Patents by Inventor Yu-Hsiang Lin

Yu-Hsiang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111377
    Abstract: A touch detection circuitry includes an analog-to-digital converter (ADC), a controller, and a packet generator. The ADC is arranged to convert touch signals of a touch panel from analog form into digital form. The controller is electrically connected to the ADC, and is configured to calculate at least one coordinate point and at least one touch size respectively corresponding to at least one touch event on the touch panel based on the touch signals. The packet generator is electrically connected to the controller, and is configured to encapsulate the at least one coordinate point and the at least one touch size into a touch data packet.
    Type: Application
    Filed: June 7, 2023
    Publication date: April 4, 2024
    Inventors: Yu Nian OU, Chun Kai CHUANG, Yu-Hsiang LIN, Chun-Lung TSAI
  • Publication number: 20240097038
    Abstract: A semiconductor device, including a substrate, a first source/drain region, a second source/drain region, and a gate structure, is provided. The substrate has an extra body portion and a fin protruding from a top surface of the substrate, wherein the fin spans the extra body portion. The first source/drain region and the second source/drain region are in the fin. The gate structure spans the fin, is located above the extra body portion, and is located between the first source/drain region and the second source/drain region.
    Type: Application
    Filed: October 13, 2022
    Publication date: March 21, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Yi Chuen Eng, Tzu-Feng Chang, Teng-Chuan Hu, Yi-Wen Chen, Yu-Hsiang Lin
  • Patent number: 11935854
    Abstract: A method for forming a bonded semiconductor structure is disclosed. A first device wafer having a first bonding layer and a first bonding pad exposed from the first bonding layer and a second device wafer having a second bonding layer and a second bonding pad exposed from the second bonding layer are provided. Following, a portion of the first bonding pad is removed until a sidewall of the first bonding layer is exposed, and a portion of the second bonding layer is removed to expose a sidewall of the second bonding pad. The first device wafer and the second device wafer are then bonded to form a dielectric bonding interface between the first bonding layer and the second bonding layer and a conductive bonding interface between the first bonding pad and the second bonding pad. The conductive bonding interface and the dielectric bonding interface comprise a step-height.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Publication number: 20240085647
    Abstract: An optical fiber combiner includes optical fiber components including a predetermined area and a refractive index portion formed on the predetermined area; a housing including a channel with the optical fiber components disposed through, fastening members for fastening the optical fiber components, and a cover for sealing the channel; and a conductive material disposed in the channel. In response to laser beams impinging on the optical fiber components, heat is generated by the refractive index portion, the heat is absorbed by the conductive material, and the heat is further transferred to the housing and the cover by thermal conduction for dissipation.
    Type: Application
    Filed: October 17, 2023
    Publication date: March 14, 2024
    Inventors: Yu-Hsiang Lin, Chin-Feng Su
  • Publication number: 20240088293
    Abstract: An n-type metal oxide semiconductor transistor includes a gate structure, two source/drain regions, two amorphous portions and a silicide. The gate structure is disposed on a substrate. The two source/drain regions are disposed in the substrate and respectively located at two sides of the gate structure, wherein at least one of the source/drain regions is formed with a dislocation. The two amorphous portions are respectively disposed in the two source/drain regions. The silicide is disposed on the two source/drain regions, wherein at least one portion of the silicide overlaps the two amorphous portions.
    Type: Application
    Filed: October 5, 2022
    Publication date: March 14, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ya Chiu, Ssu-I Fu, Chin-Hung Chen, Jin-Yan Chiou, Wei-Chuan Tsai, Yu-Hsiang Lin
  • Patent number: 11901239
    Abstract: A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, an isolation structure on the SDB structure, a first spacer adjacent to the isolation structure, a metal gate adjacent to the isolation structure, a shallow trench isolation (STI around the fin-shaped structure, and a second isolation structure on the STI. Preferably, a top surface of the first spacer is lower than a top surface of the isolation structure and a bottom surface of the first spacer is lower than a bottom surface of the metal gate.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: February 13, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Patent number: 11869953
    Abstract: A high-voltage transistor device includes a semiconductor substrate, an isolation structure, a gate dielectric layer, a gate, a source region and a drain region. The semiconductor substrate has a plurality of grooves extending downward from a surface of the semiconductor substrate to form a sawtooth sectional profile. The isolation structure is disposed on the outside of the plurality of grooves, and extends from the surface downwards into the semiconductor substrate to define a high-voltage area. The gate dielectric layer is disposed on the high-voltage area and partially filled in the plurality of grooves. The gate is disposed on the gate dielectric layer. The source region and the drain region are respectively disposed in the semiconductor substrate and isolated from each other.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: January 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP
    Inventors: Sheng-Yao Huang, Yu-Ruei Chen, Zen-Jay Tsai, Yu-Hsiang Lin
  • Patent number: 11853613
    Abstract: An encoding control method, a memory storage device and a memory control circuit unit are disclosed. The method includes: performing, by an encoding circuit, a first encoding operation to generate first parity data according to write data, a first sub-matrix and a second sub-matrix of a parity check matrix; performing, by the encoding circuit, a second encoding operation to generate second parity data according to the write data, the first parity data, a third sub-matrix, a fourth sub-matrix and a fifth sub-matrix of the parity check matrix; and sending a first write command sequence to instruct a storing of the write data, the first parity data and the second parity data to a rewritable non-volatile memory module.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: December 26, 2023
    Assignee: PHISON ELECTRONICS CORP.
