Termination arrangement for an overhead electrical cable

- CTC Global Corporation

A termination arrangement for securing an overhead electrical cable to a dead-end structure such as a dead-end tower. The termination arrangement includes a compression sheath that is configured to be disposed between a strength member and the conductive strands of the overhead electrical cable. The compression sheath mitigates damage to the strength member that may occur when an outer metallic sleeve is compressed around the conductive strands and the conductive strands are compressed against the strength member. The arrangement is particularly useful for securing overhead electrical cables having a composite strength member to a dead-end structure.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
FIELD

This disclosure relates to the field of overhead electrical cables, and in particular relates to structures and methods for the termination of overhead electrical cables having a composite strength member, such as termination at a dead-end structure.

BACKGROUND

In the construction of an overhead electrical transmission and/or distribution line, the overhead electrical cable that transmits the electricity is strung upon support towers along the length of the line. The overhead electrical cable typically includes one or more conductive layers that each include of a plurality of individual conductive strands that are wrapped around and are supported by a strength member. The strength member is necessary because the conductive strands do not have sufficient mechanical properties (e.g., tensile strength) to be self-supporting when strung between the support towers. Traditionally, the conductive strands are fabricated from aluminum or an aluminum alloy and the strength member is fabricated from steel, specifically several independent steel elements that are combined (e.g., twisted together) to form the strength member, a configuration referred to as ACSR (aluminum conductor steel reinforced).

In recent years, the steel strength member has been replaced by advanced composite materials for some installations. The advanced composite materials include two or more distinct material phases, such as structural fibers in a binding matrix, that combine to enhance one or more properties of the strength member. Some of these composite materials offer significant benefits as compared to steel, including higher tensile strength, lower coefficient of thermal expansion, resistance to corrosion and the like.

One example of an overhead electrical cable having such a composite strength member is the ACCC® overhead electrical cable available from CTC Global Corporation of Irvine, Calif., USA. See, for example, U.S. Pat. No. 7,368,162 by Hiel et al, which is incorporated herein by reference in its entirety. The ACCC® electrical cable includes a plurality of conductive aluminum strands surrounding a single-element (e.g., single rod) fiber-reinforced composite strength member. The composite strength member includes an inner core of continuous carbon fibers in a polymer (e.g., resin) binding matrix, surrounded by an outer layer of continuous glass fibers in the binding matrix.

When constructing electrical transmission and distribution lines, the electrical cable must be frequently terminated, such as for connection to another segment of electrical cable, for drop down to a power station, or for drop down to an underground cable. In these cases, the electrical cable is terminated and attached to a dead-end structure (e.g., a dead-end tower) using termination hardware. Often, the termination hardware requires crimping of an outer conductive metal sleeve onto the electrical cable using very high compressive forces to deform the metal outer sleeve.

Termination hardware for overhead electrical cables having a fiber-reinforced composite strength member typically relies on the electrical cable including fully annealed, trapezoidal-shaped aluminum conductive strands to uniformly distribute the compressive pressure required to deform the aluminum outer housing onto the composite strength member. However, not all overhead electrical cable installations can utilize this particular type of aluminum strand, for example where the overhead electrical cable will be subjected to severe ice-loading and/or other severe weather events.

SUMMARY

Disclosed herein is a termination arrangement that, when used to terminate and overhead electrical cable with aluminum alloy (e.g., harder than annealed) conductive strands, and/or with round or oval conductive strands, reduces localized pressure on the composite strength member during crimping operations. The termination arrangement includes a compression sheath (e.g., a tube or sleeve) that is installed over the composite core in the area where the outer housing is compressed over the conductive strands. The compression sheath may remain between the strength member and the aluminum conductive strands for the life of the connection. The compression sheath may be characterized as having internal dimensions (e.g., an internal diameter) that very closely matches the composite strength member (e.g., the outer diameter of the composite strength member) that the compression sheath is protecting.

In one embodiment, a termination arrangement securing an overhead electrical cable to a dead-end structure is disclosed. The overhead electrical cable has a composite strength member and conductive strands surrounding the composite strength member. The termination arrangement includes a connector anchoring the termination arrangement to a dead-end structure, a gripping element secured by the connector and gripping the composite strength member at a proximal end of the overhead electrical cable, an outer metallic sleeve surrounding at least the gripping element and the proximal end of the overhead electrical cable, the outer metallic sleeve having a compressed portion disposed over the proximal end of the overhead electrical cable, and a compression sheath disposed between the composite strength member and the conductive strands along at least the length of the conductive strands under the compressed portion.

