Patents by Inventor Zhiyuan Ye

Zhiyuan Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230037320
    Abstract: Embodiments described herein relate to a method of epitaxial deposition of p-channel metal oxide semiconductor (MMOS) source/drain regions within horizontal gate all around (hGAA) device structures. Combinations of precursors are described herein, which grow of the source/drain regions on predominantly <100> surfaces with reduced or negligible growth on <110> surfaces. Therefore, growth of the source/drain regions is predominantly located on the top surface of a substrate instead of the alternating layers of the hGAA structure. The precursor combinations include a silicon containing precursor, a germanium containing precursor, and a boron containing precursor. At least one of the precursors further includes chlorine.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 9, 2023
    Inventors: Chen-Ying WU, Zhiyuan YE, Xuebin LI, Sathya CHARY, Yi-Chiau HUANG, Saurabh CHOPRA
  • Publication number: 20230017206
    Abstract: A master controller determines a first flow setpoint for a process flow gas and/or a carrier gas flow through a first mass flow controller. The master controller obtains a back pressure setpoint of a distribution manifold and determines a second flow setpoint for the process gas flow and/or the carrier gas flow through a second mass flow controller or a back pressure controller based on the determined first flow setpoint and the obtained back pressure setpoint. The master controller controls the process gas flow and/or the carrier gas flow through the first mass flow controller to the first flow setpoint and the second mass flow controller and/or the back pressure controller to the second flow setpoint. The master controller controls the back pressure of the distribution manifold to the back pressure set point in view of a back pressure reading from a back pressure sensor of the distribution manifold.
    Type: Application
    Filed: September 27, 2022
    Publication date: January 19, 2023
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Publication number: 20220397706
    Abstract: Apparatus for heating a substrate within a substrate processing chamber are described herein. More specifically, possible lamp modules for use within a substrate processing chamber are described. The lamp modules include a reflector body. The reflector body is a reflective material. The reflector body includes grooves disposed in a surface and configured to direct radiant energy towards a substrate. Each ring includes multiple grooves with different cross sections to allow radiant energy to be directed at different radial positions on the substrate from the same ring. The grooves may be either curved or linear grooves.
    Type: Application
    Filed: April 20, 2022
    Publication date: December 15, 2022
    Inventors: Shu-Kwan LAU, Enle CHOO, Danny Don WANG, Shainish NELLIKKA, Toshiyuki NAKAGAWA, Zhiyuan YE, Abhishek DUBE
  • Patent number: 11519773
    Abstract: Mass flow verification systems and apparatus may verify mass flow rates of mass flow controllers (MFCs) based on choked flow principles. These systems and apparatus may include a plurality of differently-sized flow restrictors coupled in parallel. A wide range of flow rates may be verified via selection of a flow path through one of the flow restrictors based on an MFC's set point. Mass flow rates may be determined via pressure and temperature measurements upstream of the flow restrictors under choked flow conditions. Methods of verifying a mass flow rate based on choked flow principles are also provided, as are other aspects.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: December 6, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kevin M. Brashear, Zhiyuan Ye, Justin Hough, Jaidev Rajaram, Marcel E. Josephson, Ashley M. Okada
  • Publication number: 20220380932
    Abstract: A method and apparatus for processing semiconductor substrates is described herein. The apparatus includes one or more growth monitors disposed within an exhaust system of a deposition chamber. The growth monitors are quartz crystal film thickness monitors and are configured to measure the film thickness grown on the growth monitors while a substrate is being processed within the deposition chamber. The growth monitors are connected to a controller, which adjusts the heating apparatus and gas flow apparatus settings during the processing operations. Measurements from the growth monitors as well as other sensors within the deposition chamber are used to adjust processing chamber models of the deposition chamber as substrates are processed therein.
