Patents by Inventor Yun Shi
Yun Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20120146158Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate including a first source drain region, a second source drain region, and an intrinsic region therebetween; an asymmetric lightly doped drain (LDD) region within the substrate, wherein the asymmetric LDD region extends from the first source drain region into the intrinsic region between the first source drain region and the second source drain region; and a gate positioned atop the semiconductor substrate, wherein an outer edge of the gate overlaps the second source drain region. A related method and design structure are also disclosed.Type: ApplicationFiled: December 8, 2010Publication date: June 14, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Alan B. Botula, Robert M. Rassel, Yun Shi, Mark Edward Stidham
-
Publication number: 20120132994Abstract: Embodiments of the present invention relate generally to semiconductor devices and, more particularly, to a structure for high-voltage (HV) semiconductor-on-insulator (SOI) devices and methods for their formation. In one embodiment, the invention provides a semiconductor-on-insulator (SOI) device comprising: a substrate; an insulator layer atop the substrate; a polysilicon layer atop the insulator layer; a device layer atop the polysilicon layer, the device layer comprising: a P-well; an N-well; and an undoped silicon region between the P-well and the N-well; and a trench isolation adjacent one of the P-well and the N-well and extending through the device layer and the polysilicon layer to the insulator layer.Type: ApplicationFiled: November 29, 2010Publication date: May 31, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William F. Clark, JR., Yun Shi
-
Publication number: 20120132992Abstract: A first field effect transistor includes a gate dielectric and a gate electrode located over a first portion of a top semiconductor layer in a semiconductor-on-insulator (SOI) substrate. A second field effect transistor includes a portion of a buried insulator layer and a source region and a drain region located underneath the buried insulator layer. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer. The first field effect transistor may be a high performance device and the second field effect transistor may be a high voltage device. A design structure for the semiconductor structure is also provided.Type: ApplicationFiled: February 7, 2012Publication date: May 31, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
-
Publication number: 20120104496Abstract: At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.Type: ApplicationFiled: January 9, 2012Publication date: May 3, 2012Applicant: International Business Machines CorporationInventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
-
Patent number: 8133774Abstract: At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.Type: GrantFiled: March 26, 2009Date of Patent: March 13, 2012Assignee: International Business Machines CorporationInventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
-
Patent number: 8120110Abstract: A first field effect transistor includes a gate dielectric and a gate electrode located over a first portion of a top semiconductor layer in a semiconductor-on-insulator (SOI) substrate. A second field effect transistor includes a portion of a buried insulator layer and a source region and a drain region located underneath the buried insulator layer. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer. The first field effect transistor may be a high performance device and the second field effect transistor may be a high voltage device. A design structure for the semiconductor structure is also provided.Type: GrantFiled: August 8, 2008Date of Patent: February 21, 2012Assignee: International Business Machines CorporationInventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
-
Publication number: 20110291171Abstract: A variable capacitance device including a plurality of FETs, the sources and drains of each FET being coupled to a first terminal, the gates of each FET being coupled to a second terminal, the capacitance of said device between said first and second terminals varying as a function of the voltage across said terminals, the device further including a biasing providing a respective backgate bias voltage to each the FETs setting a respective gate threshold voltage thereof. The aggregate V-C characteristic can be tuned as desired, either at design time or dynamically. The greater the number of FETs forming the varactor, the greater the number of possible Vt values that can be individually set, so that arbitrary V-C characteristics can be more closely approximated.Type: ApplicationFiled: March 17, 2011Publication date: December 1, 2011Applicant: International Business Machines CorporationInventors: John J. Pekarik, William F. Clark, JR., Robert J. Gauthier, JR., Yun Shi, Yanli Zhang
-