    Inventors: Yu-Hsiang Lin, Bo Lun Huang
  • Publication number: 20230326806
    Abstract: A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, a first isolation structure on the SDB structure, a shallow trench isolation (STI) adjacent to the SDB structure, and a second isolation structure on the STI. Preferably, the first isolation structure further includes a cap layer on the SDB structure and a dielectric layer on the cap layer.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Publication number: 20230326997
    Abstract: A semiconductor device includes a substrate, a plurality of planar transistors, a fin-type field effect transistor and a first nonactive structure. The substrate includes a first region and a second region. The first region includes a plurality of first planar active regions and a nonactive region. The nonactive region is located between or aside the plurality of first planar active regions and includes a second planar active region. The second region has a fin active region. The plurality of planar transistors are located in the plurality of first planar active regions within the first region. The fin-type field effect transistor is located on the fin active region within the second region. The first nonactive structure is located in the nonactive region between the plurality of planar transistors.
    Type: Application
    Filed: May 18, 2022
    Publication date: October 12, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Jia-He Lin, Yu-Ruei Chen, Yu-Hsiang Lin
  • Publication number: 20230326805
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a fin-shaped structure thereon; forming a single diffusion break (SDB) structure in the substrate to divide the fin-shaped structure into a first portion and a second portion; forming a first gate structure on the SDB structure; forming an interlayer dielectric (ILD) layer around the first gate structure; transforming the first gate structure into a first metal gate; removing the first metal gate to form a first recess; and forming a dielectric layer in the first recess.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Publication number: 20230327003
    Abstract: A method for fabricating semiconductor device includes: forming a first semiconductor layer and an insulating layer on a substrate; removing the insulating layer and the first semiconductor layer to form openings; forming a second semiconductor layer in the openings; and patterning the second semiconductor layer, the insulating layer, and the first semiconductor layer to form fin-shaped structures.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 12, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Hung Chen, Ssu-I Fu, Chih-Kai Hsu, Chia-Jung Hsu, Yu-Hsiang Lin
  • Publication number: 20230289102
    Abstract: An encoding control method, a memory storage device and a memory control circuit unit are disclosed. The method includes: performing, by an encoding circuit, a first encoding operation to generate first parity data according to write data, a first sub-matrix and a second sub-matrix of a parity check matrix; performing, by the encoding circuit, a second encoding operation to generate second parity data according to the write data, the first parity data, a third sub-matrix, a fourth sub-matrix and a fifth sub-matrix of the parity check matrix; and sending a first write command sequence to instruct a storing of the write data, the first parity data and the second parity data to a rewritable non-volatile memory module.
    Type: Application
    Filed: April 20, 2022
    Publication date: September 14, 2023
    Applicant: PHISON ELECTRONICS CORP.
    Inventors: Yu-Hsiang Lin, Bo Lun Huang
  • Publication number: 20230268346
    Abstract: A method for fabricating a semiconductor device includes the steps of: providing a substrate having a high-voltage (HV) region and a low-voltage (LV) region; forming a base on the HV region and fin-shaped structures on the LV region; forming a first insulating around the fin-shaped structures; removing the base, the first insulating layer, and part of the fin-shaped structures to form a first trench in the HV region and a second trench in the LV region; forming a second insulating layer in the first trench and the second trench; and planarizing the second insulating layer to form a first shallow trench isolation (STI) on the HV region and a second STI on the LV region.
