Patents by Inventor Yumiko Kawano

Yumiko Kawano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10490443
    Abstract: A method of selectively forming a thin film on a substrate to be processed in which a conductive film and an insulating film are exposed to a surface of the substrate includes: selectively forming a first Ru film only on a first surface, which is an exposed surface of the conductive film and formed of one of Ru, RuO2, Pt, Pd, CuO, and CuO2, using an Ru(EtCp)2 gas and an O2 gas; and selectively forming a first SiO2-containing insulating film only on a second surface, which is an exposed surface of the insulating film has OH groups, by performing one or more times a process of supplying a TMA gas to the substrate to adsorb TMA only to the second surface and a process of forming an SiO2 film only on a surface of the adsorbed TMA using a silanol group-containing silicon raw material and an oxidizing agent.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 26, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yumiko Kawano, Shuji Azumo, Hiroki Murakami, Michitaka Aita, Tadahiro Ishizaka, Koji Akiyama, Yusaku Kashiwagi, Hajime Nakabayashi
  • Publication number: 20190161853
    Abstract: Provided is a method for forming a tungsten film in which a tungsten film is formed on the surface of a substrate, the method including: disposing a substrate having an amorphous layer on the surface thereof inside a treatment container under a depressurized atmosphere; heating the substrate inside the treatment container; and supplying, into the treatment container, WF6 gas which is a tungsten raw material and H2 gas which is a reducing gas, and forming a main tungsten film on the amorphous layer.
    Type: Application
    Filed: July 11, 2017
    Publication date: May 30, 2019
    Inventors: Shintaro Aoyama, Mikio Suzuki, Yumiko Kawano, Kohichi Satoh
  • Publication number: 20190096750
    Abstract: A method of selectively forming a thin film on a substrate to be processed in which a conductive film and an insulating film are exposed to a surface of the substrate includes: selectively forming a first Ru film only on a first surface, which is an exposed surface of the conductive film and formed of one of Ru, RuO2, Pt, Pd, CuO, and CuO2, using an Ru(EtCp)2 gas and an O2 gas; and selectively forming a first SiO2-containing insulating film only on a second surface, which is an exposed surface of the insulating film has OH groups, by performing one or more times a process of supplying a TMA gas to the substrate to adsorb TMA only to the second surface and a process of forming an SiO2 film only on a surface of the adsorbed TMA using a silanol group-containing silicon raw material and an oxidizing agent.
    Type: Application
    Filed: September 27, 2018
    Publication date: March 28, 2019
    Inventors: Yumiko KAWANO, Shuji AZUMO, Hiroki MURAKAMI, Michitaka AITA, Tadahiro ISHIZAKA, Koji AKIYAMA, Yusaku KASHIWAGI, Hajime NAKABAYASHI
  • Patent number: 9750087
    Abstract: A heat treatment apparatus configured to perform a heat treatment on a plurality of substrates, including: a processing vessel configured to accommodate the plurality of substrates on which the heat treatment is performed; an electromagnetic induction source configured to generate an oscillating magnetic field having a high frequency within the processing vessel; and a substrate holding element having a plurality of heating elements arranged in a vertical direction and spacers interposed between the adjacent heating elements, the heating element being made of a conductive material and allowing an induced current caused by the oscillating magnetic field to flow therein to generate heat, the substrate holding element supporting the substrates in a state where the substrates are mounted on the heating elements.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: August 29, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tomihiro Yonenaga, Yumiko Kawano
  • Patent number: 9428835
    Abstract: A present invention provide a technique for easily forming a high-quality cobalt base film, which have a small specific resistance. The present invention comprises a transportation process of a Co[i-C3H7NC(C2H5)N-i-C3H7]2, and a film formation process by decomposition of the Co[i-C3H7NC(C2H5)N-i-C3H7]2. The film formation process comprises at least a first film formation process and a second film formation process. In the first film formation process, a film formation chamber is supplied with at least NH3 and/or NH3 product compound, and is not virtually supplied with H2. In the second film formation process, the film formation chamber is supplied with at least NH3 and/or NH3 product compound, and H2. An internal pressure of the film formation chamber in the first film formation process is higher than an internal pressure of the film formation chamber in the second film formation process.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: August 30, 2016
    Assignees: GAS-PHASE GROWTH LTD., Tokyo Electron Limited
    Inventors: Hideaki Machida, Masato Ishikawa, Hiroshi Sudoh, Yumiko Kawano, Kazutoshi Iwai
  • Patent number: 9246098