The foregoing termination arrangement may be characterized as having further refinements and/or additional features, which may be implemented alone or in any combination. For example, in one refinement, the composite strength member may include reinforcing fibers disposed within a binding matrix, such as a metallic matrix or a polymer matrix. Examples of useful polymer matrix materials include thermoset resin polymers and a thermoplastic polymers. In another refinement, the reinforcing fibers fibers selected from the group consisting of carbon fibers, boron fibers, metal oxide ceramic fibers, glass fibers, carbide fibers, aramid fibers and basalt fibers. Carbon fibers may be particularly useful due to their high tensile strength and light weight.

In another refinement, the composite strength member may include a plurality of individual composite rods that are operatively combined to form the composite strength member. Alternatively, the composite strength member may include only a single composite rod. In another refinement, at least a portion of the conductive strands have a cross-sectional shape that is polygonal. In yet another refinement, at least a portion of the conductive strands have a cross-sectional shape that is non-polygonal, e.g., a cross-sectional shape that is substantially circular. In a further refinement, at least a portion of the conductive strands have a cross-sectional shape that is substantially circular, and those strands are in direct contact with the compression sheath. The conductive strands may be fabricated from materials such as copper and aluminum, and in one refinement the conductive strands are formed from hardened aluminum.

In another refinement, the compression sheath does not extend substantially beyond the compressed portion of a distal end of the termination arrangement. In another refinement, the compression sheath is a closed cylindrical tube. Alternatively, the compression sheath is a cylindrical tube having a slot along a length thereof to facilitate placement of the compression sheath over the composite strength member. In another refinement, the compression sheath is structurally independent from the composite strength member. In yet another refinement, the compression sheath is fabricated from a metal such as aluminum. In one particular refinement, the compression sheath is fabricated from hardened aluminum. In another refinement, the compression sheath has a thickness of at least about 0.20 mm. In another refinement, the compression sheath has a thickness of not greater than about 2.6 mm.

In another refinement, the connector includes an eye bolt, e.g., for attaching to a dead-end structure. In another refinement, the termination arrangement includes a jumper plate, e.g., for making an electrical connection.

In another refinement, the gripping element includes a collet that is compressed to grip the composite strength member. The collet may be disposed within a collet housing, and the collet housing may be operatively attached to the connector.

In one refinement, the compression sheath includes a proximal portion and a distal portion, wherein the distal portion is disposed between the composite strength member and the conductive strands and the proximal portion surrounds a portion of the composite strength member that extends beyond the proximal end of the overhead electrical cable. In a further refinement, the proximal portion of the compression sheath has a larger outer diameter than an outer diameter of the distal portion of the compression sheath. In yet a further refinement, the distal portion of the compression sheath is disposed within a cavity formed in the connector.

In another embodiment, a method for securing an overhead electrical cable to a dead-end structure is disclosed. The overhead electrical cable includes a composite strength member and conductive strands surrounding the composite strength member. The method includes placing a compression sheath between the composite strength member and the conductive strands at a proximal end of the overhead electrical cable, placing an outer metallic sleeve over at least the proximal end of the overhead electrical cable and the compression sheath, and compressing at least a portion of the outer metallic sleeve onto the conductive strands.

The foregoing method may be characterized as having further refinements and/or additional steps, which may be implemented alone or in any combination. For example, the compressing step may include the application of a pressure of at least about 15 tons to the outer metallic housing. In another refinement, the method includes the step of securing a proximal end of the composite strength member to a connector. In yet another refinement, the method includes anchoring the connector to a dead-end structure.

In another embodiment, a kit comprising components that are configured to be assembled into a termination arrangement for securing an overhead electrical cable to a dead-end structure is disclosed. The kit includes a connector configured to anchor the termination arrangement to a dead-end structure, a gripping element configured to be secured by the connector and to operatively grip the composite strength member at a proximal end of the overhead electrical cable, an outer metallic sleeve configured to surround at least the gripping element and the proximal end of the overhead electrical cable, and a compression sheath configured to be disposed between the composite strength member and the conductive strands along at least the length of the outer metallic housing.

DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic view of a termination arrangement for an overhead electrical cable having a composite strength member.

FIG. 2 illustrates a perspective view of a termination arrangement that has been crimped onto an overhead electrical cable.

