Patents by Inventor Yun Wei

Yun Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12170302
    Abstract: Some aspects of the present disclosure relate to a method. In the method, a semiconductor substrate is received. A photodetector is formed in the semiconductor substrate. An interconnect structure is formed over the photodetector and over a frontside of the semiconductor substrate. A backside of the semiconductor substrate is thinned, the backside being furthest from the interconnect structure. A ring-shaped structure is formed so as to extend into the thinned backside of the semiconductor substrate to laterally surround the photodetector. A series of trench structures are formed to extend into the thinned backside of the semiconductor substrate. The series of trench structures are laterally surrounded by the ring-shaped structure and extend into the photodetector.
    Type: Grant
    Filed: February 9, 2023
    Date of Patent: December 17, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee
  • Patent number: 12164034
    Abstract: A pixel array may include a group of time-of-flight (ToF) sensors. The pixel array may include an image sensor comprising a group of pixel sensors. The image sensor may be arranged among the group of ToF sensors such that the image sensor is adjacent to each ToF sensor in the group of ToF sensors.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: December 10, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Kuo-Cheng Lee, Cheng-Ming Wu
  • Patent number: 12166048
    Abstract: A pixel array includes octagon-shaped pixel sensors and a combination of visible light pixel sensors (e.g., red, green, and blue pixel sensors) and near infrared (NIR) pixel sensors. The color information obtained by the visible light pixel sensors and the luminance obtained by the NIR pixel sensors may be combined to increase the low-light performance of the pixel array, and to allow for low-light color images in low-light applications. The octagon-shaped pixel sensors may be interspersed in the pixel array with square-shaped pixel sensors to increase the utilization of space in the pixel array, and to allow for pixel sensors in the pixel array to be sized differently. The capability to accommodate different sizes of visible light pixel sensors and NIR pixel sensors permits the pixel array to be formed and/or configured to satisfy various performance parameters.
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: December 10, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Kuo-Cheng Lee, Cheng-Ming Wu
  • Publication number: 20240406596
    Abstract: In-pixel separation structures may divide photodiodes of a pixel array into multiple regions. As a result, a lens of an image sensor device may be focused by using combining signals associated with different portions of the photodiodes. As a result, the lens may be focused faster and with fewer pixels of the pixel array, which conserves power, processing resources, and raw materials.
    Type: Application
    Filed: May 30, 2023
    Publication date: December 5, 2024
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Wei-Li HU, Kuo-Cheng LEE, Cheng-Ming WU
  • Publication number: 20240405047
    Abstract: An optical blocking region formed with patterned metal reduces light reflection toward pixel sensors in a pixel sensor array. The optical blocking region may be formed of a metal nanoscale grid in order to reflect more light away from the pixel sensors. The optical blocking region may include a dielectric layer, supporting the patterned metal, with high absorption structures or shallow deep trench isolation structures in order to increase absorption and thus reduce light reflection toward the pixel sensors.
    Type: Application
    Filed: May 30, 2023
    Publication date: December 5, 2024
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Wei-Li HU, Kuo-Cheng LEE, Cheng-Ming WU
  • Publication number: 20240395847
    Abstract: Some implementations described herein include a complementary metal oxide semiconductor image sensor device for an image detection system that is used in a low-light environment. The complementary metal-oxide semiconductor image sensor device includes a photodiode for detecting near infrared and/or short-wave infrared light waves. The photodiode includes a layer of a quantum dot material and a transparent electrode over the layer of the quantum dot material. In addition to the photodiode having an improved quantum efficiency relative to a silicon-based photodiode, the photodiode is integrated within a color filter array structure to obviate the need for separate a separate visible light complementary metal-oxide semiconductor image sensor device in the image detection system.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 28, 2024
    Inventors: Chun-Hao LIN, Yun-Wei CHENG, Kuo-Cheng LEE
  • Publication number: 20240395638
    Abstract: A semiconductor structure comprises: a semiconductor substrate; one or more first implant layers disposed in the semiconductor substrate and forming a circuit portion and a first test portion, the circuit portion forming an at least partially formed semiconductor circuit; and one or more second implant layers disposed in the semiconductor substrate and further forming the circuit portion and a second test portion, wherein the first and second test portions are spaced apart. A first implantation profile of the one or more first implant layers of the first test portion is obtained during a testing procedure, and the first implantation profile is a representation of a second implantation profile of the one or more first implant layers of the circuit portion.