Publication number: 20110284961Abstract: A Schottky barrier diode comprises a doped guard ring having a doping of a second conductivity type in a semiconductor-on-insulator (SOI) substrate. The Schottky barrier diode further comprises a first-conductivity-type-doped semiconductor region having a doping of a first conductivity type, which is the opposite of the second conductivity type, on one side of a dummy gate electrode and a Schottky barrier structure surrounded by the doped guard ring on the other side. A Schottky barrier region may be laterally surrounded by the dummy gate electrode and the doped guard ring. The doped guard ring includes an unmetallized portion of a gate-side second-conductivity-type-doped semiconductor region having a doping of a second conductivity type. A Schottky barrier region may be laterally surrounded by a doped guard ring including a gate-side doped semiconductor region and a STI-side doped semiconductor region. Design structures for the inventive Schottky barrier diode are also provided.Type: ApplicationFiled: August 3, 2011Publication date: November 24, 2011Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Alan B. Botula, Alvin J. Joseph, Alan F. Norris, Robert M. Rassel, Yun Shi
-
Publication number: 20110260281Abstract: Integrated circuits having doped bands in a substrate and beneath high-voltage semiconductor-on-insulator (SOI) devices are provided. In one embodiment, the invention provides an integrated circuit comprising: a semiconductor-on-insulator (SOI) wafer including: a substrate; a buried oxide (BOX) layer atop the substrate; and a semiconductor layer atop the BOX layer; a plurality of high voltage (HV) devices connected in series within the semiconductor layer; a doped band within the substrate and below a first of the plurality of HV devices; and a contact extending from the semiconductor layer and through the BOX layer to the doped band.Type: ApplicationFiled: April 21, 2010Publication date: October 27, 2011Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Alan B. Botula, Beth Ann Rainey, Yun Shi
-
Publication number: 20110221510Abstract: A doped contact region having an opposite conductivity type as a bottom semiconductor layer is provided underneath a buried insulator layer in a bottom semiconductor layer. At least one conductive via structure extends from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer and to the doped contact region. The doped contact region is biased at a voltage that is at or close to a peak voltage in the RF switch that removes minority charge carriers within the induced charge layer. The minority charge carriers are drained through the doped contact region and the at least one conductive via structure. Rapid discharge of mobile electrical charges in the induce charge layer reduces harmonic generation and signal distortion in the RF switch. A design structure for the semiconductor structure is also provided.Type: ApplicationFiled: May 26, 2011Publication date: September 15, 2011Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
-
Patent number: 8012814Abstract: A first portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate is protected, while a second portion of the top semiconductor layer is removed to expose a buried insulator layer. A first field effect transistor including a gate dielectric and a gate electrode located over the first portion of the top semiconductor layer is formed. A portion of the exposed buried insulator layer is employed as a gate dielectric for a second field effect transistor. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer.Type: GrantFiled: August 8, 2008Date of Patent: September 6, 2011Assignee: International Business Machines CorporationInventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
-
Patent number: 8008142Abstract: A Schottky barrier diode comprises a doped guard ring having a doping of a second conductivity type in a semiconductor-on-insulator (SOI) substrate. The Schottky barrier diode further comprises a first-conductivity-type-doped semiconductor region having a doping of a first conductivity type, which is the opposite of the second conductivity type, on one side of a dummy gate electrode and a Schottky barrier structure surrounded by the doped guard ring on the other side. A Schottky barrier region may be laterally surrounded by the dummy gate electrode and the doped guard ring. The doped guard ring includes an unmetallized portion of a gate-side second-conductivity-type-doped semiconductor region having a doping of a second conductivity type. A Schottky barrier region may be laterally surrounded by a doped guard ring including a gate-side doped semiconductor region and a STI-side doped semiconductor region. Design structures for the inventive Schottky barrier diode are also provided.Type: GrantFiled: August 10, 2009Date of Patent: August 30, 2011Assignee: International Business Machines CorporationInventors: Alan B. Botula, Alvin J. Joseph, Alan D. Norris, Robert M. Rassel, Yun Shi
-
Patent number: 7999320Abstract: A doped contact region having an opposite conductivity type as a bottom semiconductor layer is provided underneath a buried insulator layer in a bottom semiconductor layer. At least one conductive via structure extends from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer and to the doped contact region. The doped contact region is biased at a voltage that is at or close to a peak voltage in the RF switch that removes minority charge carriers within the induced charge layer. The minority charge carriers are drained through the doped contact region and the at least one conductive via structure. Rapid discharge of mobile electrical charges in the induce charge layer reduces harmonic generation and signal distortion in the RF switch. A design structure for the semiconductor structure is also provided.Type: GrantFiled: December 23, 2008Date of Patent: August 16, 2011Assignee: International Business Machines CorporationInventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
