Method, microreactor and apparatus for carrying out real-time nucleic acid amplification

- STMicroelectronics S.R.L.

A method for carrying out nucleic acid amplification, includes providing a reaction chamber, accommodating an array of nucleic acid probes at respective locations, for hybridizing to respective target nucleic acids; and introducing a solution into the reaction chamber, wherein the solution contains primers, capable of binding to target nucleic acids, nucleotides, nucleic acid extending enzymes and a sample including nucleic acids. The a structure of the nucleic acid probes and of the primers so that a hybridization temperature of the probes is higher than an annealing temperature of the primers, whereby hybridization and annealing take place in respective separate temperature ranges.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
BACKGROUND Technical Field

The present disclosure relates to a method, to a microreactor and to an apparatus for carrying out real-time nucleic acid amplification. In particular, amplification process exploits an array of oligonucleotide probes.

Description of the Related Art

Typical procedures for analyzing biological materials, such as nucleic acid, protein, lipid, carbohydrate, and other biological molecules, involve a variety of operations starting from raw material. These operations may include various degrees of cell separation or purification, cell lysis, amplification or purification, and analysis of the resulting amplification or purification product.

As an example, in DNA-based blood analyses samples are often purified by filtration, centrifugation or by electrophoresis so as to eliminate all the non-nucleated cells, which are generally not useful for DNA analysis. Then, the remaining white blood cells are broken up or lysed using chemical, thermal or biochemical means in order to liberate the DNA to be analyzed. Next, the DNA is denatured by thermal, biochemical or chemical processes and amplified by an amplification reaction, such as PCR (polymerase chain reaction), LCR (ligase chain reaction), SDA (strand displacement amplification), TMA (transcription-mediated amplification), RCA (rolling circle amplification), and the like. The amplification step allows the operator to avoid purification of the DNA being studied because the amplified product greatly exceeds the starting DNA in the sample.

If RNA is to be analyzed the procedures are similar, but more emphasis is placed on purification or other means to protect the labile RNA molecule. RNA is usually copied into DNA (cDNA) and then the analysis proceeds as described for DNA.

Finally, the amplification product undergoes some type of analysis, usually based on sequence or size or some combination thereof. In an analysis by microarray hybridization, for example, the amplified DNA is passed over a plurality of detectors made up of individual oligonucleotide detector fragments that are anchored, for example, on electrodes. If the amplified DNA strands are complementary to the oligonucleotide detectors or probes, stable bonds will be formed between them (hybridization) under specific temperature conditions. The hybridized detectors can be read by observation using a wide variety of means, including optical, electromagnetic, electromechanical or thermal means.

Other biological molecules are analyzed in a similar way, but typically molecule purification is substituted for amplification, and detection methods vary according to the molecule being detected. For example, a common diagnostic involves the detection of a specific protein by binding to its antibody. Such analysis requires various degrees of cell separation, lysis, purification and product analysis by antibody binding, which itself can be detected in a number of ways. Lipids, carbohydrates, drugs and small molecules from biological fluids are processed in similar ways. However, we have simplified the discussion herein by focusing on nucleic acid analysis, in particular DNA analysis, as an example of a biological molecule that can be analyzed using the devices of the disclosure.

PCR is time consuming, because it is necessary to perform 20-30 iterations of the basic thermal cycle to ensure that any target nucleic acid has been sufficiently amplified so as to be detectable. Further, the amplification and detection reactions are often sequential, further consuming valuable time.

BRIEF SUMMARY

The object of the disclosure is to provide a method, a microreactor and an apparatus for carrying out real time nucleic acid amplification that is free from the above described limitations.

According to the present disclosure, a method, a microreactor and an apparatus for carrying out nucleic acid amplification are provided, as claimed in claims 1, 9 and 10, respectively.

