Patents by Inventor Yumiko Kawano

Yumiko Kawano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8293327
    Abstract: The present invention provides a process for forming a strontium-containing thin film of a cyclopentadienyl-based strontium compound, which is in the liquid state at room temperature to 50° C., can be purified by distillation, present as a monomer, has high vapor pressure, and suitable for mass production. bis(propyltetramethylcyclopentadienyl)strontium is used as an Sr source to form a strontium-containing thin film such as a SrTiO3 film, a (Ba, Sr)TiO3 film by chemical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: October 23, 2012
    Assignees: Kabushikikaisha Kojundokagaku Kenkyusho, Tokyo Electron Limited
    Inventors: Hidekimi Kadokura, Shintaro Higashi, Yoshinori Kuboshima, Yumiko Kawano
  • Publication number: 20120107505
    Abstract: There is provided a method for forming a Ge—Sb—Te film having a composition of Ge2Sb2Te5 on a substrate by a CVD method using a gaseous Ge source material, a gaseous Sb source material and a gaseous Te source material. The method includes loading the substrate within a processing chamber (Process 1); performing a first stage film forming process on the substrate by supplying the gaseous Ge source material and the gaseous Sb source material (Process 2); and performing a second stage film forming process on a film obtained through the first stage film forming process by supplying the gaseous Sb source material and the gaseous Te source material (Process 3). The Ge—Sb—Te film is formed by the film obtained through Process 2 and by a film obtained through Process 3.
    Type: Application
    Filed: June 2, 2010
    Publication date: May 3, 2012
    Applicant: Tokyo Electron Limited
    Inventors: Yumiko Kawano, Susumu Arima
  • Publication number: 20120108005
    Abstract: A film-forming method includes a preprocessing step (step 1) wherein the inside of a processing chamber is exposed to a gas containing Cl and/or F in a state having no substrate in the processing chamber, and a step (step 2) wherein a substrate is loaded into the processing chamber after the step 1. Then, in a step 3, a gaseous Ge raw material, a gaseous Sb raw material, and a gaseous Te raw material are introduced into the processing chamber having the substrate loaded therein, and a Ge—Sb—Te film formed of Ge2Sb2Te5 is formed on the substrate by CVD.
    Type: Application
    Filed: June 2, 2010
    Publication date: May 3, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yumiko Kawano, Susumu Arima
  • Publication number: 20110248024
    Abstract: In-plane temperature of each substrate is uniformly controlled at the time of heating substrates placed on a plurality of susceptors, respectively. A heat treatment apparatus is provided with susceptors, i.e., conductive members for placing wafers thereon, having an induction heating body electrically divided into a center portion thereof and a peripheral portion thereof; a quartz boat supporting the susceptors arranged in a row; an induction coil, which is arranged inside a processing chamber to surround the circumference of each of the susceptors and configured such that the temperature of the induction coil can be freely adjusted; and a control unit which performs temperature control by changing the ratio between heat value at the center portion of the induction heating body and that at the peripheral portion, by controlling two high frequency currents of different frequencies to be applied to the induction coil from a high frequency current circuit.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 13, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tomihiro YONENAGA, Yumiko Kawano
  • Patent number: 8029621
    Abstract: A raw material feeding device for feeding a gaseous raw material formed by sublimating a solid raw material to a film formation system includes a raw material container for holding the solid raw material therein, a first heating unit placed at a first side of the container, a second heating unit placed at a second side thereof, the first temperature control unit for conducting a first process of controlling the first and the second heating unit to make the temperature of the first side higher than that of the second side to thereby sublimate the solid raw material disposed at the first side, and the second temperature control unit for conducting a second process of controlling the first and the second heating unit to make the temperature of the second side higher than that of the first side to thereby sublimate the solid raw material disposed at the second side.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: October 4, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Hideaki Yamasaki, Yumiko Kawano
  • Publication number: 20110210117
    Abstract: Provided is a heat treatment apparatus which, when simultaneously heating substrates placed on susceptors, is capable of controlling the uniformity of temperature within each substrate. The heat treatment apparatus includes: a reaction tube which performs predetermined treatment to wafers; a plurality of susceptors each of which has a mounting surface for mounting the wafer and is made of a conductive material; a rotatable quartz boat wherein the susceptors spaced apart in a direction perpendicular to the mounting surfaces are arranged and supported in the reaction tube; a magnetic field generating unit which is arranged on a sidewall of the processing chamber and includes a pair of electromagnets which generate an AC magnetic field in a direction parallel to the mounting surfaces of the susceptors and inductively heat the susceptors; and a control unit which controls the AC magnetic field generated by the magnetic field generating unit.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 1, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tomihiro Yonenaga, Yumiko Kawano
  • Publication number: 20110171384
    Abstract: A first substrate 16 has a source material forming surface on which a plurality of source materials for forming a polymerized film is formed in a predetermined pattern, and a second substrate 15 has a film forming surface on which the polymerized film will be formed. Here, the first substrate 16 and the second substrate 15 are installed in a processing chamber 2 such that the source material forming surface and the film forming surface face each other. Then, the inside of the processing chamber 2 is maintained under a vacuum atmosphere, and the first substrate 16 is heated to a first temperature at which the source materials on the source material forming surface are evaporated and the second substrate 15 is heated to a second temperature at which the source materials cause polymerization reaction on the film forming surface.