    Type: Application
    Filed: July 31, 2024
    Publication date: November 28, 2024
    Inventors: Feng-Chien Hsieh, Kuo-Cheng Lee, Yun-Wei Cheng, Chun-Hao Lin, Ting-Hao Chang
  • Patent number: 12154933
    Abstract: An image sensor with stress adjusting layers and a method of fabrication the image sensor are disclosed. The image sensor includes a substrate with a front side surface and a back side surface opposite to the front side surface, an anti-reflective coating (ARC) layer disposed on the back side surface of the substrate, a dielectric layer disposed on the ARC layer, a metal layer disposed on the dielectric layer, and a stress adjusting layer disposed on the metal layer. The stress adjusting layer includes a silicon-rich oxide layer. The concentration profiles of silicon and oxygen atoms in the stress adjusting layer are non-overlapping and different from each other. The image sensor further includes oxide grid structure disposed on the stress adjusting layer.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: November 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Chien Hsieh, Kuo-Cheng Lee, Ying-Hao Chen, Yun-Wei Cheng
  • Publication number: 20240386743
    Abstract: A method of fingerprint verification includes capturing a fingerprint image by an image sensing device. The image sensing device including a pixel array of a combination of sensing pixels configured to capture minutia points in the fingerprint image and positioning pixels configured to provide positioning codes. The method further includes calculating vectors of the minutia points with reference to the positioning codes, comparing the vectors to reference vectors generated from a reference fingerprint image, and determining a match between the fingerprint image and the reference fingerprint image based on the comparing of the vectors.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Kuo-Cheng Lee, Cheng-Ming Wu, Wei-Li Hu
  • Publication number: 20240387596
    Abstract: An image sensor device may include a pixel sensor array that includes a plurality of pixel sensors. A plurality of transistors may be electrically connected with a back end of line (BEOL) region of the image sensor device. The image sensor device may further include a bonding pad region in which a bonding pad is included. A dielectric plug may surround a portion of the bonding pad and may fully extend through a semiconductor device region to provide electrical, thermal, and/or optical isolation for the pixel sensors of the pixel sensor array. Additionally and/or alternatively, one or more capacitors in the BEOL region of the image sensor device. The one or more capacitors may enable a photocurrent generated by one or more of the pixel sensors to be directly transferred from the one or more source follower transistors to the one or more capacitors for storage.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 21, 2024
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Wei-Li HU, Kuo-Cheng LEE, Cheng-Ming WU
  • Publication number: 20240387600
    Abstract: Some implementations described herein include an optoelectronic device for a low-lighting application and techniques to form the optoelectronic device. The optoelectronic device includes near infrared light emitting diodes, near infrared photodiodes, and visible light photodiodes combined in a single substrate. The near infrared light emitting diodes and the near infrared photodiodes are formed using a selectively grown epitaxial material. The selectively grown epitaxial material (e.g., silicon germanium, gallium arsenide, or another type III/V material) improves a quantum efficiency performance of the near infrared photodiode relative to another photodiode that may be formed through doping a silicon material.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 21, 2024
    Inventors: Chun-Hao LIN, Yun-Wei CHENG, Kuo-Cheng LEE
  • Publication number: 20240387584
    Abstract: A shielding structure of air gaps, formed on a grid structure between pixel sensors in a pixel array, reduces crosstalk. Efficiency and signal-to-noise ratio of the pixel sensors is increased because crosstalk is reduced. The shielding structure also increases quantum efficiency of the pixel array because the air gaps do not adsorb photons.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 21, 2024
    Inventors: ChunHao LIN, Yun-Wei CHENG, Kuo-Cheng LEE, Chien Nan TU
  • Publication number: 20240387595
    Abstract: An image sensor with stress adjusting layers and a method of fabrication the image sensor are disclosed. The image sensor includes a substrate with a front side surface and a back side surface opposite to the front side surface, an anti-reflective coating (ARC) layer disposed on the back side surface of the substrate, a dielectric layer disposed on the ARC layer, a metal layer disposed on the dielectric layer, and a stress adjusting layer disposed on the metal layer. The stress adjusting layer includes a silicon-rich oxide layer. The concentration profiles of silicon and oxygen atoms in the stress adjusting layer are non-overlapping and different from each other. The image sensor further includes oxide grid structure disposed on the stress adjusting layer.