BRIEF DESCRIPTION OF THE DRAWINGS

For the understanding of the present disclosure, some embodiments thereof will be now described, purely as non-limitative examples, with reference to the enclosed drawings, wherein:

FIG. 1 is a system depiction of an apparatus for carrying out nucleic acid amplification according to one embodiment of the present disclosure;

FIG. 2 is a top plan view of a microreactor according to one embodiment of the present disclosure;

FIG. 3 is a cross-sectional view of the microreactor of FIG. 2, taken along the line III-III of FIG. 2;

FIG. 4 is a plot showing absorption and emission spectra of a dye-DNA complex; and

FIG. 5 is a temperature profile used in a method according to one embodiment of the present disclosure.

DETAILED DESCRIPTION

With reference to FIG. 1, a biochemical analysis apparatus 1 comprises a computer system 2, a temperature control module 3, a reader device 4, and a microreactor 5 for performing biochemical analyses, that is provided on a board 6 to form a disposable microreactor cartridge 7.

The microreactor cartridge 7 is loadable into a receptacle 9 of the apparatus 1 and is provided with an interface 8 for coupling with the temperature control module 3 and the reader device 4.

The temperature control module 3 and the reader device 4 are both controlled by a processing unit 10 of the computer system 2.

The temperature control module 3 includes a temperature controller 11 and a power source 12. The temperature controller 11 is configured to receive a temperature signal ST from a temperature sensor (described later on and here not shown) on the microreactor cartridge 7. The temperature control module 3 may also include a cooling element 13, e.g., a Peltier module or a fan coil, which is controlled by the temperature controller 11 and is thermally coupled to the microreactor 5 when the cartridge 7 is loaded in the reader device 4. The power source 12 and the cooling element 13 are operable by the temperature controller 11 respectively to deliver power to heaters (also described later on and here not shown) coupled to the microreactor 5 and to cool the cartridge 7, in order to set an operating temperature in accordance with a temperature profile (see, e.g., FIG. 5).

In one embodiment, the reader device 4 is configured to perform optical detection of the reaction products in the microreactor 5, as hereinafter described. In particular, the reader device 4 includes a light source 15 for illuminating the microreactor 5 with light at an excitation wavelength; and an image detector 16, configured to receive fluorescence radiation emitted from the microreactor 5, in response to the light at the excitation wavelength. However, it is understood that other ways to carry out detection are available and can be exploited, in place of optical detection. For example electrochemical detection can be performed.

FIGS. 2 and 3 illustrate in detail one embodiment of the microreactor 5. However, it is understood that the configuration of the microreactor 1 herein illustrated and described cannot be considered in any way limiting and numerous different configurations could be exploited as well.

The microreactor 5 comprises a body 30, having a recess wherein a reaction chamber 31 is formed.

The body 30 includes a substrate 32, covered with a stack of layers including, in one embodiment, a dielectric layer 33, a passivation layer 34 and a structural layer 35. The reaction chamber 31 is formed in the structural layer 35 and is downwardly delimited by the passivation layer 34.

A microarray 36 of DNA probes 37 is accommodated in the reaction chamber 31, while heaters 38 and a temperature sensor 39 are embedded in the passivation layer 34. Probes 37 include a variety of short oligonucleotide sequences that are placed at specific locations of the microarray 36.

The substrate 32 is made of a thermally conductive material, such as undoped silicon.

In one embodiment, the dielectric layer 33 is of silicon dioxide and has a thickness of, e.g., 0.1 μm to 1 μm. The heaters 38 and the temperature sensor 39 are arranged on the dielectric layer 33 and therefore they are electrically insulated from the substrate 32. However, due to the small thickness of the dielectric layer 33, the heaters 38 and the temperature sensor 39 are thermally coupled to the substrate 32. Moreover, the heaters 38 and the temperature sensor 39 are electrically connected to respective pads 40, for coupling with the temperature control module 3 and reader device 4 through the interface 8 of the cartridge 7. When the cartridge 7 is loaded into the receptacle 9 (FIG. 1), the heaters 38 are connected to the power source 12 for receiving electrical power and the temperature sensor 39 is connected to the temperature controller unit 11 for providing a temperature signal ST.

