Patents by Inventor Zhiyuan Ye

Zhiyuan Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170271183
    Abstract: Methods and gas flow control assemblies configured to deliver gas to process chamber zones in desired flow ratios. In some embodiments, assemblies include one or more MFCs and a back pressure controller (BPC). Assemblies includes a controller, a process gas supply, a distribution manifold, pressure sensor coupled to the distribution manifold and configured to sense back pressure of the distribution manifold, a process chamber, a one or more mass flow controllers connected between the distribution manifold and process chamber to control gas flow there between, and a back pressure controller provided in fluid parallel relationship to the one or more mass flow controllers, wherein precise flow ratio control is achieved. Alternate embodiment include an upstream pressure controller configured to control flow of carrier gas to control back pressure. Further methods and assemblies for controlling zonal gas flow ratios are described, as are other aspects.
    Type: Application
    Filed: March 15, 2016
    Publication date: September 21, 2017
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Publication number: 20170271184
    Abstract: Methods and gas flow control assemblies configured to deliver gas to process chamber zones in desired flow ratios. In some embodiments, assemblies include one or more MFCs and a back pressure controller (BPC). Assemblies includes a controller, a process gas supply, a distribution manifold, a pressure sensor coupled to the distribution manifold and configured to sense back pressure of the distribution manifold, a process chamber, a one or more mass flow controllers connected between the distribution manifold and process chamber to control gas flow there between, and a back pressure controller provided in fluid parallel relationship to the one or more mass flow controllers, wherein precise flow ratio control is achieved. Alternate embodiments include an upstream pressure controller configured to control flow of carrier gas to control back pressure. Further methods and assemblies for controlling zonal gas flow ratios are described, as are other aspects.
    Type: Application
    Filed: March 15, 2016
    Publication date: September 21, 2017
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Patent number: 9752224
    Abstract: Embodiments of the present disclosures provide methods and apparatus for manufacturing semiconductor devices such as transistors used for amplifying or switching electronic signals. Specifically, embodiments of the present disclosure generally relate to a semiconductor device having a film stack including an interlayer of semiconductor material and a buffer layer of semiconductor material underneath an active device layer. In various embodiments, the interlayer may include group III-V semiconductor materials formed between a first surface of a silicon-based substrate and the buffer layer. In certain embodiments the buffer layer may comprise group IV semiconductor materials. The interlayer may have a lattice constant designed to mitigate lattice mismatch between the group IV buffer layer and the silicon-based substrate. The buffer layer may provide improved integration of the active device layer to improve the performance of the resulting device.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: September 5, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhiyuan Ye, Errol Antonio C. Sanchez, Keun-Yong Ban, Xinyu Bao
  • Publication number: 20170250078
    Abstract: Embodiments described herein generally relate to a substrate processing system, such as an etch processing system. In one embodiment, a method of processing a substrate is disclosed herein. The method includes removing a native oxide from a surface of the substrate, baking the substrate in a pre-treatment thermal chamber such that double atomic steps are formed on the surface of the substrate, and forming an epitaxial layer on the substrate after the substrate is baked.