    Type: Application
    Filed: March 21, 2022
    Publication date: August 24, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Yu-Hsiang Lin, Chien-Ting Lin, Chia-Jung Hsu, Chin-Hung Chen
  • Publication number: 20230270017
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a magnetic tunneling junction (MTJ) on a substrate, forming a spin orbit torque (SOT) layer on the MTJ, forming an inter-metal dielectric (IMD) layer around the MTJ and the SOT layer, forming a first hard mask on the IMD layer, forming a semiconductor layer on the first hard mask, and then patterning the first hard mask.
    Type: Application
    Filed: March 24, 2022
    Publication date: August 24, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hung-Yi Wu, Jia-Rong Wu, Yu-Hsiang Lin, Yi-Wen Chen, Kun-Sheng Yang
  • Publication number: 20230268424
    Abstract: A method for fabricating a semiconductor device includes the steps of providing a substrate having a high-voltage (HV) region and a low-voltage (LV) region, forming first fin-shaped structures on the HV region, and then performing an oxidation process to form a gate oxide layer on and directly connecting the first fin-shaped structures. Preferably, a bottom surface of the gate oxide layer includes first bumps on the first fin-shaped structures while a top surface of the gate oxide layer includes second bumps.
    Type: Application
    Filed: March 28, 2022
    Publication date: August 24, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Jung Hsu, Ssu-I Fu, Chih-Kai Hsu, Chun-Ya Chiu, Chin-Hung Chen, Yu-Hsiang Lin, Chien-Ting Lin
  • Patent number: 11735080
    Abstract: The display system includes an automotive system, a display panel, and a panel driving circuit. The panel driving circuit receives a frame from the automotive system and determines if a panel error with respect to the display panel occurs. If the panel error occurs, the panel driving circuit replaces a portion of the frame with an error icon to generate a prompt frame, and transmit the prompt frame to the display panel. If the panel error does not occur, the panel driving circuit transmits the frame to the display panel.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: August 22, 2023
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Yu Nian Ou, Chun Kai Chuang, Pei-Yuan Hung, Yu Hsiang Lin
  • Publication number: 20230261108
    Abstract: The disclosure discloses a manufacturing method for high-voltage transistor. The manufacturing method comprises: providing a substrate; forming a recess in the substrate; forming an epitaxial doped structure with a first conductivity type in the recess of the substrate, wherein a top portion of the epitaxial doped structure comprises a top undoped epitaxial layer; forming a gate structure on the substrate and at least overlapping with the top undoped epitaxial layer; and forming a source/drain region with a second conductivity type in the epitaxial doped structure on a side of the gate structure. The first conductivity type is different from the second conductivity type.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Chun-Ya Chiu, Chih-Kai Hsu, Chin-Hung Chen, Chia-Jung Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Patent number: 11721770
    Abstract: A manufacturing method of a semiconductor device includes the following steps. An opening is formed penetrating a dielectric layer on a semiconductor substrate. A stacked structure is formed on the dielectric layer. The stacked structure includes a first semiconductor layer partly formed in the opening and partly formed on the dielectric layer, a sacrificial layer formed on the first semiconductor layer, and a second semiconductor layer formed on the sacrificial layer. A patterning process is performed for forming a fin-shaped structure including the first semiconductor layer, the sacrificial layer, and the second semiconductor layer. An etching process is performed to remove the sacrificial layer in the fin-shaped structure. The first semiconductor layer in the fin-shaped structure is etched to become a first semiconductor wire by the etching process. The second semiconductor layer in the fin-shaped structure is etched to become a second semiconductor wire by the etching process.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: August 8, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Hung Chen, Ssu-I Fu, Chih-Kai Hsu, Chun-Ya Chiu, Chia-Jung Hsu, Yu-Hsiang Lin
  • Patent number: 11721702
    Abstract: A fin transistor structure is provided. The fin transistor structure includes a first substrate. An insulation layer is disposed on the first substrate. A plurality of fin structures are disposed on the insulation layer. A supporting dielectric layer fixes the fin structures at the fin structures at waist parts thereof. A gate structure layer is disposed on the supporting dielectric layer and covers a portion of the fin structures.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: August 8, 2023
    Assignee: United Microelectronics Corp.
    Inventors: Sheng-Yao Huang, Yu-Ruei Chen, Chung-Liang Chu, Zen-Jay Tsai, Yu-Hsiang Lin