The passivation layer 34, also of silicon dioxide, is arranged between the dielectric layer 13 and the structural layer 35 and incorporates the heaters 38 and the temperature sensor 39. A top surface of the passivation layer 34 defines a bottom wall of the reaction chamber 31.

The structural layer 35, e.g., of silicon or glass, is bonded to the passivation layer 34 and has an opening therein defining the reaction chamber 31. The design of the heaters 38 may be optimized according to individual configurations of the reaction chamber 31, in order to achieve desired temperature profiles. The temperature sensor 39 is preferably arranged under the reaction chamber 31.

The reaction chamber 31 is closed by a transparent cap layer 46, attached or bonded to the structural layer 35, and which may have a small opening 43 for introducing samples to the reaction chamber 31.

The microarray 36 comprises a plurality of nucleic acid probes 37, preferably single strand deoxy-oligonucleotides, grafted to the passivation layer 34 at respective locations. Probes 37 are designed to hybridize to target DNA at a specific hybridization temperature when a reaction, such as nucleic acid amplification, is carried out in the reaction chamber 31.

Hereinafter reference will be made to a nucleic acid analysis process including PCR (Polymerase Chain Reaction). As is known, PCR is a cyclical process involving a series of enzyme-mediated reactions whose final result are identical copies of the target nucleic acid. A raw biological sample is preliminarily processed by conventional steps of cell separation or purification and cell lysis. Then, the sample is added to a solution comprising enzymes (typically a DNA polymerase such as TAQ), primers, the four nucleotides (collectively referred to as dNTPs), cofactor, buffer, and a fluorescent dye capable of binding to double-helix DNA. Such dyes include, but are not limited, bisbenzimide or indole-derived stains (Hoechst 33342, Hoechst 33258 and 4′,6-diamidino-2-phenylindole), phenanthridinium stains (ethidium bromide and propidium iodide) and cyanine dyes (PicoGreen, YOYO-1 iodide, SYBR Green I and SYBR Gold). The fluorescent dye is preferably selected from the group of cyanine dyes and, in one example, is SYBR Green I. As illustrated in FIG. 4, a dye-DNA complex, that forms during the amplification process, adsorbs visible radiation AVR selectively around a wavelength of 488 nm (blue) and emits visible radiation EVR with a maximum of emission at 522 nm (green).

The sequences of the probes 37 and of the primers determine a hybridization temperature, at which the probes 37 hybridize to complementary target DNA single strands, and an annealing temperature, at which the primers bind to their complementary sequences on the target DNA. In one embodiment, the probes 37 and the primers are selected such that the hybridization temperature is higher than the annealing temperature, so that hybridization and annealing take place in separate and spaced apart (non-overlapping) temperature ranges. Thus, at the hybridization temperature, primer annealing is prevented and at the annealing temperature the primers are allowed to bind to denatured target DNA.

Apart from parameters of the solution (such as salinity), the hybridization and annealing temperatures are determined by the sequence of the probes 37 and of the primers. Namely, for complementary DNA strands, the highest hybridization rate is achieved at a temperature of about 20-25° C. below the melting temperature of the DNA helix. For probes 37, that are composed of short nucleotide sequences, the hybridization temperature is about 5-10° C. below the melting temperature.

Thus, once the composition of the solution has been defined, the hybridization temperature may be determined by setting the melting temperature of the probe-target DNA pair. The melting temperature of a hybrid in a solution, such as a probe-target DNA pair, is given by
TM=81.5+16.6(log M)+0.41(% G+C)−0.61(% form)−500/L
where TM is the melting temperature, M is the molarity of univalent cations, (% G+C) is the percentage of guanine and cytosine, (% form) is the percentage of formamide and L is the coupling length, i.e., the length of the sequence in terms of number of paired bases.

