Patents by Inventor Yu-Hsiang Lin

Yu-Hsiang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220359317
    Abstract: A stress measuring structure, including a substrate, a support layer, a material layer, and multiple marks, is provided. The support layer is disposed on the substrate. The material layer is disposed on the support layer. There is a trench exposing the support layer in the material layer. The material layer includes a main body and a cantilever beam. The trench is located between the cantilever beam and the main body and partially separates the cantilever beam from the main body. One end of the cantilever beam is connected to the main body. The marks are located on the main body and the cantilever beam.
    Type: Application
    Filed: June 8, 2021
    Publication date: November 10, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Yu Hsiang Lin, Jing-Yao Kao, En-Kai Dong
  • Patent number: 11495681
    Abstract: A semiconductor device includes a semiconductor substrate, a recess, a first gate oxide layer, and a gate structure. The semiconductor substrate includes a first region and a second region adjacent to the first region. The recess is disposed in the first region of the semiconductor substrate, and an edge of the recess is located at an interface between the first region and the second region. At least a part of the first gate oxide layer is disposed in the recess. The first gate oxide layer includes a hump portion disposed adjacent to the edge of the recess, and a height of the hump portion is less than a depth of the recess. The gate structure is disposed on the first region and the second region of the semiconductor substrate, and the gate structure overlaps the hump portion of the first gate oxide layer in a vertical direction.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: November 8, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chang-Po Hsiung, Ching-Chung Yang, Shan-Shi Huang, Shin-Hung Li, Nien-Chung Li, Wen-Fang Lee, Chiu-Te Lee, Chih-Kai Hsu, Chun-Ya Chiu, Chin-Hung Chen, Chia-Jung Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Patent number: 11488837
    Abstract: A method for fabricating a high-voltage (HV) transistor is provided. The method includes providing a substrate, having a first isolation structure and a second isolation structure in the substrate and a recess in the substrate between the first and second isolation structures. Further, a hydrogen annealing process is performed over the recess. A sacrificial dielectric layer is formed on the recess. The sacrificial dielectric layer is removed, wherein a portion of the first and second isolation structures is also removed. A gate oxide layer is formed in the recess between the first and second isolation structures after the hydrogen annealing process.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: November 1, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Jung Hsu, Chun Yu Chen, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Publication number: 20220336228
    Abstract: An apparatus for perform metal etching and plasma ashing includes: a processing chamber having an enclosed area; an electrostatic chuck disposed in the enclosed area and configured to secure a wafer, the electrostatic chuck connected with a bias power; at least one coil connected with a source power; a etchant conduit configured provide an etchant to a metal of the wafer within the processing chamber in accordance with a photoresist mask of the wafer; and a gas intake conduit connected with a gas source, wherein the gas intake conduit is configured to supply the processing chamber with a gas from the gas source during performance of plasma ashing within the processing chamber.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Hsing-Hsiang WANG, Yu-Hsiang Lin, Wei-Da Chen, Tom Peng, P.Y. Chiu, Miau-Shing Tsai, Cheng-Yi Huang, Ching-Horng Chen
  • Patent number: 11476343
    Abstract: A high-voltage transistor device includes a semiconductor substrate, an isolation structure, a gate dielectric layer, a gate, a source region and a drain region. The semiconductor substrate has a plurality of grooves extending downward from a surface of the semiconductor substrate to form a sawtooth sectional profile. The isolation structure is disposed on the outside of the plurality of grooves, and extends from the surface downwards into the semiconductor substrate to define a high-voltage area. The gate dielectric layer is disposed on the high-voltage area and partially filled in the plurality of grooves. The gate is disposed on the gate dielectric layer. The source region and the drain region are respectively disposed in the semiconductor substrate and isolated from each other.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: October 18, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Sheng-Yao Huang, Yu-Ruei Chen, Zen-Jay Tsai, Yu-Hsiang Lin
  • Patent number: 11467687
    Abstract: A touch display apparatus is disclosed, which includes a touch display panel and a driving circuit coupled to the touch display panel. The touch display panel is configured for display and touch sensing, and includes plural touch sensing pads. The driving circuit is configured to provide a voltage signal with a test pattern to the touch sensing pads, and is configured to determine whether an open circuit or a short circuit exists in the touch display panel from a detected signal in response to the voltage signal.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 11, 2022
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Chun-Kai Chuang, Yu-Ming Liao, Pei-Yuan Hung, Yu-Hsiang Lin
  • Publication number: 20220320147
    Abstract: A fin transistor structure is provided. The fin transistor structure includes a first substrate. An insulation layer is disposed on the first substrate. A plurality of fin structures are disposed on the insulation layer. A supporting dielectric layer fixes the fin structures at the fin structures at waist parts thereof. A gate structure layer is disposed on the supporting dielectric layer and covers a portion of the fin structures.