    Abstract: A Ge—Sb—Te film forming method includes a Sb source material introducing process, a first purging process, a Te source material introducing process, a second purging process, a Ge source material introducing process, a third purging process. An additive gas containing at least one of ammonia, methylamine, dimethylamine, hydrazine, monomethylhydrazine, dimethylhydrazine and pyridine is introduced in at least one of the Sb, Te and Ge source material introducing processes and the first to third purging processes.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: January 26, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yumiko Kawano, Susumu Arima
  • Patent number: 9187822
    Abstract: Disclosed is a method for forming a Ge—Sb—Te film, in which a substrate is disposed within a process chamber, a gaseous Ge material, a gaseous Sb material, and a Te material are introduced into the process chamber, so that a Ge—Sb—Te film formed of Ge2Sb2Te5 is formed on the substrate by CVD. The method for forming a Ge—Sb—Te film comprises: a step (step 2) wherein the gaseous Ge material and the gaseous Sb material or alternatively a small amount of the gaseous Te material not sufficient for formed of Ge2Sb2Te5 in addition to the gaseous Ge material and the gaseous Sb material are introduced into the process chamber so that a precursor film, which does not contain Te or contains Te in an amount smaller than that in Ge2Sb2Te5, is formed on the substrate; and a step (step 3) wherein the gaseous Te material is introduced into the process chamber and the precursor film is caused to adsorb Te, so that the Te concentration in the film is adjusted.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: November 17, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Yumiko Kawano, Susumu Arima
  • Publication number: 20150201468
    Abstract: A heat treatment apparatus configured to perform a heat treatment on a plurality of substrates, including: a processing vessel configured to accommodate the plurality of substrates on which the heat treatment is performed; an electromagnetic induction source configured to generate an oscillating magnetic field having a high frequency within the processing vessel; and a substrate holding element having a plurality of heating elements arranged in a vertical direction and spacers interposed between the adjacent heating elements, the heating element being made of a conductive material and allowing an induced current caused by the oscillating magnetic field to flow therein to generate heat, the substrate holding element supporting the substrates in a state where the substrates are mounted on the heating elements.
    Type: Application
    Filed: March 23, 2015
    Publication date: July 16, 2015
    Inventors: Tomihiro YONENAGA, Yumiko KAWANO
  • Publication number: 20150093518
    Abstract: The present disclosure provides an apparatus of performing a heat treatment with respect to a substrate mounted within a processing vessel, including: a substrate mounting stand including an inner portion configured to transfer heat to a central portion of the substrate and a heat generation regulating portion configured to generate heat through an induction heating; a magnetic field forming mechanism configured to form magnetic fields with alternating current power and to inductively heat the heat generation regulating portion; a power supply unit configured to supply the alternating current power to the magnetic field forming mechanism; a temperature measuring unit configured to measure a temperature of the heat generation regulating portion; a control unit configured to control the alternating current power; and a gas supply unit configured to supply a treatment gas to the substrate mounted on the mounting stand.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Tomihiro YONENAGA, Cheoljung KIM, Yumiko KAWANO
  • Patent number: 8927060
    Abstract: There is provided a method for forming a Ge—Sb—Te film having a composition of Ge2Sb2Te5 on a substrate by a CVD method using a gaseous Ge source material, a gaseous Sb source material and a gaseous Te source material. The method includes loading the substrate within a processing chamber (Process 1); performing a first stage film forming process on the substrate by supplying the gaseous Ge source material and the gaseous Sb source material (Process 2); and performing a second stage film forming process on a film obtained through the first stage film forming process by supplying the gaseous Sb source material and the gaseous Te source material (Process 3). The Ge—Sb—Te film is formed by the film obtained through Process 2 and by a film obtained through Process 3.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: January 6, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Yumiko Kawano, Susumu Arima
  • Publication number: 20140248427
    Abstract: A present invention provide a technique for easily forming a high-quality cobalt base film, which have a small specific resistance. The present invention comprises a transportation process of a Co[i-C3H7NC(C2H5)N-i-C3H7]2, and a film formation process by decomposition of the Co[i-C3H7NC(C2H5)N-i-C3H7]2. The film formation process comprises at least a first film formation process and a second film formation process. In the first film formation process, a film formation chamber is supplied with at least NH3 and/or NH3 product compound, and is not virtually supplied with H2. In the second film formation process, the film formation chamber is supplied with at least NH3 and/or NH3 product compound, and H2. An internal pressure of the film formation chamber in the first film formation process is higher than an internal pressure of the film formation chamber in the second film formation process.