    Type: Application
    Filed: April 8, 2022
    Publication date: December 1, 2022
    Inventors: Zhepeng CONG, Zhiyuan YE, Avinash ISHWAR SHERVEGAR, Enle CHOO, Ala MORADIAN
  • Publication number: 20220364263
    Abstract: Systems and apparatus for a reduced mass substrate support are disclosed, according to certain embodiments. A front side pocket is provided for support of a substrate, while a backside pocket is provided that reduces the mass of the substrate support. By providing the backside pocket, the mass of the overall substrate support is reduced, providing faster thermal cycling times for the substrate support and reducing the weight of the substrate support for transport. Lift pin systems, according to disclosed embodiments, are compatible with existing pedestal systems by providing a hollow extension from each lift pin hole that extends from a bottom of the backside pocket to provide support for lift pin insertion and operation.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 17, 2022
    Inventors: Shawn Joseph BONHAM, Xinning LUAN, Hui CHEN, James M. AMOS, John NEWMAN, Kirk Allen FISHER, Aimee S. ERHARDT, Philip Michael AMOS, Zhiyuan YE, Shu-Kwan LAU, Lori D. WASHINGTON
  • Publication number: 20220325400
    Abstract: Embodiments disclosed herein generally provide improved control of gas flow in processing chambers. In at least one embodiment, a liner for a processing chamber includes an annular body having a sidewall and a vent formed in the annular body for exhausting gas from inside to outside the annular body. The vent comprises one or more vent holes disposed through the sidewall. The liner further includes an opening in the annular body for substrate loading and unloading.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 13, 2022
    Inventors: Zhepeng CONG, Schubert CHU, Nyi Oo MYO, Karlik Bhupendra SHAH, Zhiyuan YE, Richard O. COLLINS
  • Publication number: 20220326061
    Abstract: Aspects generally relate to methods, systems, and apparatus for conducting a calibration operation for a plurality of mass flow controllers (MFCs) of a substrate processing system. In one aspect, a corrected flow curve is created for a range of target flow rates across a plurality of setpoints. In one implementation, a method of conducting a calibration operation for a plurality of mass flow controllers (MFCs) of a substrate processing system includes prioritizing the plurality of MFCs for the calibration operation. The prioritizing includes determining an operation time for each MFC of the plurality of MFCs, and ranking the plurality of MFCs in a rank list according to the operation time for each MFC. The method includes conducting the calibration operation for the plurality of MFCs according to the rank list and during an idle time for the substrate processing system.
    Type: Application
    Filed: April 13, 2021
    Publication date: October 13, 2022
    Inventors: Bindusagar MARATH SANKARATHODI, Zhiyuan YE, Jyothi RAJEEVAN, Ala MORADIAN, Zuoming ZHU, Errol Antonio C. SANCHEZ, Patricia M. LIU
  • Publication number: 20220322492
    Abstract: A process chamber includes a chamber body having a ceiling disposed above a floor with a chassis and an injector ring disposed therebetween. Upper and lower clamp rings secure the upper and floors, respectively, in place. An upper heating module is coupled to the upper clamp ring above the ceiling. A lower heating module is coupled to the lower clamp ring below the floor.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 6, 2022
    Inventors: Shu-Kwan LAU, Brian Hayes BURROWS, Zhiyuan YE, Richard O. COLLINS, Enle CHOO, Danny D. WANG, Shainish NELLIKKA, Toshiyuki NAKAGAWA, Abhishek DUBE, Ala MORADIAN, Kartik Bhupendra SHAH
  • Publication number: 20220320294
    Abstract: Embodiments of the present disclosure relate to methods for forming a source/drain extension. In one embodiment, a method for forming an nMOS device includes forming a gate electrode and a gate spacer over a first portion of a semiconductor fin, removing a second portion of the semiconductor fin to expose a side wall and a bottom, forming a silicon arsenide (Si:As) layer on the side wall and the bottom, and forming a source/drain region on the Si:As layer. During the deposition of the Si:As layer and the formation of the source/drain region, the arsenic dopant diffuses from the Si:As layer into a third portion of the semiconductor fin located below the gate spacer, and the third portion becomes a doped source/drain extension region. By utilizing the Si:As layer, the doping of the source/drain extension region is controlled, leading to reduced contact resistance while reducing dopants diffusing into the channel region.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 6, 2022