If coupling length L is less than 50, however, the melting temperature is preferably determined from the equation:
TM=2NAT+4NGC
where NAT is the number of A-T (adenine-thymine) pairs and NGC is the number of G-C (guanine-cytosine) pairs in the sequence.

In both cases, however, the melting temperature TM in a given solution is essentially determined by the number of G-C pairs and by the coupling length L. Thus, the sequence of the probes 37 and of the primers, namely the number of G-C pairs and the coupling length L, can be selected to set the hybridization temperature and the annealing temperature such that annealing is prevented during hybridization and vice versa.

By way of example, a primer may be defined by a sequence of 19 dNTPs (to have a corresponding coupling length of 19), capable of forming 9 A-T pairs and 10 G-C pairs upon annealing. Once a salinity of the solution has been defined, the primer melting temperature TMPRIMER can be calculated. If the primer melting temperature TMPRIMER is determined to be, e.g., 57° C., the annealing temperature is about 52° C. (approximately 5° C. less than the primer melting temperature TMPRIMER). A probe 37 having 50 bases may be selected from a sequence with high content of guanine and cytosine, to have high probe melting temperature TMPROBE and hybridization temperature. In one example, the probe 37 may be defined by a sequence of 50 dNTPs (to have a corresponding coupling length of 50) and contains 54% of guanine-cytosine and 46% of adenine-thymine. In the same solution, the probe melting temperature TMPROBE of the described probe 37 would be 85° C. and the hybridization temperature about 80° C. (again, 5° C. less than the probe melting temperature TMPROBE). Thus, hybridization and annealing take place at separate temperature intervals and are selectively and exclusively carried out. In other words, when the primers can bind to target DNA, the probes 37 cannot hybridize and, vice versa, when the temperature conditions allow hybridization, annealing is prevented. At the annealing temperature, the probes 37 are not active and do not interact with primers. Hence, the hybridization of the probes 37 can be avoided, although the DNA amplification process is carried out in the same reaction chamber 31 accommodating the microarray 36.

To start an analysis process involving PCR, a solution 50, obtained as described above, is supplied to the reaction chamber 31 and the microreactor 5 is loaded into the receptacle 9 of the apparatus 1.

DNA amplification by PCR is then carried out in the reaction chamber 31. To this end, the temperature controller 11 operates the power source 12 and the cooling element 13 to controllably deliver electric power WE to the heaters 38 and to cyclically control an operating temperature TO of the solution 50 in the reaction chamber 31 in accordance with a desired amplification temperature profile.

An example of an amplification temperature profile for the operating temperature TO during a PCR amplification cycle is shown in FIG. 5. PCR amplification cycles are iteratively carried out until stop conditions are met. A hybridization range RH and an annealing range RA, separate and non-overlapping, are also illustrated in FIG. 5.

Double stranded DNA is first denatured at a denaturation temperature TD (94° C. for 10 s to 60 s). In this step, DNA helixes separate into single strands.

Then, the solution is set at about a hybridization temperature TH of the hybridization range RH, at which the hybridization rate of the probes 37 is maximum. Selective hybridization of the probes 37 to any complementary target DNA is thus carried out. The hybridization temperature TH of the probes 37 is determined as above explained and is lower than the denaturation temperature TD. With reference to the probe sequence and solution composition already referred to, the hybridization temperature TH is about 80° C. At the hybridization temperature TH, the probes 37 of the microarray 36 are available for binding to complementary DNA strands provided in the solution 50. Annealing of the primers, however, does not take place at this temperature.

Optical detection of hybridized probes 37 is carried out as long as the hybridization temperature TH is maintained in the reaction chamber 31. Fluorescent dyes contained in the solution 30 bind to hybridized probes 37. Thus, hybridized probes 37 respond to a confocal light stimulation from a source at a source wavelength (488 nm in the example described) and emit visible radiation at an emission wavelength (522 nm), greater than the source wavelength.