    Type: Application
    Filed: October 4, 2012
    Publication date: September 4, 2014
    Applicants: Tokyo Electron Limited, GAS-PHASE GROWTH LTD.
    Inventors: Hideaki Machida, Masato Ishikawa, Hiroshi Sudoh, Yumiko Kawano, Kazutoshi Iwai
  • Publication number: 20140162401
    Abstract: A Ge—Sb—Te film forming method includes a Sb source material introducing process, a first purging process, a Te source material introducing process, a second purging process, a Ge source material introducing process, a third purging process. An additive gas containing at least one of ammonia, methylamine, dimethylamine, hydrazine, monomethylhydrazine, dimethylhydrazine and pyridine is introduced in at least one of the Sb, Te and Ge source material introducing processes and the first to third purging processes.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Yumiko Kawano, Susumu Arima
  • Patent number: 8691338
    Abstract: A first substrate has a source material forming surface on which source materials for forming a polymerized film is formed in a predetermined pattern, and a second substrate has a film forming surface on which the polymerized film will be formed. Here, the first substrate and the second substrate are installed in a processing chamber such that the source material forming surface and the film forming surface face each other. Then, the first substrate is heated to a first temperature at which the source materials on the source material forming surface are evaporated and the second substrate is heated to a second temperature at which the source materials cause polymerization reaction on the film forming surface. Therefore, the polymerized film is formed on the film forming surface by reacting the source materials and evaporated from the first substrate on the film forming surface of the second substrate.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: April 8, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Yumiko Kawano, Yusaku Kashiwagi
  • Patent number: 8679913
    Abstract: A film is formed so that the atomic numbers ratio of Sr to Ti, i.e., Sr/Ti, in the film is not less than 1.2 and not more than 3. The film is then annealed in an atmosphere containing not less than 0.001% and not more than 80% of O2 at 500° C. or above. An SrO film forming step or a TiO film forming step are repeated a plurality of times so that a sequence, in which a plurality of SrO film forming steps or/and a plurality of TiO film forming steps are performed continuously, is included. When Sr is oxidized after the adsorption of Sr, O3 and H2O are used as an oxidizing agent.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: March 25, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Yumiko Kawano, Susumu Arima, Akinobu Kakimoto, Toshiyuki Hirota, Takakazu Kiyomura
  • Patent number: 8674273
    Abstract: Provided is a heat treatment apparatus which, when simultaneously heating substrates placed on susceptors, is capable of controlling the uniformity of temperature within each substrate. The heat treatment apparatus includes: a reaction tube which performs predetermined treatment to wafers; a plurality of susceptors each of which has a mounting surface for mounting the wafer and is made of a conductive material; a rotatable quartz boat wherein the susceptors spaced apart in a direction perpendicular to the mounting surfaces are arranged and supported in the reaction tube; a magnetic field generating unit which is arranged on a sidewall of the processing chamber and includes a pair of electromagnets which generate an AC magnetic field in a direction parallel to the mounting surfaces of the susceptors and inductively heat the susceptors; and a control unit which controls the AC magnetic field generated by the magnetic field generating unit.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 18, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Tomihiro Yonenaga, Yumiko Kawano
  • Patent number: 8658951