    Inventors: Patricia M. LIU, Flora Fong-Song CHANG, Zhiyuan YE
  • Patent number: 11462426
    Abstract: In embodiments, a process gas supply provides a carrier gas and one or more process gases to a distribution manifold. A back pressure sensor senses back pressure in the distribution manifold and provides a signal to the first controller based at least in part on the back pressure. The first controller determines a back pressure set point based at least in part on the signal. One or more mass flow controllers control the flow of the gas mixture comprising the carrier gas and the one or more process gases into one or more zones of the process chamber. An upstream pressure controller fluidly and operatively connected to the distribution manifold controls flow of the carrier gas based on the back pressure set point.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Publication number: 20220283029
    Abstract: One or more embodiments herein relate to methods for detection using optical emission spectroscopy. In these embodiments, an optical signal is delivered from the process chamber to an optical emission spectrometer (OES). The OES identifies emission peaks of photons, which corresponds to the optical intensity of radiation from the photons, to determine the concentrations of each of the precursor gases and reaction products. The OES sends input signals of the data results to a controller. The controller can adjust process variables within the process chamber in real time during deposition based on the comparison. In other embodiments, the controller can automatically trigger a process chamber clean based on a comparison of input signals of process chamber residues received before the deposition process and input signals of process chamber residues received after the deposition process.
    Type: Application
    Filed: July 8, 2020
    Publication date: September 8, 2022
    Inventors: Zuoming ZHU, Martin A. HILKENE, Avinash SHERVEGAR, Surendra Singh SRIVASTAVA, Ala MORADIAN, Shu-Kwan LAU, Zhiyuan YE, Enle CHOO, Flora Fong-Song CHANG, Bindusugar MARATH SANKARATHODI, Patricia M. LIU, Errol Antonio C. SANCHEZ, Jenny LIN, Nyi O. MYO, Schubert S. CHU
  • Publication number: 20220195617
    Abstract: An apparatus as disclosed herein relates to a chamber body design for use within a thermal deposition chamber, such as an epitaxial deposition chamber. The chamber body is a segmented chamber body design and includes an inject ring and a base plate. The base plate includes a substrate transfer passage and one or more exhaust passages disposed therethrough. The inject ring includes a plurality of gas inject passages disposed therethrough. The inject ring is disposed on top of the base plate and attached to the base plate. The one or more exhaust passages and the gas inject passages are disposed opposite one another. One or more seal scaling grooves are formed in both the base plate and the inject ring to enable the inject ring and the base plate to seal to one another as well as other components within the process chamber.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Shu-Kwan LAU, Zhiyuan YE, Richard O. COLLINS, Brian Hayes BURROWS
  • Publication number: 20220155148
    Abstract: An apparatus for controlling temperature profile of a substrate within an epitaxial chamber includes a bottom center pyrometer and a bottom outer pyrometer to respectively measure temperatures at a center location and an outer location of a first surface of a susceptor of an epitaxy chamber, a top center pyrometer and a top outer pyrometer to respectively measure temperatures at a center location and an outer location of a substrate disposed on a second surface of the susceptor opposite the first surface, a first controller to receive signals, from the bottom center pyrometer and the bottom outer pyrometer, and output a feedback signal to a first heating lamp module that heats the first surface based on the measured temperatures of the first surface, and a second controller to receive signals, from the top center pyrometer, the top outer pyrometer, the bottom center pyrometer, and the bottom outer pyrometer, and output a feedback signal to a second heating lamp module that heats the substrate based on the mea
    Type: Application
    Filed: June 29, 2020
    Publication date: May 19, 2022
    Inventors: Zuoming ZHU, Shu-Kwan LAU, Enle CHOO, Ala MORADIAN, Flora Fong-Song CHANG, Maxim D. SHAPOSHNIKOV, Bindusagar MARATH SANKARATHODI, Zhepeng CONG, Zhiyuan YE, Vilen K. NESTOROV, Surendra Singh SRIVASTAVA, Saurabh CHOPRA, Patricia M. LIU, Errol Antonio C. SANCHEZ, Jenny C. LIN, Schubert S. CHU
  • Publication number: 20220157604