    Type: Application
    Filed: July 17, 2009
    Publication date: July 14, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yumiko Kawano, Yusaku Kashiwagi
  • Patent number: 7960278
    Abstract: The present invention is a method of film deposition that comprises a film-depositing step of supplying a high-melting-point organometallic material gas and a nitrogen-containing gas to a processing vessel that can be evacuated, so as to deposit a thin film of a metallic compound of a high-melting-point metal on a surface of an object to be processed placed in the processing vessel. A partial pressure of the nitrogen-containing gas during the film-depositing step is 17% or lower, in order to increase carbon density contained in the thin film.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: June 14, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Hideaki Yamasaki, Yumiko Kawano
  • Publication number: 20110052810
    Abstract: An AxByOz-type oxide film can be produced by introducing a first organic metal compound source material, a second organic metal compound source material and an oxidizer into a processing chamber and forming the AxByOz-type oxide film on a substrate. In the production, a compound which has a low vapor pressure and has an organic ligand capable of being decomposed with an oxidizer to produce CO is used as the first organic metal compound source material, a metal alkoxide is used as the second organic metal compound source material, and gaseous O3 or O2 is used as the oxidizer. It is absolutely necessary to introduce the second organic metal compound source material immediately before the introduction of the oxidizer.
    Type: Application
    Filed: February 18, 2009
    Publication date: March 3, 2011
    Applicants: Tokyo Electron Limited, Elpida Memory, Inc.
    Inventors: Yumiko Kawano, Susumu Arima, Akinobu Kakimoto, Toshiyuki Hirota, Takakazu Kiyomura
  • Publication number: 20110036288
    Abstract: Disclosed is a method for Sr—Ti—O-base film formation. The method comprises placing a substrate with a Ru film formed thereon in a treatment vessel, introducing a gaseous Ti material, a gaseous Sr material, and a gaseous oxidizing agent into the treatment vessel to form a first Sr—Ti—O-base film having a thickness of not more than 10 nm on the Ru film, annealing the first Sr—Ti—O-base film for crystallization, introducing a gaseous Ti material, a gaseous Sr material, and a gaseous oxidizing agent into the treatment vessel to form a second Sr—Ti—O-base film on the first Sr—Ti—O-base film, and annealing the second Sr—Ti—O-base film for crystallization.
    Type: Application
    Filed: February 18, 2009
    Publication date: February 17, 2011
    Applicants: TOKYO ELECTRON LIMITED, ELPIDA MEMORY, INC.
    Inventors: Yumiko Kawano, Susumu Arima, Akinobu Kakimoto, Toshiyuki Hirota, Takakazu Kiyomura
  • Publication number: 20110014797
    Abstract: A film is formed so that the atomic numbers ratio of Sr to Ti, i.e., Sr/Ti, in the film is not less than 1.2 and not more than 3. The film is then annealed in an atmosphere containing not less than 0.001% and not more than 80% of O2 at 500° C. or above. An SrO film forming step or a TiO film forming step are repeated a plurality of times so that a sequence, in which a plurality of SrO film forming steps or/and a plurality of TiO film forming steps are performed continuously, is included. When Sr is oxidized after the adsorption of Sr, O3 and H2O are used as an oxidizing agent.
    Type: Application
    Filed: September 2, 2008
    Publication date: January 20, 2011
    Applicants: TOKYO ELECTRON LIMITED, ELPIDA MEMORY, INC.
    Inventors: Yumiko Kawano, Susumu Arima, Akinobu Kakimoto, Toshiyuki Hirota, Takakazu Kiyomura
  • Patent number: 7816282
    Abstract: A method is used for forming an SrTiO3 film on a substrate placed and heated inside a process chamber while supplying a gaseous Ti source material, a gaseous Sr source material, and a gaseous oxidizing agent into the process chamber. Sr(C5(CH3)5)2 is used as the Sr source material. The method performs a plurality of cycles to form the SrTiO3 film. Each cycle sequentially includes supplying the gaseous Ti source material into the process chamber and thereby adsorbing it onto the substrate; supplying the gaseous oxidizing agent into the process chamber and thereby decomposing the Ti source material thus adsorbed and forming a Ti-containing oxide film; supplying the gaseous Sr source material into the process chamber and thereby adsorbing it onto the Ti-containing oxide film; and supplying the gaseous oxidizing agent into the process chamber and thereby decomposing the Sr source material thus adsorbed and forming an Sr-containing oxide film.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: October 19, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Yumiko Kawano, Akinobu Kakimoto, Hidekimi Kadokura, Shintaro Higashi
  • Publication number: 20100015335
    Abstract: A substrate is arranged in a processing chamber, the substrate is heated, and an Sr material, a Ti material and an oxidizing agent are introduced into the processing chamber in the form of gas, the gases are reacted on the heated substrate, and an SrTiO3 film is formed on the substrate. As the Sr material, an Sr amine compound or an Sr imine compound is used.
