Patents by Inventor Yun Shi

Yun Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160190067
    Abstract: A method of forming a semiconductor structure in a semiconductor-on-insulator (SOI) substrate and semiconductor structure so formed are provided. The SOI substrate includes a semiconductor layer; a bulk semiconductor region underlying the semiconductor layer; and an insulation layer between the two. The structure includes first and second openings each having sidewalls, each of the first opening and the second opening formed substantially simultaneously and extending from a top surface of the semiconductor layer through the semiconductor layer and through the insulation layer to the conductive region; an insulating material adapted to provide electrical insulation to at least a portion of the side walls of the first opening; a semiconductor material at least partially filling the first opening, the semiconductor material defining an ohmic contact trench providing electrical contact with the semiconductor region; and an insulating material disposed in the second opening and defining a device isolation trench.
    Type: Application
    Filed: March 10, 2016
    Publication date: June 30, 2016
    Inventors: Natalie B. Feilchenfeld, BethAnn Lawrence, Yun Shi
  • Patent number: 9356014
    Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: May 31, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: William F. Clark, Jr., Qizhi Liu, John J. Pekarik, Yun Shi, Yanli Zhang
  • Patent number: 9337310
    Abstract: Low leakage, high frequency devices and methods of manufacture are disclosed. The method of forming a device includes implanting a lateral diffusion drain implant in a substrate by a blanket implantation process. The method further includes forming a self-aligned tapered gate structure on the lateral diffusion drain implant. The method further includes forming a halo implant in the lateral diffusion drain implant, adjacent to the self-aligned tapered gate structure and at least partially under a source region of the self-aligned tapered gate structure.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 10, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Theodore J. Letavic, Max G. Levy, Santosh Sharma, Yun Shi
  • Patent number: 9324632
    Abstract: A method of forming a semiconductor structure in a semiconductor-on-insulator (SOI) substrate and semiconductor structure so formed are provided. The SOI substrate includes a semiconductor layer; a bulk semiconductor region underlying the semiconductor layer; and an insulation layer between the two. The method includes substantially simultaneously forming a first opening and a second opening extending from the semiconductor layer to the conductive region; introducing an insulating material to the side walls of the first opening; at least partially filling the first opening with a semiconductor material to provide an ohmic contact trench; and at least partially filling the second opening with an insulating material to form a device isolation trench. Insulating regions, for example, shallow trench isolation (STI) regions, may be formed about the device isolation trench and the ohmic contact trench. Semiconductor structures are also provided.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: April 26, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Natalie B. Feilchenfeld, BethAnn Lawrence, Yun Shi
  • Patent number: 9240463
    Abstract: High-voltage LDMOS devices with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming an array of poly islands and a control gate structure by patterning a poly layer formed over a deep well region and a body of a substrate. The method further includes forming a metal shield in contact with the control gate structure and over the array of poly islands.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: January 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, Theodore J. Letavic, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Patent number: 9236449
    Abstract: A high-voltage LDMOS device with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming a continuous gate structure over a deep well region and a body of a substrate. The method further includes forming oppositely doped, alternating segments in the continuous gate structure. The method further includes forming a contact in electrical connection with a tip of the continuous gate structure and a drain region formed in the substrate. The method further includes forming metal regions in direct electrical contact with segments of at least one species of the oppositely doped, alternating segments.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, Theodore J. Letavic, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Patent number: 9224858
    Abstract: Disclosed are a field effect transistor (FET) (e.g., a lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET)) and a method of forming the FET. In the FET, an etch stop pad is on a semiconductor substrate (e.g., a P-type silicon substrate). A semiconductor layer (e.g., a silicon layer) is also on the substrate and extends laterally over the etch stop pad. A first well region (e.g., an N-well region) extends through the semiconductor layer into the substrate such that it contains the etch stop pad. A second well region (e.g., a P-well region) is in the first well region aligned above the etch stop pad. A source region (e.g., a N-type source region) is in the second well region. A buried isolation region (e.g., a buried air-gap isolation region) is within the first well region aligned below the etch stop pad so as to limit vertical capacitor formation.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 29, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Renata Camillo-Castillo, Santosh Sharma, Yun Shi, Anthony K. Stamper
  • Publication number: 20150348870
    Abstract: A method of forming a semiconductor structure in a semiconductor-on-insulator (SOI) substrate and semiconductor structure so formed are provided. The SOI substrate includes a semiconductor layer; a bulk semiconductor region underlying the semiconductor layer; and an insulation layer between the two. The method includes substantially simultaneously forming a first opening and a second opening extending from the semiconductor layer to the conductive region; introducing an insulating material to the side walls of the first opening; at least partially filling the first opening with a semiconductor material to provide an ohmic contact trench; and at least partially filling the second opening with an insulating material to form a device isolation trench. Insulating regions, for example, shallow trench isolation (STI) regions, may be formed about the device isolation trench and the ohmic contact trench. Semiconductor structures are also provided.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Applicant: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, BethAnn Lawrence, Yun Shi
  • Publication number: 20150318378