    Type: Application
    Filed: February 26, 2016
    Publication date: August 31, 2017
    Inventors: Xinyu BAO, Errol Antonio C. SANCHEZ, Zhiyuan YE, Keun-Yong BAN
  • Publication number: 20170148918
    Abstract: The present disclosure generally relate to methods for forming an epitaxial layer on a semiconductor device, including a method of forming a tensile-stressed germanium arsenic layer. The method includes heating a substrate disposed within a processing chamber, wherein the substrate comprises silicon, and exposing a surface of the substrate to a germanium-containing gas and an arsenic-containing gas to form a germanium arsenic alloy having an arsenic concentration of 4.5×1020 atoms per cubic centimeter or greater on the surface.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 25, 2017
    Inventors: Zhiyuan YE, Xinyu BAO, Errol Antonio C. SANCHEZ, Xuebin LI
  • Patent number: 9650726
    Abstract: Methods and apparatus for deposition processes are provided herein. In some embodiments, an apparatus may include a substrate support comprising a susceptor plate having a pocket disposed in an upper surface of the susceptor plate and having a lip formed in the upper surface and circumscribing the pocket, the lip configured to support a substrate on the lip; and a plurality of vents extending from the pocket to the upper surface of the susceptor plate to exhaust gases trapped between the backside of the substrate and the pocket when a substrate is disposed on the lip. Methods of utilizing the inventive apparatus for depositing a layer on a substrate are also disclosed.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 16, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nyi O. Myo, Kevin Bautista, Zhiyuan Ye, Schubert S. Chu, Yihwan Kim
  • Publication number: 20170134640
    Abstract: A method and a terminal for focusing includes: a determining step, determining a first camera focus of two camera focuses of two cameras corresponding to a first touch point of two touch points and a second camera focus of the two camera focuses of the two cameras corresponding to a second touch point of the two touch points, respectively, when a shooting preview interface corresponding to the two cameras is displayed and the two touch points are detected on the shooting preview interface; and a focus adjustment step, adjusting position of the first camera focus and the second camera focus, respectively, according to a sliding trace of the first touch point and a sliding trace of the second touch point on the shooting preview interface, in which the first camera focus and the second camera focus are on a same straight line.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Jian Wang, Zhiyuan Ye
  • Publication number: 20170103907
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber may include a substrate support, a first plurality of heating elements disposed over the substrate support, and one or more high-energy radiant source assemblies disposed over the first plurality of heating elements. The one or more high-energy radiant source assemblies are utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
    Type: Application
    Filed: October 7, 2016
    Publication date: April 13, 2017
    Inventors: Schubert S. CHU, Douglas E. HOLMGREN, Kartik SHAH, Palamurali GAJENDRA, Nyi O. MYO, Preetham RAO, Kevin Joseph BAUTISTA, Zhiyuan YE, Martin A. HILKENE, Errol Antonio C. SANCHEZ, Richard O. COLLINS
  • Publication number: 20170040421
    Abstract: Embodiments of the present disclosures provide methods and apparatus for manufacturing semiconductor devices such as transistors used for amplifying or switching electronic signals. Specifically, embodiments of the present disclosure generally relate to a semiconductor device having a film stack including an interlayer of semiconductor material and a buffer layer of semiconductor material underneath an active device layer. In various embodiments, the interlayer may include group III-V semiconductor materials formed between a first surface of a silicon-based substrate and the buffer layer. In certain embodiments the buffer layer may comprise group IV semiconductor materials. The interlayer may have a lattice constant designed to mitigate lattice mismatch between the group IV buffer layer and the silicon-based substrate. The buffer layer may provide improved integration of the active device layer to improve the performance of the resulting device.
    Type: Application
    Filed: July 14, 2016
    Publication date: February 9, 2017
    Inventors: Zhiyuan YE, Errol Antonio C. SANCHEZ, Keun-Yong BAN, Xinyu BAO
  • Publication number: 20170004968
    Abstract: A semiconductor device is disclosed that has a semiconductor substrate having a crystal structure with a <1,0,0> plane and a <1,1,0> plane and a surface that forms an angle of about 0.3 degrees to about 0.7 degrees with the <1,0,0> plane in the direction of the <1,1,0> plane; and a compound semiconductor layer formed on the semiconductor substrate. The compound semiconductor layer is free of antiphase boundaries, and has a thickness between about 200 nm and about 1,000 nm.