    Abstract: Aspects of the present disclosure relate to apparatus, systems, and methods of using atomic hydrogen radicals with epitaxial deposition. In one aspect, nodular defects (e.g., nodules) are removed from epitaxial layers of substrate. In one implementation, a method of processing substrates includes selectively growing an epitaxial layer on one or more crystalline surfaces of a substrate. The epitaxial layer includes silicon. The method also includes etching the substrate to remove a plurality of nodules from one or more non-crystalline surfaces of the substrate. The etching includes exposing the substrate to atomic hydrogen radicals. The method also includes thermally annealing the epitaxial layer to an anneal temperature that is 600 degrees Celsius or higher.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 19, 2022
    Inventors: Chen-Ying WU, Yi-Chiau HUANG, Zhiyuan YE, Schubert S. CHU, Errol Antonio C. SANCHEZ, Brian Hayes BURROWS
  • Publication number: 20220090293
    Abstract: The present invention provides methods and apparatus for processing semiconductor substrates in an epitaxy chamber configured to map a temperature profile for both substrates and interior chamber components. In one embodiment, the semiconductor processing chamber has a body having ceiling and a lower portion defining an interior volume. A substrate support is disposed in the interior volume. A mounting plate is coupled to the ceiling outside the interior volume. A movement assembly is coupled to the mounting plate. A sensor is coupled to the movement assembly and moveable relative to the ceiling. The sensor is configured to detect a temperature location in the interior volume.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 24, 2022
    Inventors: Ala MORADIAN, Zuoming ZHU, Patricia M. LIU, Shu-Kwan LAU, Flora Fong-Song CHANG, Enle CHOO, Zhiyuan YE
  • Publication number: 20220068675
    Abstract: An apparatus for heating a substrate within a thermal processing chamber is disclosed. The apparatus includes a chamber body, a gas inlet, a gas outlet, an upper window, a lower window, a substrate support, and an upper heating device. The upper heating device is a laser heating device and includes one or more laser assemblies. The laser assemblies include light sources, a cooling plate, optical fibers, and irradiation windows.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 3, 2022
    Inventors: Shu-Kwan Danny LAU, Adel George TANNOUS, Patrick C. GENIS, Zhiyuan YE
  • Patent number: 11261538
    Abstract: The present invention provides methods and apparatus for processing semiconductor substrates in an epitaxy chamber configured to map a temperature profile for both substrates and interior chamber components. In one embodiment, the semiconductor processing chamber has a body having ceiling and a lower portion defining an interior volume. A substrate support is disposed in the interior volume. A mounting plate is coupled to the ceiling outside the interior volume. A movement assembly is coupled to the mounting plate. A sensor is coupled to the movement assembly and moveable relative to the ceiling. The sensor is configured to detect a temperature location in the interior volume.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: March 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Ala Moradian, Zuoming Zhu, Patricia M. Liu, Shu-Kwan Lau, Flora Fong-Song Chang, Enle Choo, Zhiyuan Ye
  • Publication number: 20220013376
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. In one or more embodiments, a process chamber comprises a first window, a second window, a substrate support disposed between the first window and the second window, and a motorized rotatable radiant spot heating source disposed over the first window and configured to provide radiant energy through the first window.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 13, 2022
    Inventors: Shu-Kwan Danny LAU, Toshiyuki NAKAGAWA, Zhiyuan YE
  • Patent number: 11195914
    Abstract: Embodiments of the present disclosure relate to a transistor and methods for forming a transistor. A transistor includes a gate electrode structure disposed over a channel region, a source/drain extension region disposed adjacent to the channel region, and a source/drain region disposed on the source/drain extension region. The source/drain region includes antimony (Sb). The method of forming a transistor includes forming the source/drain extension region and forming the source/drain region on the source/drain extension region. The antimony helps prevent unwanted migration of dopants from the source/drain region to the source/drain extension region.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 7, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Patricia M. Liu, Flora Fong-Song Chang, Zhiyuan Ye