    Abstract: Low leakage, high frequency devices and methods of manufacture are disclosed. The method of forming a device includes implanting a lateral diffusion drain implant in a substrate by a blanket implantation process. The method further includes forming a self-aligned tapered gate structure on the lateral diffusion drain implant. The method further includes forming a halo implant in the lateral diffusion drain implant, adjacent to the self-aligned tapered gate structure and at least partially under a source region of the self-aligned tapered gate structure.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 5, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Theodore J. LETAVIC, Max G. LEVY, Santosh SHARMA, Yun SHI
  • Publication number: 20150310092
    Abstract: Systems, methods, and computer-readable storage media are provided for providing a view into a mass of data when the number of items that make up the mass is very large. A request for display of information about a subset of data items contained within the corpus that have a specified characteristic is received. A quantity of data items comprising the subset is determined. It also is determined whether the quantity exceeds a threshold. If the quantity does not exceed the threshold, the requested information is presented. If, however, the quantity of data items comprising the subset exceeds the threshold, a view of the data items comprising the subset is provided that includes at least one distribution graph (e.g., histogram) generated in view of a certain measure, each distribution graph showing a visual representation of the data items comprising the subset organized by a particular attribute.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 29, 2015
    Applicant: MICROSOFT CORPORATION
    Inventors: YUN SHI, ANAND EDWIN, VINAY KUMAR, SRIVENKATARAMAN SRIKUMARASWAMI
  • Publication number: 20150255539
    Abstract: Various embodiments include field effect transistor (FET) structures and methods of forming such structures. In various embodiments, an FET structure includes: a deep n-type well; a shallow n-type well within the deep n-type well; and a shallow trench isolation (STI) region within the shallow n-type well, the STI region including: a first section having a first depth within the shallow n-type well as measured from an upper surface of the shallow n-type well, and a second section contacting and overlying the first section, the second section having a second depth within the shallow n-type well as measured from the upper surface of the shallow n-type well.
    Type: Application
    Filed: May 14, 2015
    Publication date: September 10, 2015
    Inventors: Natalie B. Feilchenfeld, Max G. Levy, Richard A. Phelps, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Patent number: 9059276
    Abstract: High-voltage LDMOS devices with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming an insulator layer of varying depth over a drift region and a body of a substrate. The method further includes forming a control gate and a split gate region by patterning a layer of material on the insulator layer. The split gate region is formed on a first portion of the insulator layer and the control gate is formed on a second portion of the insulator layer, which is thinner than the first portion.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, Theodore J. Letavic, Richard A. Phelps, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Patent number: 9041105
    Abstract: An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first semiconductor layer disposed on the substrate; a shallow trench isolation (STI) extending through the first semiconductor layer to within a portion of the substrate, the STI substantially separating a first n+ region and a second n+ region; and a gate disposed on a portion of the first semiconductor layer and connected to the STI, the gate including: a buried metal oxide (BOX) layer disposed on the first semiconductor layer and connected to the STI; a cap layer disposed on the BOX layer; and a p-type well component disposed within the first semiconductor layer and the substrate, the p-type well component connected to the second n+ region.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Qizhi Liu, Robert M. Rassel, Yun Shi
  • Patent number: 9034712
    Abstract: A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized. A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, Jr., Ephrem G. Gebreselasie, Richard A. Phelps, Jed H. Rankin, Yun Shi
  • Patent number: 8981475
    Abstract: A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region and partially overlaps the drift region. A conformal dielectric layer is on the top surface and forms a mesa above the gate conductor. The conformal dielectric layer has a conformal etch-stop layer embedded therein. Contact studs extend through the dielectric layer and the etch-stop layer, and are connected to the source region, drain region, and gate conductor. A source electrode contacts the source contact stud, a gate electrode contacts the gate contact stud, and a drain electrode contacts the drain contact stud. A drift electrode is over the drift region.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Santosh Sharma, Yun Shi, Anthony K. Stamper
  • Patent number: 8962402
    Abstract: A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region, and partially overlaps the drift region. Floating gate pieces are over the STI structure. A conformal dielectric layer is on the top surface and on the gate conductor and floating gate pieces and forms a mesa above the gate conductor and floating gate pieces. A conformal etch-stop layer is embedded within the conformal dielectric layer. A drift electrode is formed on the conformal etch-stop layer over, relative to the top surface, the drift region. The drift electrode has a variable thickness relative to the top surface.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Santosh Sharma, Yun Shi, Anthony K. Stamper
  • Publication number: 20150048447
    Abstract: A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region, and partially overlaps the drift region. Floating gate pieces are over the STI structure. A conformal dielectric layer is on the top surface and on the gate conductor and floating gate pieces and forms a mesa above the gate conductor and floating gate pieces. A conformal etch-stop layer is embedded within the conformal dielectric layer. A drift electrode is formed on the conformal etch-stop layer over, relative to the top surface, the drift region. The drift electrode has a variable thickness relative to the top surface.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 19, 2015
    Applicant: International Business Machines Corporation
    Inventors: Santosh Sharma, Yun Shi, Anthony K. Stamper
  • Publication number: 20150041896
    Abstract: A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Alan B. BOTULA, Alvin J. JOSEPH, Stephen E. LUCE, John J. PEKARIK, Yun SHI
  • Publication number: 20150041895
    Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: William F. CLARK, JR., Qizhi LIU, John J. Pekarik, Yun SHI, Yanli ZHANG
  • Patent number: 8946799
    Abstract: Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, Jr., Ephrem G. Gebreselasie, Richard A. Phelps, Yun Shi, Andreas D. Stricker