-
Patent number: 7989302Abstract: Methods of forming hyper-abrupt p-n junctions and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt p-n junction.Type: GrantFiled: June 7, 2010Date of Patent: August 2, 2011Assignee: International Business Machines CorporationInventors: Jeffrey B. Johnson, Alvin J. Joseph, Robert M. Rassel, Yun Shi
-
Patent number: 7977201Abstract: In one embodiment, a second metal line embedded in a second dielectric layer overlies a first metal line embedded in a first dielectric layer. A portion of the second dielectric layer overlying the first metal line is recessed employing a photoresist and the second metal line as an etch mask. A doped semiconductor spacer is formed within the recess to provide a resistive link between the first metal line and the second metal line. In another embodiment, a first metal line and a second metal line are embedded in a dielectric layer. An area of the dielectric layer laterally abutting the first and second metal lines is recessed employing a photoresist and the first and second metal lines as an etch mask. A doped semiconductor spacer is formed on sidewalls of the first and second metal lines, providing a resistive link between the first and second metal lines.Type: GrantFiled: August 14, 2008Date of Patent: July 12, 2011Assignee: International Business Machines CorporationInventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Robert Robison, Yun Shi, William R. Tonti
-
Publication number: 20110161896Abstract: In one embodiment, a back-end-of-line (BEOL) resistive structure comprises a second metal line embedded in a second dielectric layer and overlying a first metal line embedded in a first dielectric layer. A doped semiconductor spacer or plug laterally abutting sidewalls of the second metal line and vertically abutting a top surface of the first metal line provides a resistive link between the first and second metal lines. In another embodiment, another BEOL resistive structure comprises a first metal line and a second metal line are embedded in a dielectric layer. A doped semiconductor spacer or plug laterally abutting the sidewalls of the first and second metal lines provides a resistive link between the first and second metal lines.Type: ApplicationFiled: March 8, 2011Publication date: June 30, 2011Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, JR., Jed H. Rankin, Robert Robison, Yun Shi, William R. Tonti
-
Patent number: 7939911Abstract: In one embodiment, a back-end-of-line (BEOL) resistive structure comprises a second metal line embedded in a second dielectric layer and overlying a first metal line embedded in a first dielectric layer. A doped semiconductor spacer or plug laterally abutting sidewalls of the second metal line and vertically abutting a top surface of the first metal line provides a resistive link between the first and second metal lines. In another embodiment, another BEOL resistive structure comprises a first metal line and a second metal line are embedded in a dielectric layer. A doped semiconductor spacer or plug laterally abutting the sidewalls of the first and second metal lines provides a resistive link between the first and second metal lines.Type: GrantFiled: August 14, 2008Date of Patent: May 10, 2011Assignee: International Business Machines CorporationInventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Robert Robison, Yun Shi, William R. Tonti
-
Patent number: 7939395Abstract: Structures and methods for integrating a thick oxide high-voltage metal-oxide-semiconductor (MOS) device into a thin oxide silicon-on-insulator (SOI). A method of forming a semiconductor structure includes forming first source and drain regions of a first device below a buried oxide layer of a silicon-on-insulator (SOI) wafer, forming a gate of the first device in a layer of semiconductor material above the buried oxide layer; and forming second source and drain regions of a second device in the layer of semiconductor material above the buried oxide layer.Type: GrantFiled: May 14, 2009Date of Patent: May 10, 2011Assignee: International Business Machines CorporationInventors: Wagdi W. Abadeer, Lillian Kamal, legal representative, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Yun Shi, William R. Tonti
-
Publication number: 20100289079Abstract: Structures and methods for integrating a thick oxide high-voltage metal-oxide-semiconductor (MOS) device into a thin oxide silicon-on-insulator (SOI). A method of forming a semiconductor structure includes forming first source and drain regions of a first device below a buried oxide layer of a silicon-on-insulator (SOI) wafer, forming a gate of the first device in a layer of semiconductor material above the buried oxide layer; and forming second source and drain regions of a second device in the layer of semiconductor material above the buried oxide layer.Type: ApplicationFiled: May 14, 2009Publication date: November 18, 2010Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Kiran V. Chatty, Robert J. Gauthier, JR., Jed H. Rankin, Yun Shi, William R. Tonti, Wagdi W. Abadeer, Lilian Kamal
-
Publication number: 20100244934Abstract: At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.Type: ApplicationFiled: March 26, 2009Publication date: September 30, 2010Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman