Patents by Inventor Zvonimir Z. Bandic

Zvonimir Z. Bandic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130232292
    Abstract: A method and a storage system are provided for implementing a sustained large block random write performance mechanism for shingled magnetic recording (SMR) drives in a redundant array of inexpensive disks (RAID). A Solid State Drive (SSD) is provided with the SMR drives in the RAID. The SSD is used in a hot spare mode, which is activated when a large block random-write event is identified for a SMR drive in the RAID. In the hot spare mode, the SSD temporarily receives new incoming writes for the identified SMR drive. Then the identified SMR drive is updated from the SSD to restore the state of the identified SMR drive, and operations continue with normal writing only using the SMR drives in the RAID.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B. V.
    Inventors: Zvonimir Z. Bandic, Cyril Guyot, Tomohiro Harayama, Hitoshi Kamei, Takaki Nakamura, Timothy Tsai
  • Publication number: 20130198436
    Abstract: A method and apparatus are provided for implementing enhanced data partial erase for multi-level cell (MLC) memory using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding. A data partial erase for data written to the MLC memory using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding is performed, and a data re-write after the partial erase to the MLC memory is performed using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding. A data partial erase cycle includes a duration and voltage level based upon a degradation of the MLC memory cells.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Luiz M. Franca-Neto, Cyril Guyot, Robert Eugeniu Mateescu
  • Publication number: 20130194865
    Abstract: A method and apparatus are provided for implementing enhanced data read for multi-level cell (MLC) memory using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding. A data read back for data written to the MLC memory using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding is performed, higher voltage and lower voltage levels are compared, and respective data values are identified responsive to the compared higher voltage and lower voltage levels.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Luiz M. Franca-Neto, Cyril Guyot, Robert Eugeniu Mateescu
  • Publication number: 20130194864
    Abstract: A method and apparatus are provided for implementing enhanced performance for multi-level cell (MLC) memory using threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding. A voltage baseline of a prior write is identified, and a data write uses the threshold-voltage-drift or resistance-drift tolerant moving baseline memory data encoding for data being written to the MLC memory responsive to the identified voltage baseline.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Luiz M. Franca-Neto, Cyril Guyot, Robert Eugeniu Mateescu
  • Patent number: 8474128
    Abstract: A method is provided for forming a plurality of regions of magnetic material in a substrate having a first approximately planar surface. The method comprises the steps of fabricating projections in the first surface of the substrate, depositing onto the first surface a magnetic material in such a way that the tops of the projections are covered with magnetic material, and depositing filler material atop the substrate so produced. The filler material may then be planarized, for example by chemical-mechanical polishing. In an alternative embodiment magnetic material is deposited on a substrate and portions of it are removed, leaving islands of material. Filler material is then deposited, which may be planarized.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 2, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Elizabeth Ann Dobisz, Jui-Lung Li, Henry Hung Yang
  • Publication number: 20130135764
    Abstract: A method, apparatus and a data storage device are provided for implementing data track pitch adjustment for data written on a recordable surface of a storage device under operational vibration conditions. An operational vibration disturbance spectrum is detected during a write operation and the data track pitch is selectively adjusted based on the detected operational vibration disturbance spectrum. The adjusted track pitch information is saved and used during a read operation.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Abhishek Dhanda, Toshiki Hirano, Tetsuo Semba, Zvonimir Z. Bandic
  • Patent number: 8369562
    Abstract: Watermarks for patterned magnetic media. The watermarks are used to demonstrate the unauthorized replication of a patterned magnetic media. The watermarks include a dibit, a pattern in an open region, shifting of data, shifting of a sync mark and large length scale perturbations. Also described are methods to determine if a watermark appears on a patterned media.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 5, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Robert Albrecht, Zvonimir Z. Bandic, Jorge Campello de Souza
  • Publication number: 20120303866
    Abstract: Methods are described that allow disk drives, such as shingle-written magnetic recording (SMR) drives, to recover an Indirection Address Table mapping of LBAs to PBAs after an emergency power off (EPO). Indirection Address Table (IAT) snapshots are periodically written inline with user data stores, and in one embodiment Cumulative Delta Lists (CDLs) with incremental address update information are stored between snapshots. In an embodiment of the invention, when an imminent loss of power is detected, the current CDL, covering IAT updates not yet written to disk, is saved to a nonvolatile memory. The IAT snapshots combined with the set of CDLs provide the information needed to recreate the current Indirection Address Table when power is restored after an emergency power loss. In an alternative embodiment the CDL is obviated by including metadata in the sector that encodes the address indirection mapping and the last snapshot ID.
