2021
    Publication date: November 18, 2021
    Inventors: Lucas Soldano, Jing Yang, Yong Meng Lee, Suresh Venkatesan
  • Patent number: 9607989
    Abstract: Methods for forming a trench silicide without gouging the silicon source/drain regions and the resulting devices are disclosed. Embodiments include forming first and second dummy gates, each with spacers at opposite sides thereof, on a substrate; forming eSiGe source/drain regions at opposite sides of the first dummy gate; forming raised source/drain regions at opposite sides of the second dummy gate; forming a silicon cap on each of the eSiGe and raised source/drain regions; forming an ILD over and between the first and second dummy gates; replacing the first and second dummy gates with first and second HKMG, respectively; forming a contact trench through the ILD into the silicon cap over each of the eSiGe and raised source/drain regions; and forming a silicide over the eSiGe and raised source/drain regions.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: March 28, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xusheng Wu, Yue Hu, Xin Wang, Yong Meng Lee, Wen-Pin Peng, Lun Zhao, Wei-Hua Tong
  • Patent number: 9524911
    Abstract: Methods for creating self-aligned FINFET SDBs for minimum gate junction pitch and epitaxy formation. Embodiments include forming separated openings in a hard mask on upper surfaces of Si fins; forming cavities in the fins, each of the cavities having a concave shape and a width extending under the hard mask on each side of the cavity; forming trenches in the fins, the trenches having an upper width substantially equal to a width of the openings and less than the width of a cavity; removing the hard mask; filling the trenches and the cavities with oxide, forming STI regions; forming an oxide mask layer on the upper surfaces of the fins and the STI regions; removing upper portions of the oxide in sections between the STI regions; and removing remaining portions of the oxide mask revealing the fins and upper surfaces of the STI regions.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: December 20, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hao-Cheng Tsai, Yong Meng Lee, Min-hwa Chi
  • Publication number: 20160163702
    Abstract: Methods for forming a trench silicide without gouging the silicon source/drain regions and the resulting devices are disclosed.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 9, 2016
    Inventors: Xusheng WU, Yue HU, Xin WANG, Yong Meng LEE, Wen-Pin PENG, Lun ZHAO, Wei-Hua TONG
  • Publication number: 20160049488
    Abstract: A semiconductor structure with wide-bottom and/or wide-top gates includes a semiconductor substrate, a source region(s), a drain region(s) associated with the source region(s), and a gate(s) associated with the source region(s) and the drain region(s) having a top portion and a bottom portion. One of the top portion and the bottom portion of the gate(s) is wider than the other of the top portion and bottom portion. The wide-bottom gate is created using a dummy wide-bottom gate etched from a layer of dummy gate material, creating spacers for the dummy gate, removing the dummy gate material and filling the opening created with conductive material. For the wide-top gate, first and second spacers are included, and instead of removing all the dummy gate material, only a portion is removed, exposing the first spacers. The exposed portion of the first spacers may either be completely or partially removed (e.g., tapered), in order to increase the area of the top portion of the gate to be filled.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 18, 2016
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Yan Ping SHEN, Haiting WANG, Min-hwa CHI, Yong Meng LEE
  • Patent number: 9209258
    Abstract: An improved method for fabricating a semiconductor device is provided. The method includes: depositing a dielectric layer on a substrate; depositing a first cap layer on the dielectric layer; depositing an etch stop layer on the dielectric layer; and depositing a dummy cap layer on the etch stop layer to form a partial gate structure. Also provided is a partially formed semiconductor device. The partially formed semiconductor device includes: a substrate; a dielectric layer on the substrate; a first cap layer on the dielectric layer; an etch stop layer on the dielectric layer; and a dummy cap layer on the etch stop layer forming a partial gate structure.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: December 8, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Feng Zhou, Tien-Ying Luo, Haiting Wang, Padmaja Nagaiah, Jean-Baptiste Laloe, Isabelle Pauline Ferain, Yong Meng Lee
  • Patent number: 9202697
    Abstract: A method includes forming a gate structure by growing an interfacial layer on a substrate, depositing a High K layer on the interfacial layer, depositing a TiN Cap on the High K layer and forming a thin barrier layer on the TiN Cap. The gate structure is annealed.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: December 1, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Tien-Ying Luo, Feng Zhou, Yan Ping Shen, Haiting Wang, Haoran Shi, Wei Hua Tong, Seung Kim, Yong Meng Lee
  • Patent number: 9147572