FIG. 3 illustrates a perspective view of an overhead electrical cable having a composite strength member.

FIGS. 4A and 4B illustrate a compression sheath according to an embodiment of the present disclosure.

FIG. 5 illustrates a termination arrangement according to an embodiment of the present disclosure.

FIGS. 6A and 6B illustrate cross-sectional views of overhead electrical cables.

FIG. 7 illustrates a cross-sectional view of a termination arrangement and a compression sleeve according to an embodiment of the present disclosure.

DESCRIPTION OF THE EMBODIMENTS

FIG. 1 illustrates a termination arrangement (e.g., a dead-end) for use with an overhead electrical cable. The termination arrangement 110 illustrated in FIG. 1 is also illustrated and described in PCT Publication No. WO 2005/041358 by Bryant and in U.S. Pat. No. 8,022,301 by Bryant et al., each of which is incorporated herein by reference in its entirety.

Broadly characterized, the termination arrangement 110 illustrated in FIG. 1 includes a gripping element 112, an outer sleeve 120 and a connector 130 for anchoring the termination arrangement 110 to a dead-end structure (e.g., to a termination tower), not illustrated, e.g., using eyebolt 132. Opposite the eyebolt 132, the termination arrangement 110 is operatively connected to an overhead electrical cable 140 that includes an electrical conductor 142 that surrounds a composite strength member 144.

The gripping element 112 tightly grips the composite strength member 144 to secure the overhead electrical cable 140 to the termination arrangement 110. As illustrated in FIG. 1, the gripping element 112 includes a collet 116 having a lumen that surrounds and grips onto the strength member 144. The collet 116 is disposed in a collet housing 114. As the electrical cable 140 is tensioned and pulls the strength member 144, friction develops between the strength member 144 and the collet 116 (e.g., along the lumen), and the strength member 144 pulls the collet 116 further into the collet housing 114. The conical shape of the collet 116 and the funnel shape of the collet housing 114 create increased compression on the strength member 144, ensuring that the strength member 144 does not slip out of the collet 116.

An outer sleeve 120 surrounds the gripping element 112, and surrounds the threaded portion 134 and on intermediate portion 136 of the connector 130. The outer sleeve 120 includes a conductive body 128 to facilitate electrical conduction between the electrical conductor 142 and a jumper plate 126. For example, the conductive body 128 may be fabricated from aluminum. As illustrated in FIG. 1, the jumper plate 126 is welded onto the conductive body 128. In use, the jumper plate 126 is configured to attach to a connection plate 150 to facilitate electrical conduction between the electrical cable 140 and another conductor, e.g., another electrical cable (not illustrated) that is operatively connected to the connection plate 150.

The connector 130 includes an eyebolt 132 at a proximal end of the connector 130 and a threaded portion 134 disposed at a distal end of the connector 130. The threaded portion 134 is configured to operatively mate with a threaded portion 118 of the collet housing 114 to facilitate movement of the connector 130 toward the collet 116, pushing the collet 116 into the collet housing 114, when the connector is rotated, e.g., rotated clockwise. This strengthens the grip of the collet 116 onto the strength member 144, further securing the overhead electrical cable 140 to the termination arrangement 110. The eyebolt 132 is configured to be attached to a dead-end structure to secure the termination arrangement 110 and hence the electrical cable 140, to the dead-end structure, e.g., to a termination tower.

In some situations, it is desirable or necessary to further secure the overhead electrical cable 140 to the termination structure 110. For example, it may be desirable to crimp the outer sleeve 120 onto the connector 130, particularly onto the intermediate portion 136 of the connector. Crimping involves the application of extreme pressure to the sleeve 120 using a press and die to mechanically deform and compress the sleeve 120 onto the connector 130. Further, the sleeve 120 may also be crimped onto the overhead electrical cable 140 at the distal end of the termination structure 110. Such crimping of the outer sleeve 120 ensures that the housing 120 will not move relative to the overhead electrical cable 140 after installation. The termination structure 110 may also include a metallic (e.g., aluminum) inner filler sleeve 122 to enhance the electrical and mechanical contact between the outer sleeve 120 and the electrical cable 140 when the sleeve 120 is crimped onto the electrical cable 140. The use of a soft (e.g., annealed) aluminum for the electrical conductor 142 (e.g., conductive strands), and the use of trapezoidal conductive strands, prevents damage to the composite strength member 144 when the outer sleeve 120 is crimped onto the electrical cable 140.