    Type: Application
    Filed: February 27, 2008
    Publication date: January 21, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Akinobu Kakimoto, Yumiko Kawano
  • Publication number: 20090291549
    Abstract: On a Si substrate 1, i.e., a semiconductor substrate, a gate insulating film 2 is formed, and then a W-based film 3a is formed on the gate insulating film 2 by CVD using a film forming gas including W(CO)6 gas. Then, the film is oxidized under existence of a reducing gas, and the W in the W-based film 3a is not oxidized but only C is selectively oxidized to reduce the concentration of C contained in the W-based film 3a. Then, after performing heat treatment as needed, resist coating, patterning, etching and the like are performed, and, an impurity diffused region 10 is formed by ion implantation and the like, and a semiconductor device having a MOS structure is formed.
    Type: Application
    Filed: November 24, 2006
    Publication date: November 26, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hideaki Yamasaki, Koji Akiyama, Kazuyoshi Yamazaki, Yumiko Kawano
  • Publication number: 20090283038
    Abstract: A film forming method, for depositing a thin film on a surface of a substrate mounted on a mounting table disposed in a vacuum processing chamber, includes an adsorption process for adsorbing a film forming material on the substrate by introducing a source gas into the processing chamber; and a reaction process for carrying out a film forming reaction, after the adsorption process, by introducing an energy transfer gas into the processing chamber and supplying thermal energy to the film forming material adsorbed on the substrate. By repeating the above process, the thin film is formed on the substrate in a layer-by-layer manner.
    Type: Application
    Filed: July 27, 2009
    Publication date: November 19, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Isao Gunji, Yumiko Kawano
  • Publication number: 20090250006
    Abstract: A raw material feeding device for feeding a gaseous raw material formed by sublimating a solid raw material to a film formation system includes a raw material container for holding the solid raw material therein, a first heating unit placed at a first side of the container, a second heating unit placed at a second side thereof, the first temperature control unit for conducting a first process of controlling the first and the second heating unit to make the temperature of the first side higher than that of the second side to thereby sublimate the solid raw material disposed at the first side, and the second temperature control unit for conducting a second process of controlling the first and the second heating unit to make the temperature of the second side higher than that of the first side to thereby sublimate the solid raw material disposed at the second side.
    Type: Application
    Filed: July 25, 2006
    Publication date: October 8, 2009
    Applicant: Tokyo Electron Limited
    Inventors: Hideaki Yamasaki, Yumiko Kawano
  • Patent number: 7582544
    Abstract: A film forming method, for depositing a thin film on a surface of a substrate mounted on a mounting table disposed in a vacuum processing chamber, includes an adsorption process for adsorbing a film forming material on the substrate by introducing a source gas into the processing chamber; and a reaction process for carrying out a film forming reaction, after the adsorption process, by introducing an energy transfer gas into the processing chamber and supplying thermal energy to the film forming material adsorbed on the substrate. By repeating the above process, the thin film is formed on the substrate in a layer-by-layer manner.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: September 1, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Isao Gunji, Yumiko Kawano
  • Publication number: 20090197410
    Abstract: A substrate is disposed in a processing chamber. An organic Ta compound gas having Ta?N bond, a Si-containing gas and a N-containing gas are introduced into the processing chamber to form a TaSiN film on the substrate by CVD. In this film formation, at least one of a partial pressure of the Si-containing gas in the processing chamber, a total pressure in the processing chamber, a film forming temperature and a partial pressure of the N-containing gas in the processing chamber is controlled to thereby regulate Si concentration in the film. Particularly, when SiH4 gas is used as the Si-containing gas, the SiH4 gas partial pressure is determined based on the fact that the serried Si concentration in the film under giving process conditions can be expressed as a linear function involving the logarithm of the partial pressure of the SiH4 gas.
    Type: Application
    Filed: June 21, 2007
    Publication date: August 6, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kazuhito Nakamura, Hideaki Yamasaki, Yumiko Kawano
  • Publication number: 20090165720
    Abstract: A substrate treating apparatus comprising a treatment chamber for housing a substrate, a stage on which the substrate is placed within the treatment chamber, a heating member arranged within the stage and used for heating the substrate, a sealing member arranged between the stage and the treatment chamber, and a cooling mechanism having a cooling medium, whose latent heat of vaporization is utilized for cooling the sealing member.
    Type: Application
    Filed: March 3, 2009
    Publication date: July 2, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yasuhiko KOJIMA, Tadahiro Ishizaka, Yumiko Kawano
  • Publication number: 20090140353
    Abstract: The present invention is a method of film deposition that comprises a film-depositing step of supplying a high-melting-point organometallic material gas and a nitrogen-containing gas to a processing vessel that can be evacuated, so as to deposit a thin film of a metallic compound of a high-melting-point metal on a surface of an object to be processed placed in the processing vessel. A partial pressure of the nitrogen-containing gas during the film-depositing step is 17% or lower, in order to increase carbon density contained in the thin film.
    Type: Application
    Filed: October 24, 2006
    Publication date: June 4, 2009
    Inventors: Hideaki Yamasaki, Yumiko Kawano