    Type: Application
    Filed: June 27, 2016
    Publication date: January 5, 2017
    Inventors: Xinyu BAO, Zhiyuan YE, Jean-Baptiste PIN, Errol SANCHEZ, Franck BASSANI, Thierry BARON, Yann BOGUMILOWICZ, Jean-Michel HARTMANN
  • Patent number: 9530888
    Abstract: Embodiments of the present disclosure generally relate to a semiconductor device including layers of group III-V semiconductor materials. In one embodiment, the semiconductor device includes a phosphorous containing layer deposited on a silicon substrate, wherein a lattice mismatch between the phosphorous containing layer and the silicon substrate is less than 5%, a group III-V compound nucleation layer deposited on the phosphorous containing layer at a first temperature, the group III-V compound nucleation layer having a first thickness, a group III-V compound transition layer deposited on the group III-V compound nucleation layer at a second temperature higher than the first temperature, the group III-V compound transition layer having a second thickness larger than the first thickness, and the group III-V compound nucleation layer is different from the group III-V compound transition layer, and an active layer deposited on the group III-V compound transition layer.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: December 27, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Keun-Yong Ban, Zhiyuan Ye, Errol Antonio C. Sanchez, Xinyu Bao, David K. Carlson
  • Publication number: 20160343811
    Abstract: A method for forming a conformal group III/V layer on a silicon substrate and the resulting substrate with the group III/V layers formed thereon. The method includes removing the native oxide from the substrate, positioning a substrate within a processing chamber, heating the substrate to a first temperature, cooling the substrate to a second temperature, flowing a group III precursor into the processing chamber, maintaining the second temperature while flowing a group III precursor and a group V precursor into the processing chamber until a conformal layer is formed, heating the processing chamber to an annealing temperature, while stopping the flow of the group III precursor, and cooling the processing chamber to the second temperature. Deposition of the III/V layer may be made selective through the use of halide gas etching which preferentially etches dielectric regions.
    Type: Application
    Filed: June 17, 2016
    Publication date: November 24, 2016
    Inventors: Xinyu BAO, Errol Antonio C. SANCHEZ, David K. CARLSON, Zhiyuan YE
  • Publication number: 20160293764
    Abstract: Embodiments of the present disclosure generally relate to a semiconductor device including layers of group III-V semiconductor materials. In one embodiment, the semiconductor device includes a phosphorous containing layer deposited on a silicon substrate, wherein a lattice mismatch between the phosphorous containing layer and the silicon substrate is less than 5%, a group III-V compound nucleation layer deposited on the phosphorous containing layer at a first temperature, the group III-V compound nucleation layer having a first thickness, a group III-V compound transition layer deposited on the group III-V compound nucleation layer at a second temperature higher than the first temperature, the group III-V compound transition layer having a second thickness larger than the first thickness, and the group III-V compound nucleation layer is different from the group III-V compound transition layer, and an active layer deposited on the group III-V compound transition layer.
    Type: Application
    Filed: March 17, 2016
    Publication date: October 6, 2016
    Inventors: Keun-Yong BAN, Zhiyuan YE, Errol Antonio C. SANCHEZ, Xinyu BAO, David K. CARLSON
  • Patent number: 9460918
    Abstract: Embodiments of the present invention generally relate to methods for forming silicon epitaxial layers on semiconductor devices. The methods include forming a silicon epitaxial layer on a substrate at increased pressure and reduced temperature. The silicon epitaxial layer has a phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater, and is formed without the addition of carbon. A phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater increases the tensile strain of the deposited layer, and thus, improves channel mobility. Since the epitaxial layer is substantially free of carbon, the epitaxial layer does not suffer from film formation and quality issues commonly associated with carbon-containing epitaxial layers.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: October 4, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhiyuan Ye, Xuebin Li, Saurabh Chopra, Yihwan Kim
  • Publication number: 20160126322
    Abstract: Embodiments of the present disclosure generally relate to a film stack including layers of group III-V semiconductor materials. The film stack includes a phosphorous containing layer deposited over a silicon substrate, a GaAs containing layer deposited on the phosphorous containing layer, and an aluminum containing layer deposited on the GaAs containing layer. The GaAs containing layer between the phosphorous containing layer and the aluminum containing layer improves the surface smoothness of the aluminum containing layer.
    Type: Application
    Filed: October 21, 2015
    Publication date: May 5, 2016
    Inventors: Zhiyuan YE, Xinyu BAO, Errol Antonio C. SANCHEZ, David K. CARLSON, Keun-Yong BAN
  • Publication number: 20160068955
    Abstract: Embodiments provided herein generally relate to an apparatus for gas delivering in a semiconductor process chamber. The apparatus may be a gas distribution plate that has a plurality of through holes and a plurality of blind holes formed therein. Process gases are provided into a processing volume of the semiconductor process chamber through the through holes of the gas distribution plate. The blind holes are utilized to control the temperature of the gas distribution plate using a phase change material.