    Abstract: In-plane temperature of each substrate is uniformly controlled at the time of heating substrates placed on a plurality of susceptors, respectively. A heat treatment apparatus is provided with susceptors, i.e., conductive members for placing wafers thereon, having an induction heating body electrically divided into a center portion thereof and a peripheral portion thereof; a quartz boat supporting the susceptors arranged in a row; an induction coil, which is arranged inside a processing chamber to surround the circumference of each of the susceptors and configured such that the temperature of the induction coil can be freely adjusted; and a control unit which performs temperature control by changing the ratio between heat value at the center portion of the induction heating body and that at the peripheral portion, by controlling two high frequency currents of different frequencies to be applied to the induction coil from a high frequency current circuit.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: February 25, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Tomihiro Yonenaga, Yumiko Kawano
  • Publication number: 20130230652
    Abstract: A ruthenium film formation method includes placing and heating a substrate inside a process chamber, and supplying a ruthenium compound gas and a decomposing gas for decomposing this compound into the process chamber while periodically modulating at least one of flow rates of these gases, to form a plurality of steps having gas compositions different from each other. Without purging an interior of the process chamber between these steps, the method includes causing the gases to react with each other on the substrate thus heated, thereby forming a ruthenium film on the substrate.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 5, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yumiko KAWANO, Hideaki YAMASAKI, Susumu ARIMA
  • Publication number: 20130183446
    Abstract: Disclosed is a method for forming a Ge—Sb—Te film, in which a substrate is disposed within a process chamber, a gaseous Ge material, a gaseous Sb material, and a Te material are introduced into the process chamber, so that a Ge—Sb—Te film formed of Ge2Sb2Te5 is formed on the substrate by CVD. The method for forming a Ge—Sb—Te film comprises: a step (step 2) wherein the gaseous Ge material and the gaseous Sb material or alternatively a small amount of the gaseous Te material not sufficient for formed of Ge2Sb2Te5 in addition to the gaseous Ge material and the gaseous Sb material are introduced into the process chamber so that a precursor film, which does not contain Te or contains Te in an amount smaller than that in Ge2Sb2Te5, is formed on the substrate; and a step (step 3) wherein the gaseous Te material is introduced into the process chamber and the precursor film is caused to adsorb Te, so that the Te concentration in the film is adjusted.
    Type: Application
    Filed: September 5, 2011
    Publication date: July 18, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yumiko Kawano, Susumu Arima
  • Patent number: 8372688
    Abstract: A film-forming method includes a preprocessing step (step 1) wherein the inside of a processing chamber is exposed to a gas containing Cl and/or F in a state having no substrate in the processing chamber, and a step (step 2) wherein a substrate is loaded into the processing chamber after the step 1. Then, in a step 3, a gaseous Ge raw material, a gaseous Sb raw material, and a gaseous Te raw material are introduced into the processing chamber having the substrate loaded therein, and a Ge—Sb—Te film formed of Ge2Sb2Te5 is formed on the substrate by CVD.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 12, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yumiko Kawano, Susumu Arima
  • Patent number: 8361550
    Abstract: A substrate is arranged in a processing chamber, the substrate is heated, a Ti material is introduced into the processing chamber in the form of gas, the Ti material is oxidized by introducing an oxidizing agent in the form of gas, a Sr material is introduced into the processing chamber in the form of gas, the Sr material is oxidized by introducing the oxidizing agent in the form of gas, and a SrTiO3 film is formed on the substrate. As the Sr material, a Sr amine compound or a Sr imine compound is used.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: January 29, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Akinobu Kakimoto, Yumiko Kawano