    Type: Application
    Filed: July 31, 2024
    Publication date: November 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Chien HSIEH, Kuo-Cheng Lee, Ying-Hao Chen, Yun-Wei Cheng
  • Publication number: 20240380986
    Abstract: An image sensor device has a first number of first pixels disposed in a substrate and a second number of second pixels disposed in the substrate. The first number is substantially equal to the second number. A light-blocking structure disposed over the first pixels and the second pixels. The light-blocking structure defines a plurality of first openings and second openings through which light can pass. The first openings are disposed over the first pixels. The second openings are disposed over the second pixels. The second openings are smaller than the first openings. A microcontroller is configured to turn on different ones of the second pixels at different points in time.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20240379705
    Abstract: A semiconductor arrangement is provided. The semiconductor arrangement includes a first photodiode in a substrate. The semiconductor arrangement includes a lens array over the substrate. A first plurality of lenses of the lens array overlies the first photodiode. Radiation incident upon the first plurality of lenses is directed by the first plurality of lenses to the first photodiode.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Kuo-Cheng LEE
  • Patent number: 12142630
    Abstract: A pixel sensor may include a vertically arranged (or vertically stacked) photodiode region and floating diffusion region. The vertical arrangement permits the photodiode region to occupy a larger area of a pixel sensor of a given size relative to a horizontal arrangement, which increases the area in which the photodiode region can collect photons. This increases performance of the pixel sensor and permits the overall size of the pixel sensor to be reduced. Moreover, the transfer gate may surround at least a portion of the floating diffusion region and the photodiode region, which provides a larger gate switching area relative to a horizontal arrangement. The increased gate switching area may provide greater control over the transfer of the photocurrent and/or may reduce switching delay for the pixel sensor.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: November 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Kuo-Cheng Lee, Cheng-Ming Wu
  • Publication number: 20240373145
    Abstract: An image sensor includes a photosensitive sensor, a floating diffusion node, a reset transistor, and a source follower transistor. The reset transistor comprises a first source/drain coupled to the floating diffusion node and a second source/drain coupled to a first voltage source. The source follower transistor comprises a gate coupled to the floating diffusion node and a first source/drain coupled to the second source/drain of the reset transistor. A first elongated contact contacts the second source/drain of the reset transistor and the first source/drain of the source follower transistor. The first elongated contact has a first dimension in a horizontal cross-section and a second dimension in the horizontal cross-section. The second dimension is perpendicular to the first dimension, and the second dimension is less than the first dimension.
    Type: Application
    Filed: July 11, 2024
    Publication date: November 7, 2024
    Inventors: Yun-Wei CHENG, Chia CHUN-WEI, Chun-Hao CHOU, Kuo-Cheng LEE
  • Patent number: 12132813
    Abstract: The present disclosure provides a calibration method and readable computer storage medium. The calibration method includes: configuring a reference signal source to output a reference signal; delaying the reference signal through a delay chain to output a delay signal; synchronous sampling the reference signal and the delay signal; adding 1 count and obtaining a final count value when the sampling result is in the preset state; determining whether a ratio between the count value and the first quantity is within a preset range; obtaining the average delay time according to the time width of the reference signal wave and the number of the delay units opened in the delay chain when the ratio is within the preset range; and outputting a control signal to the clock recovery circuit according to the average delay time to calibrate the delay time of the clock recovery circuit.
    Type: Grant
    Filed: February 2, 2023
    Date of Patent: October 29, 2024
    Assignee: JADARD TECHNOLOGY INC.
    Inventors: Yu-Chieh Hsu, Ling-Wei Ke, Chun-Yu Chen, Hong-Yun Wei
  • Publication number: 20240352999
    Abstract: A vehicle having a powertrain and a power battery is provided. The powertrain includes an engine, a power generator, a driving motor, and a transmission. The power generator is connected to the engine in a transmission manner. The transmission includes a housing and a one-way oil channel. An isolation board is arranged in the housing, a driving cavity is provided on a side of the isolation board, and a power generation cavity is provided on the other side of the isolation board. The one-way oil channel is located at a top of the driving cavity and the power generation cavity, and the one-way oil channel is configured to guide oil from the driving cavity to the power generation cavity in a unidirectional manner.
    Type: Application
    Filed: July 3, 2024
    Publication date: October 24, 2024
    Inventors: Jianwen LI, Yankai ZHANG, Xuean FEI, Yun WEI
  • Patent number: 12113086
    Abstract: Apparatus and methods for sensing long wavelength light are described herein. A semiconductor device includes: a carrier; a device layer on the carrier; a semiconductor layer on the device layer, and an insulation layer on the semiconductor layer. The semiconductor layer includes isolation regions and pixel regions. The isolation regions are or include a first semiconductor material. The pixel regions are or include a second semiconductor material that is different from the first semiconductor material.
    Type: Grant
    Filed: August 9, 2023
    Date of Patent: October 8, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Ying-Hao Chen