Patents by Inventor Yun Shi

Yun Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8012814
    Abstract: A first portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate is protected, while a second portion of the top semiconductor layer is removed to expose a buried insulator layer. A first field effect transistor including a gate dielectric and a gate electrode located over the first portion of the top semiconductor layer is formed. A portion of the exposed buried insulator layer is employed as a gate dielectric for a second field effect transistor. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
  • Patent number: 8008142
    Abstract: A Schottky barrier diode comprises a doped guard ring having a doping of a second conductivity type in a semiconductor-on-insulator (SOI) substrate. The Schottky barrier diode further comprises a first-conductivity-type-doped semiconductor region having a doping of a first conductivity type, which is the opposite of the second conductivity type, on one side of a dummy gate electrode and a Schottky barrier structure surrounded by the doped guard ring on the other side. A Schottky barrier region may be laterally surrounded by the dummy gate electrode and the doped guard ring. The doped guard ring includes an unmetallized portion of a gate-side second-conductivity-type-doped semiconductor region having a doping of a second conductivity type. A Schottky barrier region may be laterally surrounded by a doped guard ring including a gate-side doped semiconductor region and a STI-side doped semiconductor region. Design structures for the inventive Schottky barrier diode are also provided.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Alan D. Norris, Robert M. Rassel, Yun Shi
  • Patent number: 7999320
    Abstract: A doped contact region having an opposite conductivity type as a bottom semiconductor layer is provided underneath a buried insulator layer in a bottom semiconductor layer. At least one conductive via structure extends from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer and to the doped contact region. The doped contact region is biased at a voltage that is at or close to a peak voltage in the RF switch that removes minority charge carriers within the induced charge layer. The minority charge carriers are drained through the doped contact region and the at least one conductive via structure. Rapid discharge of mobile electrical charges in the induce charge layer reduces harmonic generation and signal distortion in the RF switch. A design structure for the semiconductor structure is also provided.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: August 16, 2011
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Patent number: 7989302
    Abstract: Methods of forming hyper-abrupt p-n junctions and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt p-n junction.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Patent number: 7977201
    Abstract: In one embodiment, a second metal line embedded in a second dielectric layer overlies a first metal line embedded in a first dielectric layer. A portion of the second dielectric layer overlying the first metal line is recessed employing a photoresist and the second metal line as an etch mask. A doped semiconductor spacer is formed within the recess to provide a resistive link between the first metal line and the second metal line. In another embodiment, a first metal line and a second metal line are embedded in a dielectric layer. An area of the dielectric layer laterally abutting the first and second metal lines is recessed employing a photoresist and the first and second metal lines as an etch mask. A doped semiconductor spacer is formed on sidewalls of the first and second metal lines, providing a resistive link between the first and second metal lines.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Robert Robison, Yun Shi, William R. Tonti
  • Publication number: 20110161896
    Abstract: In one embodiment, a back-end-of-line (BEOL) resistive structure comprises a second metal line embedded in a second dielectric layer and overlying a first metal line embedded in a first dielectric layer. A doped semiconductor spacer or plug laterally abutting sidewalls of the second metal line and vertically abutting a top surface of the first metal line provides a resistive link between the first and second metal lines. In another embodiment, another BEOL resistive structure comprises a first metal line and a second metal line are embedded in a dielectric layer. A doped semiconductor spacer or plug laterally abutting the sidewalls of the first and second metal lines provides a resistive link between the first and second metal lines.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, JR., Jed H. Rankin, Robert Robison, Yun Shi, William R. Tonti
  • Patent number: 7939395
    Abstract: Structures and methods for integrating a thick oxide high-voltage metal-oxide-semiconductor (MOS) device into a thin oxide silicon-on-insulator (SOI). A method of forming a semiconductor structure includes forming first source and drain regions of a first device below a buried oxide layer of a silicon-on-insulator (SOI) wafer, forming a gate of the first device in a layer of semiconductor material above the buried oxide layer; and forming second source and drain regions of a second device in the layer of semiconductor material above the buried oxide layer.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Lillian Kamal, legal representative, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Yun Shi, William R. Tonti
  • Patent number: 7939911
    Abstract: In one embodiment, a back-end-of-line (BEOL) resistive structure comprises a second metal line embedded in a second dielectric layer and overlying a first metal line embedded in a first dielectric layer. A doped semiconductor spacer or plug laterally abutting sidewalls of the second metal line and vertically abutting a top surface of the first metal line provides a resistive link between the first and second metal lines. In another embodiment, another BEOL resistive structure comprises a first metal line and a second metal line are embedded in a dielectric layer. A doped semiconductor spacer or plug laterally abutting the sidewalls of the first and second metal lines provides a resistive link between the first and second metal lines.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Robert Robison, Yun Shi, William R. Tonti
  • Publication number: 20100289079
    Abstract: Structures and methods for integrating a thick oxide high-voltage metal-oxide-semiconductor (MOS) device into a thin oxide silicon-on-insulator (SOI). A method of forming a semiconductor structure includes forming first source and drain regions of a first device below a buried oxide layer of a silicon-on-insulator (SOI) wafer, forming a gate of the first device in a layer of semiconductor material above the buried oxide layer; and forming second source and drain regions of a second device in the layer of semiconductor material above the buried oxide layer.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 18, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kiran V. Chatty, Robert J. Gauthier, JR., Jed H. Rankin, Yun Shi, William R. Tonti, Wagdi W. Abadeer, Lilian Kamal
  • Publication number: 20100248432
    Abstract: Methods of forming hyper-abrupt p-n junctions and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt p-n junction.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINE CORPORATION
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Publication number: 20100244934
    Abstract: At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Patent number: 7804124
    Abstract: Device and design structures for memory cells in a non-volatile random access memory (NVRAM). The device structure includes a semiconductor body in direct contact with the insulating layer, a control gate electrode, and a floating gate electrode in direct contact with the insulating layer. The semiconductor body includes a source, a drain, and a channel between the source and the drain. The floating gate electrode is juxtaposed with the channel of the semiconductor body and is disposed between the control gate electrode and the insulating layer. A first dielectric layer is disposed between the channel of the semiconductor body and the floating gate electrode. A second dielectric layer is disposed between the control gate electrode and the floating gate electrode.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Yun Shi, William R. Tonti
  • Patent number: 7804119
    Abstract: Device structures with hyper-abrupt p-n junctions, methods of forming hyper-abrupt p-n junctions, and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt-n junction.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Publication number: 20100230732
    Abstract: A field effect transistor (FET) that includes a drain formed in a first plane, a source formed in the first plane, a channel formed in the first plane and between the drain and the source and a gate formed in the first plane. The gate is separated from at least a portion of the body by an air gap. The air gap is also in the first plane.
    Type: Application
    Filed: August 26, 2009
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, JR., Jed H. Rankin, WiIliam R. Tonti, Yun Shi
  • Publication number: 20100230751
    Abstract: A Schottky barrier diode comprises a doped guard ring having a doping of a second conductivity type in a semiconductor-on-insulator (SOI) substrate. The Schottky barrier diode further comprises a first-conductivity-type-doped semiconductor region having a doping of a first conductivity type, which is the opposite of the second conductivity type, on one side of a dummy gate electrode and a Schottky barrier structure surrounded by the doped guard ring on the other side. A Schottky barrier region may be laterally surrounded by the dummy gate electrode and the doped guard ring. The doped guard ring includes an unmetallized portion of a gate-side second-conductivity-type-doped semiconductor region having a doping of a second conductivity type. A Schottky barrier region may be laterally surrounded by a doped guard ring including a gate-side doped semiconductor region and a STI-side doped semiconductor region. Design structures for the inventive Schottky barrier diode are also provided.
    Type: Application
    Filed: August 10, 2009
    Publication date: September 16, 2010
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Alan F. Norris, Robert M. Rassel, Yun Shi
  • Publication number: 20100230753
    Abstract: A varactor diode includes a portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate and a gate electrode located thereupon. A first electrode having a doping of a first conductivity type laterally abuts a doped semiconductor region having the first conductivity type, which laterally abuts a second electrode having a doping of a second conductivity type, which is the opposite of the first conductivity type. A hyperabrupt junction is formed between the second doped semiconductor region and the second electrode. The gate electrode controls the depletion of the first and second doped semiconductor regions, thereby varying the capacitance of the varactor diode. A design structure for the varactor diode is also provided.
    Type: Application
    Filed: August 31, 2009
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
  • Patent number: 7790524
    Abstract: Device and design structures for memory cells in a non-volatile random access memory (NVRAM) and methods for fabricating such device structures using complementary metal-oxide-semiconductor (CMOS) processes. The device structure, which is formed using a semiconductor-on-insulator (SOI) substrate, includes a floating gate electrode, a semiconductor body, and a control gate electrode separated from the semiconductor body by the floating gate electrode. The floating gate electrode, the control gate electrode, and the semiconductor body, which are both formed from the monocrystalline SOI layer of the SOI substrate, are respectively separated by dielectric layers. The dielectric layers may each be composed of thermal oxide layers grown on confronting sidewalls of the semiconductor body, the floating gate electrode, and the control gate electrode. An optional deposited dielectric material may fill any remaining gap between either pair of the thermal oxide layers.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Yun Shi, William R. Tonti
  • Patent number: 7790543
    Abstract: Device structures for a metal-oxide-semiconductor field effect transistor (MOSFET) that is suitable for operation at relatively high voltages and methods of forming same. The MOSFET, which is formed using a semiconductor-on-insulator (SOI) substrate, includes a channel in a semiconductor body that is self-aligned with a gate electrode. The gate electrode and semiconductor body, which are both formed from the monocrystalline SOI layer of the SOI substrate, are separated by a gap that is filled by a gate dielectric layer. The gate dielectric layer may be composed of thermal oxide layers grown on adjacent sidewalls of the semiconductor body and gate electrode, in combination with an optional deposited dielectric material that fills the remaining gap between the thermal oxide layers.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Yun Shi, William R. Tonti
  • Publication number: 20100156526
    Abstract: A doped contact region having an opposite conductivity type as a bottom semiconductor layer is provided underneath a buried insulator layer in a bottom semiconductor layer. At least one conductive via structure extends from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer and to the doped contact region. The doped contact region is biased at a voltage that is at or close to a peak voltage in the RF switch that removes minority charge carriers within the induced charge layer. The minority charge carriers are drained through the doped contact region and the at least one conductive via structure. Rapid discharge of mobile electrical charges in the induce charge layer reduces harmonic generation and signal distortion in the RF switch. A design structure for the semiconductor structure is also provided.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Patent number: 7700428
    Abstract: Methods for fabricating a device structure for use as a memory cell in a non-volatile random access memory. The method includes forming first and second semiconductor bodies on the insulating layer that have a separated, juxtaposed relationship, doping the first semiconductor body to form a source and a drain, and partially removing the second semiconductor body to define a floating gate electrode adjacent to the channel of the first semiconductor body. The method further includes forming a first dielectric layer between the channel of the first semiconductor body and the floating gate electrode, forming a second dielectric layer on a top surface of the floating gate electrode, and forming a control gate electrode on the second dielectric layer that cooperates with the floating gate electrode to control carrier flow in the channel in the first semiconductor body.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jed H. Rankin, Yun Shi, William R. Tonti