FIG. 2 illustrates a perspective view of a termination arrangement that has been crimped onto an overhead electrical cable. As is described above with respect to FIG. 1, the termination arrangement 210 includes a connector having an eye bolt 232 that extends outwardly from a proximal end of an outer metallic sleeve 220. A jumper plate 226 is welded to the proximal end of the conductive body 228 for electrical connection to, e.g., a connection plate (see FIG. 1). As illustrated in FIG. 2, the outer sleeve 220 is crimped over two regions, namely proximal crimped region 220b and distal crimped region 220a. The proximal crimped region 220b is situated over an intermediate portion of the connector (see FIG. 1), and the distal crimped region 220a is situated over a portion of the overhead electrical cable 240. The extreme compressive forces placed around the outer sleeve 220 during the crimping operation are transferred to the underlying components, i.e., to the connector under the crimped region 220b and to the overhead electrical cable 240 under the crimped region 220a.

Thus, the conductive strands and other components of the termination arrangement, e.g., the outer sleeve, are fabricated from aluminum. As used herein, and unless otherwise specified, when the term “aluminum” is used on its own, it refers generally to pure aluminum or aluminum alloys (e.g., comprising at least about 50 wt. % aluminum), as well as all types of aluminum that have been heat treated (e.g., annealed), work hardened, extruded or otherwise processed in a manner that results in a desirable property in the final component. As used herein, the term “soft aluminum” refers to a substantially pure (e.g., unalloyed) form of aluminum, which may be annealed. Examples of soft aluminum include the Aluminum Association “1xxx” series (e.g., greater than 99% aluminum) that have been annealed, such as the AA1350-O aluminum, which is a fully annealed aluminum. Further, the terms “hardened aluminum” or “hard aluminum” refer to aluminum that that has a tensile strength of at least about 100 MPa, such as at least about 120 MPa, such as at least about 150 MPa, or even at least about 200 MPa. Hardened aluminum may have a tensile strength up to about 380 MPa, for example. As noted above, when the conductive strands surrounding the composite strength member are fabricated from a soft aluminum, the strand will deform and absorb some of the compressive force, thereby reducing the stresses on the underlying composite strength member. The use of trapezoidal-shaped (i.e., trapezoidal cross-section) conductive stands, which have a high surface area in direct contact with the strength member, can also reduce the stress that is placed on the composite strength member. As a result, there is very low probability that the crimping operation will damage the underlying composite strength member.

FIG. 3 illustrates a cross-section of an overhead electrical cable 340. The cable 340 includes an electrical conductor 342 for the conduction of electricity. The electrical conductor includes of two layers of conductive strands 342a and 342b that are wrapped (e.g., stranded) around a central strength member 344. The strength member 344 is formed from a single rod of a fiber-reinforced composite material having an inner carbon fiber core 344a and an outer layer 344b of an insulative material such as glass fibers.

The conductive strands 342a/342b have a substantially trapezoidal cross-section with top and bottom surfaces that may be slightly curved (e.g., arcuate) to form the substantially cylindrical conductor structure with few gaps between adjacent strands 342a/342b and between the strands 342a and the strength member 344. The conductive strands 342a/342b are selected to have a high conductivity and are fabricated from AA-1350-O aluminum having a high conductivity (e.g., about 61% IACS).

In some installations, however, the overhead electrical cable includes a conductor formed from conductive strands that have a shape (e.g., the cross-section) that creates stress points along a length of the composite strength member when the outer sleeve is compressed onto the conductive strands. For example, conductive stands having a circular cross-section may produce stress points due to the relatively small contact area of the strands with the underlying composite strength member. Under such circumstances, the strength member may be susceptible to damage (e.g., fracture) when the conductive strands are compressed onto the strength member at high pressure.

The conductive strands may also be formed from hard aluminum, such as when the line is installed in a region the experiences heavy ice-loading of the electrical cable. For example, the conductive strands may include, but are not limited to, conductive strands of Al—Zr alloys or AA1350-H10 aluminum, which is a strain-hardened aluminum.