    Abstract: Methods for controlling the length of a replacement metal gate to a designed target gate length and the resulting device are disclosed. Embodiments may include removing a dummy gate from above a substrate forming a cavity, wherein side surfaces of the cavity are lined with an oxidized spacer layer and a bottom surface of the cavity is lined with a gate oxide layer, conformally forming a sacrificial oxide layer over the substrate and the cavity, and removing the sacrificial oxide layer from the bottom surface of the cavity and the substrate leaving sacrificial oxide spacers lining the side surfaces of the cavity.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: September 29, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ashish Kumar Jha, Haiting Wang, Meng Luo, Yong Meng Lee
  • Publication number: 20150249136
    Abstract: An improved method for fabricating a semiconductor device is provided. The method includes: depositing a dielectric layer on a substrate; depositing a first cap layer on the dielectric layer; depositing an etch stop layer on the dielectric layer; and depositing a dummy cap layer on the etch stop layer to form a partial gate structure. Also provided is a partially formed semiconductor device. The partially formed semiconductor device includes: a substrate; a dielectric layer on the substrate; a first cap layer on the dielectric layer; an etch stop layer on the dielectric layer; and a dummy cap layer on the etch stop layer forming a partial gate structure.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 3, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Feng ZHOU, Tien-Ying LUO, Haiting WANG, Padmaja NAGAIAH, Jean-Baptiste LALOE, Isabelle Pauline FERAIN, Yong Meng LEE
  • Patent number: 9123783
    Abstract: Integrated circuits and methods of forming integrated circuits are provided herein. In an embodiment, a method of forming an integrated circuit includes providing a base substrate having an embedded electrical contact disposed therein. An interlayer dielectric is formed overlying the base substrate, and a recess is etched through the interlayer dielectric over the embedded electrical contact. A protecting liner is formed in the recess and over an exposed surface of the embedded electrical contact in the recess. The protecting liner includes at least two liner layers that have materially different etch rates in different etchants. A portion of the protecting liner is removed over the surface of the embedded electrical contact to again expose the surface of the embedded electrical contact in the recess. An embedded electrical interconnect is formed in the recess. The embedded electrical interconnect overlies the protecting liner on sides of the recess.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: September 1, 2015
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Xin Wang, Changyong Xiao, Yue Hu, Yong Meng Lee, Meng Luo, Jialin Weng, Wei Hua Tong, Wen-Pin Peng
  • Publication number: 20150024585
    Abstract: A method includes forming a gate structure by growing an interfacial layer on a substrate, depositing a High K layer on the interfacial layer, depositing a TiN Cap on the High K layer and forming a thin barrier layer on the TiN Cap. The gate structure is annealed.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Tien-Ying LUO, Feng ZHOU, Yan Ping SHEN, Haiting WANG, Haoran SHI, Wei Hua TONG, Seung KIM, Yong Meng LEE
  • Publication number: 20140339612
    Abstract: Methods for controlling the length of a replacement metal gate to a designed target gate length and the resulting device are disclosed. Embodiments may include removing a dummy gate from above a substrate forming a cavity, wherein side surfaces of the cavity are lined with an oxidized spacer layer and a bottom surface of the cavity is lined with a gate oxide layer, conformally forming a sacrificial oxide layer over the substrate and the cavity, and removing the sacrificial oxide layer from the bottom surface of the cavity and the substrate leaving sacrificial oxide spacers lining the side surfaces of the cavity.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Applicant: GlobalFoundries Inc.
    Inventors: Ashish Kumar JHA, Haiting WANG, Meng LUO, Yong Meng LEE
  • Publication number: 20140175562
    Abstract: A semiconductor structure in fabrication includes a NFET and a PFET. Spacers adjacent gate structures of the NFET and PFET have undesired divots that can lead to substrate damage from chemicals used in a subsequent etch. The fabrication also leaves hard masks over the gate structures with non-uniform height. The divots are filled with material resistant to the chemicals used in the etch. Excess filler is removed, and uniform height is restored. Further fabrication may then proceed.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: GLOBALFOUNDRIES, INC.
    Inventors: Haiting Wang, Huang Liu, Yong Meng Lee, Songkram Srivathanakul
  • Publication number: 20140151760
    Abstract: A method of filling gaps between gates with doped flowable pre-metal dielectric (PMD) and the resulting device are disclosed. Embodiments include forming at least two dummy gates on a substrate, each dummy gate being surrounded by spacers; filling a gap between adjacent spacers of the at least two dummy gates with a flowable PMD; implanting a dopant in the flowable PMD; and annealing the flowable PMD. Doping the flowable PMD prevents erosion of the PMD, thereby providing a voidless gap-fill.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Haiting WANG, Po-Wen CHAN, Yan Ping SHEN, Yong Meng LEE