After first denaturation, hybridization and detection, double stranded DNA is again denatured at the denaturation temperature TD. The first and second denaturation may have the same duration, in one embodiment. Fluorescent molecules are then released in the solution after the second denaturation, due to separation of target DNA from the respective probes 37.

Then, the solution 50 in the reaction chamber 31 is cooled to about an annealing temperature TA in the annealing range RA, that in one embodiment may be of 50° C. to 70° C. (for 10 s to 60 s). In one embodiment, in particular, the annealing temperature TA is 68°. At this stage, primers, which are more numerous than the probes, effectively compete for and bind to their complementary sequences in the floating target DNA thus allowing amplification of target sequences.

Finally, the solution is heated to an extension temperature TE, at which DNA polymerase extends primers, by adding nucleotides that are complementary to the target strand. The extension temperature TE is intermediate between the annealing temperature TA and the hybridization temperature TH (e.g., 72° C., for 10 s to 60 s). During extension, the fluorescent molecules can bind the PCR product, so that a new optical detection of floating DNA may be carried out. However, in this case information related to probe location and type would be lost, so different species of amplified target DNA cannot be distinguished at this stage of the cycle. However, the signal will be diffused throughout the entire solution, and be less intense that the localized signal that occurs when the localized probes hybridize to target.

During each cycle, the heating rate is preferably at least 5-7° C./s, while the cooling rate is preferably greater than 10° C./s.

The hybridization and annealing/amplification cycles may be repeated until sufficient copies of the target DNA have been produced as to be detectable. The amplification process may then be interrupted upon positive detection of the searched target DNA, or after a threshold number of cycles, if the target DNA is not detected (it is thus determined that the starting sample did not contain the target DNA).

Thus, real-time detection of multiple target DNA is possible, because hybridization of the probes and primer annealing take place at separate temperatures. In turn, real-time detection allows the operator to reduce the average duration of amplification processes, because amplification may be interrupted as soon the amount of target DNA becomes detectable. Moreover, use of a microarray of probes allows the operator to simultaneously detect the presence or absence of numerous different target DNA through a single fluorescent dye. In fact, different probes are usually provided at different locations in the microarray, thus the location at which hybridization of a probe is detected carries also information on the nature of the target DNA bound to the probe.

Finally, it is clear that numerous modifications and variations may be made to the method and apparatus described and illustrated herein, all falling within the scope of the disclosure, as defined in the attached claims.

The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.

These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims

1. A method for analyzing nucleic acids, comprising:

introducing into a reaction chamber a solution comprising nucleic acids, nucleotides, nucleic acid extending enzymes, and primers that bind to respective target nucleic acids at an annealing temperature range (RA), the reaction chamber including an array of nucleic acid probes at respective locations that hybridize to respective target nucleic acids at a hybridization temperature range (RH);
cyclically controlling an operative temperature of the solution in accordance with a temperature profile, the cyclically controlling the operative temperature of the solution comprising: setting the solution to a first temperature within the hybridization temperature range (RH) at which only the probes are hybridized to the respective target nucleic acids; setting the solution to a second temperature within the annealing temperature range (RA) at which only the primers are bound to the respective target nucleic acids; and setting the solution to a third temperature at which extension of the primers is allowed, wherein the first temperature is higher than the second temperature, and at the second temperature, the probes are dissociated from the respective target nucleic acids, the third temperature is between the first temperature and the second temperature; and
detecting probe binding to the target nucleic acids.

2. The method according to claim 1, wherein the hybridization temperature range (RH) and the annealing temperature range (RA) do not overlap with each other.

3. The method according to claim 1, comprising carrying out detection of hybridized probes between setting the solution to the first temperature and setting the solution to the second temperature.