According to the present disclosure, a compression sheath is included between the conductive strands and the composite strength member, at least along the portion of the overhead electrical cable that is subject to compression. The compression sheath is configured to absorb (e.g., to dissipate) at least a portion of the compressive stresses that would otherwise be placed on the composite strength member. FIG. 4A illustrates a perspective view of a compression sheath according to an embodiment of the present disclosure, and FIG. 4B illustrates a cross-section of the compression sheath of FIG. 4A. The compression sheath 460 is configured (e.g., shaped and sized) to slide over a composite strength member, for example a single-element composite strength member having a circular cross-section, and under the conductive strands.

In this regard, the inner diameter (ID) of the compression sheath 460 is sized to substantially match the outer diameter of the strength member, e.g., so that there is substantially no gap between the inner circumference of the compression sheath 460 and the outer circumference of the composite strength member. For example, the inner diameter of the compression sheath for use with a single-element composite strength member may be at least about 1 mm, such as at least about 2 mm, such as at least about 2.5 mm. Typically, the inner diameter of the compression sheath for use with a single-element composite strength member will typically not be greater than about 25 mm, such as not greater than about 20 mm, or even not greater than about 15 mm.

However, compression sheaths having other inner diameters are contemplated depending on the outer diameter and configuration of the composite strength member. For example, the composite strength member may be composed of a plurality of individual elements (e.g., individual rods) that are operatively combined (e.g., helically twisted together) to form the strength member. Such a multi-element configuration will typically have an effective outer diameter that is larger than the diameter of a single-element composite strength member. Examples of such multi-element composite strength members include, but are not limited to: the multi-element aluminum matrix composite strength member illustrated in U.S. Pat. No. 6,245,425 by McCullough et al.; the multi-element carbon fiber strength member illustrated in U.S. Pat. No. 6,015,953 by Tosaka et al.; and the multi-element carbon fiber strength member illustrated in U.S. Pat. No. 9,685,257 by Daniel et al. Each of these U.S. patents is incorporated herein by reference in its entirety. Such multi-element composite strength members may necessitate the use of a compression sheath having a relatively large inner diameter as compared to a compression sheath used with a single-element composite strength member.

The thickness (t) of the compression sheath should be sufficient to protect the underlying composite strength member from fracturing under the compressive forces of the crimping operation. However, if the thickness is too large, it may be difficult to place (e.g., to slide) the sheath between the composite strength member and the conductive strands during the termination process. In one characterization, the sheath has a thickness of at least about 0.20 mm, such as at least about 0.5 mm, such as at least about 1.0 mm. In another characterization, the sheath has a thickness of not greater than about 2.6 mm, such as not greater than about 2.0 mm.

The compression sheath 460 may be fabricated from a variety of materials. In one characterization, the compression sheath 460 is fabricated from a metallic material. In one particular characterization, the compression sheath may be fabricated from aluminum. The use of hardened aluminum is particularly advantageous for the compression sheath because it allows the aluminum sheath to maintain its shape while being installed in between the composite core strand and the conductive strands wrapped around the composite core. Hardened aluminum is also readily extrudable.

In one particular characterization, the compression sheath is fabricated from an Aluminum Association Series 6xxx alloy (“AA6xxx alloy”), which typically has a tensile strength of at least about 150 MPa and not greater than about 380 MPa. AA6xxx alloys include silicon and magnesium as alloying elements to form magnesium silicide with the alloy. Other useful aluminum alloys include Al—Zr alloys such as AA7xxx alloys. Other useful metals for the compression sleeve may include copper and steel. Non-metallic materials may also be useful, such as high performance plastics (e.g., polymers) including, but not limited to, PEEK (polyetheretherketone), PEK (polyehterketone) and PES (poly(ethersulfone)). Such plastics may be reinforced with fibers such as carbon fibers, glass fibers, aramid fibers, fluorocarbon fibers (e.g., PTFE fibers) and the like to enhance the mechanical properties of the plastic.

As illustrated in FIGS. 4A-4B, the compression sleeve 460 may include a longitudinally-extending slot 462. The longitudinally extending slot 462 may facilitate the placement of the compression sleeve 460 over the composite strength member during assembly of the termination arrangement. Although illustrated as a longitudinally-extending slot 462, the compression sleeve 460 may also include a non-linear slot, such as a slot that is in the shape of a spiral around the outer circumference of the sleeve 460. Other sheath configurations may include knurls around the outside of the surface of the sheath, and/or a taper on one or both ends. These configurations may facilitate the separation of the conductive strands from the composite strength member and allow the sheath to more easily be inserted between the composite strength member and the conductive strands wrapped around the composite strength member. Further, the sheath may be configured in two or more parts that can come together to form a substantially continuous cylinder around the composite strength member when installed between the strength member and the conductive strands wrapped around the strength member.