    Type: Application
    Filed: June 20, 2022
    Publication date: October 6, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Sheng-Yao Huang, Yu-Ruei Chen, Chung-Liang Chu, Zen-Jay Tsai, Yu-Hsiang Lin
  • Patent number: 11430538
    Abstract: A memory control method, a memory storage device, and a memory control circuit unit are provided. The method includes: executing a single page encoding operation on first data stored in a first type physical unit to generate local parity data; executing a global encoding operation on second data stored in at least two of the first type physical unit, a second type physical unit, and a third type physical unit to generate global parity data; reading the second data from the at least two of the first type physical unit, the second type physical unit, and the third type physical unit in response to a failure of a single page decoding operation for the first data; and executing a global decoding operation on the second data according to the global parity data.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: August 30, 2022
    Assignee: PHISON ELECTRONICS CORP.
    Inventors: Yu-Hsiang Lin, Pochiao Chou, Cheng-Che Yang
  • Patent number: 11417685
    Abstract: A fin transistor structure is provided. The fin transistor structure includes a first substrate. An insulation layer is disposed on the first substrate. A plurality of fin structures are disposed on the insulation layer. A supporting dielectric layer fixes the fin structures at the fin structures at waist parts thereof. A gate structure layer is disposed on the supporting dielectric layer and covers a portion of the fin structures.
    Type: Grant
    Filed: November 29, 2019
    Date of Patent: August 16, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Sheng-Yao Huang, Yu-Ruei Chen, Chung-Liang Chu, Zen-Jay Tsai, Yu-Hsiang Lin
  • Patent number: 11417564
    Abstract: A semiconductor device includes a fin-shaped structure on a substrate, a single diffusion break (SDB) structure dividing the fin-shaped structure into a first portion and a second portion as the SDB structure includes a bottom portion in the fin-shaped structure and a top portion on the bottom portion, a spacer around the top portion, a first epitaxial layer adjacent to one side of the top portion, and a second epitaxial layer adjacent to another side of the top portion.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: August 16, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Publication number: 20220254431
    Abstract: A memory control method, a memory storage device, and a memory control circuit unit are provided. The method includes: executing a single page encoding operation on first data stored in a first type physical unit to generate local parity data; executing a global encoding operation on second data stored in at least two of the first type physical unit, a second type physical unit, and a third type physical unit to generate global parity data; reading the second data from the at least two of the first type physical unit, the second type physical unit, and the third type physical unit in response to a failure of a single page decoding operation for the first data; and executing a global decoding operation on the second data according to the global parity data.
    Type: Application
    Filed: March 8, 2021
    Publication date: August 11, 2022
    Applicant: PHISON ELECTRONICS CORP.
    Inventors: Yu-Hsiang Lin, Pochiao Chou, Cheng-Che Yang
  • Publication number: 20220238673
    Abstract: A high-voltage transistor device includes a semiconductor substrate, an isolation structure, a gate dielectric layer, a gate, a source region and a drain region. The semiconductor substrate has a plurality of grooves extending downward from a surface of the semiconductor substrate to form a sawtooth sectional profile. The isolation structure is disposed on the outside of the plurality of grooves, and extends from the surface downwards into the semiconductor substrate to define a high-voltage area. The gate dielectric layer is disposed on the high-voltage area and partially filled in the plurality of grooves. The gate is disposed on the gate dielectric layer. The source region and the drain region are respectively disposed in the semiconductor substrate and isolated from each other.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 28, 2022
    Inventors: Sheng-Yao HUANG, Yu-Ruei CHEN, Zen-Jay TSAI, Yu-Hsiang LIN
  • Publication number: 20220140139
    Abstract: A semiconductor structure includes a substrate, a buried oxide layer formed in the substrate and near a surface of the substrate, a gate dielectric layer formed on the substrate and covering the buried oxide layer, a gate structure formed on the gate dielectric layer and overlapping the buried oxide layer, and a source region and a drain region formed in the substrate and at two sides of the gate structure.
    Type: Application
    Filed: December 2, 2020
    Publication date: May 5, 2022
    Inventors: Sheng-Yao Huang, Yu-Ruei Chen, Zen-Jay Tsai, Yu-Hsiang Lin
  • Publication number: 20220093741
    Abstract: A structure of semiconductor device is provided, including a substrate. First and second trench isolations are disposed in the substrate. A height of a portion of the substrate is between a top and a bottom of the first and second trench isolations. A gate insulation layer is disposed on the portion of the substrate between the first and second trench isolations. A first germanium (Ge) doped layer region is disposed in the portion of the substrate just under the gate insulation layer. A second Ge doped layer region is in the portion of the substrate, overlapping with the first Ge doped layer region to form a Ge gradient from high to low along a depth direction under the gate insulation layer. A fluorine (F) doped layer region is in the portion of the substrate, lower than and overlapping with the first germanium doped layer region.