    Type: Application
    Filed: August 10, 2015
    Publication date: March 10, 2016
    Inventors: Paul BRILLHART, Anzhong CHANG, Edric TONG, Kin Pong LO, David K. CARLSON, Errol Antonio C. SANCHEZ, Zhiyuan YE, Satheesh KUPPURAO
  • Publication number: 20160033070
    Abstract: Embodiments of the disclosure relate to a perimeter pumping member for a processing chamber. The perimeter pumping member comprises a ring-shaped body having a first curved channel along an arc within the ring-shaped body, a first inner channel connecting a first region of the first curved channel to a first region of an inner surface of the ring-shaped body, a plurality of second inner channels connecting a second region of the first curved channel to a second region of the inner surface, and a first outer channel connecting the first region of the first curved channel to an outer surface of the ring-shaped body, wherein the second inner channels are each sized such that, when a fluid is pumped out of the perimeter pumping member via the first outer channel, the fluid flows through the first inner channel and the second inner channels at a uniform flow rate.
    Type: Application
    Filed: November 21, 2014
    Publication date: February 4, 2016
    Inventors: Paul BRILLHART, Edric TONG, Anzhong CHANG, David K. CARLSON, Errol Antonio C. SANCHEZ, James Francis MACK, Kin Pong LO, Zhiyuan YE
  • Patent number: 9200367
    Abstract: Methods and apparatus for gas delivery are disclosed herein. In some embodiments, a gas delivery system includes an ampoule for storing a precursor in solid or liquid form, a first conduit coupled to the ampoule and having a first end coupled to a first gas source to draw a vapor of the precursor from the ampoule into the first conduit, a second conduit coupled to the first conduit at a first junction located downstream of the ampoule and having a first end coupled to a second gas source and a second end coupled to a process chamber, and a heat source configured to heat the ampoule and at least a first portion of the first conduit from the ampoule to the second conduit and to heat only a second portion of the second conduit, wherein the second portion of the second conduit includes the first junction.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: December 1, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhiyuan Ye, Yihwan Kim
  • Publication number: 20150340257
    Abstract: Embodiments disclosed herein relate to a light pipe structure for thermal processing of semiconductor substrates. In one embodiment, a light pipe window structure for use in a thermal process chamber includes a transparent plate, and a plurality of light pipe structures formed in a transparent material that is coupled to the transparent plate, each of the plurality of light pipe structures comprising a reflective surface and having a longitudinal axis disposed in a substantially perpendicular relation to a plane of the transparent plate.
    Type: Application
    Filed: March 12, 2015
    Publication date: November 26, 2015
    Inventors: PAUL BRILLHART, Joseph M. Ranish, Aaron Muir Hunter, Edric Tong, James Francis Mack, Kin Pong Lo, Errol Antonio C. Sanchez, Zhiyuan Ye, Anzhong Chang
  • Publication number: 20150340266
    Abstract: In one embodiment, a susceptor for thermal processing is provided. The susceptor includes an outer rim surrounding and coupled to an inner dish, the outer rim having an inner edge and an outer edge. The susceptor further includes one or more structures for reducing a contacting surface area between a substrate and the susceptor when the substrate is supported by the susceptor. At least one of the one or more structures is coupled to the inner dish proximate the inner edge of the outer rim.
    Type: Application
    Filed: April 28, 2015
    Publication date: November 26, 2015
    Inventors: Anhthu NGO, Zuoming ZHU, Balasubramanian RAMACHANDRAN, Paul BRILLHART, Edric TONG, Anzhong CHANG, Kin Pong LO, Kartik SHAH, Schubert S. CHU, Zhepeng CONG, James Francis MACK, Nyi O. MYO, Kevin Joseph BAUTISTA, Xuebin LI, Yi-Chiau HUANG, Zhiyuan YE