In another configuration, the compression sheath may include a closed cylindrical tube, e.g., a cylindrical tube that is open at both ends and does not include a slot or other separation along the wall of the sheath.

The length of the compression sheath 460 is selected such that the compression sheath 460 surrounds the composite strength member at least along the length of composite strength member that is subjected to the compressive forces during the crimping process. In one characterization, the compression sheath 460 has a length of at least about 150 mm, such as at least about 450 mm. However, the compression sheath 460 should not extend substantially beyond the length of composite strength member that is under compression, e.g., should not extend toward the connector beyond the conductive strands. In one characterization, the compression sheath 460 has a length of not greater than about 915 mm, such as not greater than about 650 mm.

FIG. 5 illustrates a partial cross-section of a termination arrangement according to the present disclosure, e.g., for securing an overhead electrical cable to a dead-end structure. The overhead electrical cable 540 includes a composite strength member 546 and conductive strands 542 surrounding the composite strength member 546. The termination arrangement 510 includes a gripping element secured by the connector and gripping the composite strength member 546 at a proximal end of the overhead electrical cable 540. As illustrated in FIG. 5, the gripping element 512 includes a collet 516 and a collet housing 514, where the collet 516 extends slightly beyond the housing 514 and grips the composite strength member 546. The outer metallic sleeve 520 surrounds the gripping element 512 and the proximal end of the overhead electrical cable 540. A compressed portion 520a of the outer metallic sleeve 520 is disposed over (e.g., around) the proximal end of the overhead electrical cable 540. The compression sheath 560 is disposed between the composite strength member 546 and the conductive strands 542 along at least the length of the compressed portion 520a.

The termination arrangement 510 is particularly suited for use with an overhead electrical cable 540 that includes a composite strength member 546. Examples of overhead electrical cables for which the termination arrangement 510 is particularly useful include, but are not limited to, those having a strength member comprising reinforcing fibers bound in a matrix, such as a polymeric matrix or a metallic matrix. The reinforcing fibers may be substantially continuous reinforcing fibers that extend along the length of the composite strength member, and/or may include short reinforcing fibers (e.g., fiber whiskers or chopped fibers) that are dispersed through the matrix. The fibers may be selected from a wide range of materials, including but not limited to, carbon, glass, boron, metal oxides, metal carbides, high-strength polymers such as aramid fibers or fluoropolymer fibers, basalt fibers and the like. The matrix material may include, for example, a plastic (e.g., polymer) such as a thermoplastic polymer or a thermoset polymer. The matrix may also be a metallic matrix, such as an aluminum matrix. One example of an aluminum matrix composite strength member is illustrated in U.S. Pat. No. 6,245,425 by McCullough et al., which is incorporated herein by reference in its entirety. One example of a polymer matrix fiber-reinforced strength member is the strength member used in the ACCC® overhead electrical cable that is manufactured by CTC Global Corporation of Irvine, Calif., USA. Such an overhead electrical cable is illustrated, for example, in U.S. Pat. No. 7,368,162 by Hiel et al, which is incorporated herein by reference in its entirety. Although illustrated in FIG. 5 as a single-element strength member 546 (e.g., a single rod), the strength member may include a plurality of individual composite elements that are combined (e.g., helically twisted together) to form the strength member, as is discussed above.

The conductive strands 542 may have a polygonal or a non-polygonal cross-section. In one characterization, the conductive strands 542 have a non-polygonal cross-section, e.g., that creates stress points along the length of the composite strength member 546 that is being compressed. In one characterization, the conductive strands include strands having a circular cross-section section that are in direct contact with the composite strength member 546. Strands having a circular cross-section concentrate the applied force along the line of contact between the circular strand and the composite strength member, which may lead to fracture of the composite strength member 546 even under relatively moderate compressive loads. The conductive strands may be fabricated from conductive metallic materials, including but not limited to, aluminum and copper. One particular characterization, the conductive strands include hardened aluminum, e.g., non-annealed, aluminum conductive strands such as Al—Zr conductive strands or AA1350-H19 conductive strands.