    Type: Application
    Filed: September 27, 2011
    Publication date: November 29, 2012
    Inventors: Zvonimir Z. Bandic, Yuval Cassuto, Jonathan Darrel Coker, Cyril Guyot, Marco Sanvido
  • Patent number: 8300360
    Abstract: A compliant, flexible air bearing slider (ABS) reduces the contact forces between the slider and disk, thereby reducing excessive burnishing and wear and increasing the reliability of the slider. According to an embodiment, an ABS has at least one “compliance-enhancing feature” which reduces the bending mode vibration frequency of the slider. By causing the slider to flex, and bringing the bending mode vibration frequency closer to the pitch 2 eigenmode frequency, coupling of the different vibration modes can be obtained. Thus, the different vibration modes can effectively dampen each other and result in reduced contact forces between the slider and disk.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: October 30, 2012
    Assignee: Hitachi Global Storage Technologies, Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Jia-Yang Juang, Bernhard E. Knigge, Robert N. Payne
  • Patent number: 8252153
    Abstract: A patterned perpendicular magnetic recording disk has a pre-patterned disk substrate with pillars and trenches arranged in data regions and servo regions. In the data regions, the height of the data pillars is equal to or greater than the spacing between the data pillars, while in the servo regions the height of the servo pillars is less than the spacing between the servo pillars. A magnetic recording material with perpendicular magnetic anisotropy is deposited over the entire disk substrate, which results in magnetic material on the tops of the data pillars and servo pillars and in the servo trenches. The material in the data trenches is either nonmagnetic or discontinuous. After the application of a high DC magnetic field in one perpendicular direction and a low DC magnetic field in the opposite direction, the resulting disk has patterned servo sectors with servo pillars all magnetized in the same perpendicular direction and servo trenches magnetized in the opposite perpendicular direction.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: August 28, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R Albrecht, Zvonimir Z. Bandic, Olav Hellwig, Gabriel Zeltzer
  • Patent number: 8250380
    Abstract: A method and apparatus are provided for implementing secure erase for solid state drives (SSDs). An encryption key is used to encrypt data being written to SSD. A controller identifies a key storage option, and responsive to the identified key storage option, stores a key for data encryption and decryption. The controller deletes the key within the SSD responsive to the identified key storage option, ensuring that once the key is deleted, the key is not recoverable and data is effectively erased.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: August 21, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Cyril Guyot, Zvonimir Z. Bandic, Yuval Cassuto, Adam Michael Espeseth, Marco Sanvido
  • Publication number: 20120110343
    Abstract: Secure timestamps created by a data storage device are described. Metadata timestamp is created for each recorded unit of data (such as a sector) The HDD performs the time-stamping in a secure manner. The timestamp is made secure by performing a secure operation (i.e. one that can only be performed by the HDD) using the data and timestamp. The secure operation uses a secure key that is built-in to the storage device and is not readable outside of the device. In some embodiments the secure operation is encryption using the secure key. In other embodiments the secure operation is a hash code function (such as a Hash-based Message Authentication Code (HMAC) function) that uses the secure key to generate a hash code using at least the recorded data and the timestamp as input. The hash code is then included in the metadata that is recorded for the data unit.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventors: Zvonimir Z. Bandic, Cyril Guyot, Timothy Kohchih Tsai
  • Patent number: 8112580
    Abstract: A magnetic recording hard disk drive (HDD) has at least one read/write head that accesses more than one disk surface. The HDD is able to transfer data to and from the host computer seamlessly without interruption during the time the head is being moved from one disk surface to another disk surface. Nonvolatile solid state memory is associated with pairs of disk surfaces. During the time of a head transfer from one disk surface in the pair to the other disk surface, data is read from or written to the associated nonvolatile memory. The data is first read from or written to one disk surface, then from or to the nonvolatile memory, and then, after completion of the head transfer, from or to the other disk surface, thereby allowing seamless uninterrupted transfer of data.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: February 7, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Marco Sanvido
  • Publication number: 20120014013
    Abstract: A hard disk drive (HDD) minimizes the effects of far track erasure (FTE) by counting the number of writes to the data tracks and incrementing counters based on the known effect of FTE on each track. The extent of the FTE effect is determined for each track within a range of tracks of the track being written, and based on the relative FTE effect for all the tracks in the range a count increment (CI) is determined for each track within the range. A counter is maintained for each track. For every writing to a track, a count for each track within a range of the track being written is increased by the CI value associated with the track number within the range. When the count value for a track reaches a predetermined threshold the data is read from that track and rewritten, preferably to the same track.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Zvonimir Z. Bandic, Marco Sanvido, Bruce Alexander Wilson