4. The method according to claim 3, further comprising terminating amplification when at least one of a first condition and a second condition is met, wherein the first condition includes positive detection of hybridized probes and the second condition includes carrying out a threshold number of amplification cycles.

5. The method according to claim 1, wherein cyclically controlling further comprises:

first setting the solution to a fourth temperature, higher than the hybridization temperature range, to denature the nucleic acids before setting the solution to the first temperature; and
second setting the solution to the fourth temperature, to denature the nucleic acids between setting the solution to the first temperature and setting the solution to the second temperature.

6. The method according to claim 1, wherein the first temperature is at least 10° C. higher than the second temperature.

7. The method according to claim 1, wherein the first temperature is about 80° C.

8. The method according to claim 1, wherein the second temperature is from about 50° C. to about 70° C.

9. A method for analyzing nucleic acids, comprising:

introducing a solution into a reaction chamber, the solution comprises nucleic acids, nucleotides, nucleic acid extending enzymes, and primers that bind to target nucleic acids, and the reaction chamber includes an array of nucleic acid probes that hybridize to respective target nucleic acids and have a probe-target nucleic acid pair melting temperature (TMPROBE) of about 85° C.;
annealing the primers to the respective target nucleic acids at an annealing temperature (TA) within an annealing temperature range (RA);
amplifying the target nucleic acids by cyclically controlling an operative temperature of the solution in accordance with a temperature profile;
hybridizing the probes to the respective target nucleic acids at a hybridization temperature (TH) within a hybridization temperature range (RH),
the hybridization temperature range (RH) is higher than, and does not overlap with the annealing temperature range (RA); and
detecting probe binding to the target nucleic acids at the hybridization temperature (TH).

10. The method of claim 9, wherein the probe hybridization temperature range (RH) is 5-10° C. below the probe-target nucleic acid pair melting temperature (TMPROBE).

11. The method of claim 9, wherein the probe hybridization temperature (TH) is about 80° C.

12. The method of claim 9, wherein the probe comprises about 50 consecutive nucleotide bases that are configured to hybridize with a complementary target nucleic acid.

13. The method of claim 9, wherein the probe comprises about 54% guanine and cytosine residues.

14. The method of claim 9, wherein the probe comprises about 46% adenine and thymine residues.

15. The method of claim 9, wherein the primers have a melting temperature (TMPRIMER) of about 57° C.

16. The method of claim 15, wherein the primers have an annealing temperature (TA) that is about 5° C. less than the melting temperature (TMPRIMER).

17. The method of claim 9, wherein the primers annealing temperature (TA) is about 52° C.

Referenced Cited
U.S. Patent Documents
7601497 October 13, 2009 Nazarenko
20060177841 August 10, 2006 Wangh et al.
20060252064 November 9, 2006 Wu
20090191618 July 30, 2009 Remacle et al.
20090269737 October 29, 2009 Ollikka
Foreign Patent Documents
1 788 097 May 2007 EP
1 942 196 July 2008 EP
03/034029 April 2003 WO
2006/135437 December 2006 WO
WO-2007114986 October 2007 WO
2008/014485 January 2008 WO
WO-2008014485 January 2008 WO
Other references
  • Zipper et al., “Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications,” Nucleic Acids Research 32(12), 2004, 10 pages.
Patent History
Patent number: 11015218
Type: Grant
Filed: Dec 28, 2015
Date of Patent: May 25, 2021
Patent Publication Number: 20160130642
Assignee: STMicroelectronics S.R.L. (Agrate Brianza)
Inventors: Enrico Alessi (Catania), Daniele Ricceri (Catania)
Primary Examiner: Angela M. Bertagna
Assistant Examiner: Carolyn L Greene
Application Number: 14/981,366
Classifications
Current U.S. Class: Involving Virus Or Bacteriophage (435/5)
International Classification: C12Q 1/6837 (20180101); C12Q 1/686 (20180101); C12Q 1/6844 (20180101);