    Type: Application
    Filed: October 27, 2021
    Publication date: March 24, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Tsai-Yu Wen, Shi You Liu, Yu-Hsiang Lin
  • Publication number: 20220093411
    Abstract: A method for fabricating a high-voltage (HV) transistor is provided. The method includes providing a substrate, having a first isolation structure and a second isolation structure in the substrate and a recess in the substrate between the first and second isolation structures. Further, a hydrogen annealing process is performed over the recess. A sacrificial dielectric layer is formed on the recess. The sacrificial dielectric layer is removed, wherein a portion of the first and second isolation structures is also removed. A gate oxide layer is formed in the recess between the first and second isolation structures after the hydrogen annealing process.
    Type: Application
    Filed: September 23, 2020
    Publication date: March 24, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Chun Yu Chen, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Publication number: 20220093742
    Abstract: A method for fabricating of semiconductor device is provided, including providing a substrate. A first trench isolation and a second trench isolation are formed in the substrate. A portion of the substrate is etched to have a height between a top and a bottom of the first and second trench isolations. A germanium (Ge) doped layer region is formed in the portion of the substrate. A fluorine (F) doped layer region is formed in the portion of the substrate, lower than and overlapping with the germanium doped layer region. An oxidation process is performed on the portion of the substrate to form a gate oxide layer between the first and second trench isolations.
    Type: Application
    Filed: October 27, 2021
    Publication date: March 24, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Chin-Hung Chen, Chun-Ya Chiu, Chih-Kai Hsu, Ssu-I Fu, Tsai-Yu Wen, Shi You Liu, Yu-Hsiang Lin
  • Publication number: 20220093798
    Abstract: The disclosure discloses a structure of high-voltage (HV) transistor which includes a substrate. An epitaxial doped structure with a first conductive type is formed in the substrate, wherein a top portion of the epitaxial doped structure includes a top undoped epitaxial layer. A gate structure is disposed on the substrate and at least overlapping with the top undoped epitaxial layer. A source/drain (S/D) region with a second conductive type is formed in the epitaxial doped structure at a side of the gate structure. The first conductive type is different from the second conductive type.
    Type: Application
    Filed: October 16, 2020
    Publication date: March 24, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Chun-Ya Chiu, Chih-Kai Hsu, Chin-Hung Chen, Chia-Jung Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Publication number: 20220085210
    Abstract: A semiconductor device includes a semiconductor substrate, a recess, a first gate oxide layer, and a gate structure. The semiconductor substrate includes a first region and a second region adjacent to the first region. The recess is disposed in the first region of the semiconductor substrate, and an edge of the recess is located at an interface between the first region and the second region. At least a part of the first gate oxide layer is disposed in the recess. The first gate oxide layer includes a hump portion disposed adjacent to the edge of the recess, and a height of the hump portion is less than a depth of the recess. The gate structure is disposed on the first region and the second region of the semiconductor substrate, and the gate structure overlaps the hump portion of the first gate oxide layer in a vertical direction.
    Type: Application
    Filed: October 12, 2020
    Publication date: March 17, 2022
    Inventors: Chang-Po Hsiung, Ching-Chung Yang, Shan-Shi Huang, Shin-Hung Li, Nien-Chung Li, Wen-Fang Lee, Chiu-Te Lee, Chih-Kai Hsu, Chun-Ya Chiu, Chin-Hung Chen, Chia-Jung Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Patent number: 11269898
    Abstract: System and methods are provided that can address cold-start problems in database keyword searches. The search system generates machine-learned values for new items based on historical signals for already existing items. These initial values are generated at the time of new item's inclusion in the search index. The values are used as input in a ranking model to rank search results for a user query. The initial values for the new items predict user engagement with the new items based on historical data for existing items and increase the visibility of new items to accumulate user interaction data for the new items.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 8, 2022
    Assignee: A9.com, Inc.
    Inventors: Vamsi Salaka, Parth Gupta, Tommaso Dreossi, Jan Bakus, Yu-Hsiang Lin
  • Patent number: D950507
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: May 3, 2022
    Assignee: AIC INC.
    Inventors: Yen-Chih Chen, Chi-Yuan Hsiao, Hsih-Ting You, Yu-Hsiang Lin