  • Patent number: 8059352
    Abstract: Patterned-media magnetic recording disks are made from a master template that has nondata regions that contain a pattern of one or more discrete nondata islands and discrete gaps, with the pattern representing a scrambled number. All disks made from the master template, or from replica molds made from the master, will have the same patterns. When the disks are DC-magnetized so that all the nondata islands are magnetized in the same direction, these patterns will include one or more of discrete magnetized nondata islands and discrete nonmagnetic gaps that are scrambled in a pseudo-random manner. During operation of the disk drive the patterns are detected by the read head and interpreted within the disk drive using knowledge of the pseudo-random scrambling function, so that reading and writing of data can occur in the conventional manner. If the disks are copied in an attempt to replicate the master template, the resulting disks will be inoperable in a disk drive because of the scrambling.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: November 15, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Jorge Campello de Souza, Cyril Guyot, Bruce Alexander Wilson
  • Publication number: 20110258841
    Abstract: A method is provided for forming a plurality of regions of magnetic material in a substrate having a first approximately planar surface. The method comprises the steps of fabricating projections in the first surface of the substrate, depositing onto the first surface a magnetic material in such a way that the tops of the projections are covered with magnetic material, and depositing filler material atop the substrate so produced. The filler material may then be planarized, for example by chemical-mechanical polishing. In an alternative embodiment magnetic material is deposited on a substrate and portions of it are removed, leaving islands of material. Filler material is then deposited, which may be planarized.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 27, 2011
    Inventors: Zvonimir Z. Bandic, Elizabeth Ann Dobisz, Jui-Lung Li, Henry Hung Yang
  • Publication number: 20110212347
    Abstract: A patterned perpendicular magnetic recording disk has a pre-patterned disk substrate with pillars and trenches arranged in data regions and servo regions. In the data regions, the height of the data pillars is equal to or greater than the spacing between the data pillars, while in the servo regions the height of the servo pillars is less than the spacing between the servo pillars. A magnetic recording material with perpendicular magnetic anisotropy is deposited over the entire disk substrate, which results in magnetic material on the tops of the data pillars and servo pillars and in the servo trenches. The material in the data trenches is either nonmagnetic or discontinuous. After the application of a high DC magnetic field in one perpendicular direction and a low DC magnetic field in the opposite direction, the resulting disk has patterned servo sectors with servo pillars all magnetized in the same perpendicular direction and servo trenches magnetized in the opposite perpendicular direction.
    Type: Application
    Filed: May 9, 2011
    Publication date: September 1, 2011
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Thomas R. Albrecht, Zvonimir Z. Bandic, Olav Hellwig, Gabriel Zeltzer
  • Patent number: 7986484
    Abstract: Embodiments of the present invention recite a method and system for fabricating a data storage medium. In one embodiment, a detectable pattern is created at the surface of a substrate. An electron beam lithography process is then initiated upon the substrate. The detectable pattern is used to control the positioning of an electron beam relative to the surface of the substrate during the electron beam lithography process.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: July 26, 2011
    Assignee: Hitachi Global Storage Technologies, Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Michael A. Moser
  • Publication number: 20110168665
    Abstract: Mirror-image patterns for use one patterned media. Methods are implemented to create a mirror-image on the top and bottom of a media disk. These mirror images simplify the creation of electronics for patterned media. Further, the methods allow for a single e-beam master disk to be used to create the stamper for the top and the bottom of the media disk.
    Type: Application
    Filed: March 11, 2011
    Publication date: July 14, 2011
    Inventors: Thomas Robert Albrecht, Zvonimir Z. Bandic
  • Publication number: 20110154060
    Abstract: A method and apparatus are provided for implementing secure erase for solid state drives (SSDs). An encryption key is used to encrypt data being written to SSD. A controller identifies a key storage option, and responsive to the identified key storage option, stores a key for data encryption and decryption. The controller deletes the key within the SSD responsive to the identified key storage option, ensuring that once the key is deleted, the key is not recoverable and data is effectively erased.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Cyril Guyot, Zvonimir Z. Bandic, Yuval Cassuto, Adam Michael Espeseth, Marco Sanvido