FIGS. 6A and 6B illustrate schematic cross-sections of an end of an overhead electrical cable without a compression sheath (FIG. 6A) and with a compression sheath (FIG. 6B). As illustrated in FIG. 6A, the overhead cable 640A comprises a composite strength member 646A that includes carbon fibers in a polymeric matrix. A plurality of conductive strands 642A having a circular cross-section are helically wrapped around the strength member 646A. It can be seen in FIG. 6A that the circular conductive strands 642A have a relatively small portion that is in direct contact with the underlying strength member 646A. Thus, when the conductive strands 642A are compressed onto the strength member 646A during a crimping operation, stresses are concentrated under the portion of conductive strand 642A contacting the strength member 646A.

FIG. 6B illustrates the use of a compression sleeve during the termination process according to an embodiment of the present disclosure. Similar to FIG. 6A, the overhead cable 640B comprises a composite strength member 646B that includes carbon fibers in a polymeric matrix. A plurality of conductive strands 642B having a circular cross-section are helically wrapped around the strength member 646B. In the embodiment of FIG. 6B, a compression sheath 624B is placed between the conductive strands 642B and the composite strength member 646B. The compression sheath 624B is a closed cylindrical tube that is placed over (e.g., slid onto) the composite strength member 646B before the crimping operation. As a result, when the conductive strands 642B are compressed onto the strength member 646B during the crimping operation, the compression sheath 624B absorbs and distributes the compressive forces around the entire circumference of the strength member 646B, thereby reducing the chance of a fracture in the strength member 646B.

FIG. 7 illustrates another embodiment of a termination arrangement according to the present disclosure. The embodiment of a termination arrangement illustrated in FIG. 7 is a modification of the termination arrangement disclosed in U.S. Pat. No. 7,348,489 by Chadbourne, which is incorporated herein by reference in its entirety.

As illustrated in FIG. 7, the termination arrangement 710 includes a connector 730 having an eye bolt 732, e.g., for anchoring the termination arrangement 710 to a dead-end structure. A distal portion 724a of the compression sheath 724 is disposed between the composite strength member 746 and the conductive stands 742 along a distal portion 720a of the outer metallic housing. The compression sheath 724 includes a proximal portion 724b that has an outer diameter that is larger than the outer diameter of the distal portion 724a. The proximal portion 724b is disposed between the interior of the connector 730 and a portion of the composite strength member 746 that extends beyond the conductive strands 742. In this manner, the outer metallic housing 720 may be crimped along substantially its entire length, e.g., along portions 720a and 720b, while the composite strength member 746 remains protected along the entire length that is subject to the compressive stresses.

It will be appreciated from the foregoing that the present disclosure is also directed to a method for securing an overhead electrical cable to a dead-end structure. Broadly characterized, the overhead electrical cable includes a composite strength member and conductive strands surrounding the composite strength member. The method includes placing a compression sheath between the composite strength member and the conductive strands at a proximal end of the overhead electrical cable, placing an outer metallic sleeve over at least the proximal end of the overhead electrical cable and the compression sheath, and compressing at least a portion of the outer metallic sleeve onto the conductive strands.

The method may be implemented using the termination arrangement disclosed above. The step of compressing the outer sleeve onto the conductive strands may utilize a pressure of at least about 15 tons to deform and compress the outer sleeve.

It will also be appreciate from the foregoing that the present disclosure is also directed to a kit, e.g., an assembly of components that are configured to be assembled into a termination arrangement for securing an overhead electrical cable to a dead-end structure is disclosed. The kit may include a connector configured to anchor the termination arrangement to a dead-end structure, a gripping element configured to be secured by the connector and to operatively grip the composite strength member at a proximal end of the overhead electrical cable, an outer metallic sleeve configured to surround at least the gripping element and the proximal end of the overhead electrical cable, and a compression sheath configured to be disposed between the composite strength member and the conductive strands along at least the length of the outer metallic housing.

While various embodiments of a termination arrangement and a method for securing an overhead electrical cable to a dead-end structure have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present disclosure.

Claims

1. A termination arrangement securing an overhead electrical cable to a dead-end structure, the overhead electrical cable having a composite strength member and conductive strands surrounding the composite strength member, the termination arrangement comprising:

a connector anchoring the termination arrangement to a dead-end structure;
a gripping element secured by the connector and gripping the composite strength member at a proximal end of the overhead electrical cable;
an outer metallic sleeve surrounding at least the gripping element and the proximal end of the overhead electrical cable, the outer metallic sleeve having a compressed portion disposed over the proximal end of the overhead electrical cable; and
a compression sheath disposed between the composite strength member and the conductive strands along at least the length of the conductive strands under the compressed portion.

2. The termination arrangement recited in claim 1, wherein the composite strength member comprises reinforcing fibers disposed within a binding matrix.

3. The termination arrangement recited in claim 2, wherein the binding matrix is a metallic matrix.

4. The termination arrangement recited in claim 2, wherein the binding matrix is a polymeric matrix.

5. The termination arrangement recited in claim 4, wherein the polymeric matrix comprises a polymer selected from a thermoset resin polymer and a thermoplastic polymer.

6. The termination arrangement recited in claim 2, wherein the reinforcing fibers comprise fibers selected from the group consisting of carbon fibers, boron fibers, metal oxide ceramic fibers, glass fibers, carbide fibers, aramid fibers and basalt fibers.

7. The termination arrangement recited in claim 6, wherein the reinforcing fibers comprise carbon fibers.

8. The termination arrangement recited in claim 1, wherein the composite strength member comprises a plurality of individual composite rods that are operatively combined to form the composite strength member.

9. The termination arrangement recited in claim 1, wherein the composite strength member consists essentially of a single composite rod.

10. The termination arrangement recited in claim 1, wherein at least a portion of the conductive strands have a cross-sectional shape that is polygonal.

11. The termination arrangement recited in claim 1, wherein at least a portion of the conductive strands have a cross-sectional shape that is non-polygonal.

12. The termination arrangement recited in claim 11, wherein the conductive strands that have a non-polygonal cross-sectional shape have a cross-sectional shape that is substantially circular.

13. The termination arrangement recited in claim 11, wherein at least a portion of the conductive strands having a cross-sectional shape that is substantially circular are in direct contact with the compression sheath.

14. The termination arrangement recited in claim 1, wherein the conductive strands comprise copper strands.

15. The termination arrangement recited in claim 1, wherein the conductive strands comprise aluminum strands.

16. The termination arrangement recited in claim 15, wherein the conductive strands comprise hardened aluminum strands.

17. The termination arrangement recited in claim 1, wherein the compression sheath does not extend substantially beyond the compressed portion of a distal end of the termination arrangement.

18. The termination arrangement recited in claim 1, wherein the compression sheath is a closed cylindrical tube that is sized and shaped to slide over the strength member.

19. The termination arrangement recited in claim 1, wherein the compression sheath is a cylindrical tube having a slot along a length thereof to facilitate placement of the compression sheath over the composite strength member.

20. The termination arrangement recited in claim 1, wherein the compression sheath is structurally independent from the composite strength member.

21. The termination arrangement recited in claim 1, wherein the compression sheath is fabricated from a material selected from the group consisting of a metallic material, a polymeric material, and a composite material.

22. The termination arrangement recited in claim 21, wherein the compression sheath is fabricated from a metallic material.

23. The termination arrangement recited in claim 22, wherein the compression sheath is fabricated from aluminum.

24. The termination arrangement recited in claim 23, wherein the compression sheath is fabricated from hardened aluminum.

25. The termination arrangement recited in claim 1, wherein the compression sheath has a thickness of at least about 0.20 mm.

26. The termination arrangement recited in claim 1, wherein the compression sheath has a thickness of not greater than about 2.6 mm.

27. The termination arrangement recited in claim 1, wherein the connector comprises an eye bolt.

28. The termination arrangement recited in claim 1, wherein the termination arrangement further comprises a jumper plate.

29. The termination arrangement recited in claim 1, wherein the gripping element comprises a collet that is compressed to grip the composite strength member.

30. The termination arrangement recited in claim 29, wherein the collet is disposed within a collet housing.

31. The termination arrangement recited in claim 30, wherein the collet housing is operatively attached to the connector.

32. The termination arrangement recited in claim 1, wherein the compression sheath comprises a proximal portion and a distal portion, wherein the distal portion is disposed between the composite strength member and the conductive strands and the proximal portion surrounds a portion of the composite strength member that extends beyond the proximal end of the overhead electrical cable.

33. The termination arrangement recited in claim 32, wherein the proximal portion of the compression sheath has a larger outer diameter than an outer diameter of the distal portion of the compression sheath.

34. The termination arrangement recited in claim 33, wherein the distal portion of the compression sheath is disposed within a cavity formed in the connector.

35. A method for securing an overhead electrical cable to a dead-end structure, the overhead electrical cable having a composite strength member and conductive strands surrounding the composite strength member, the method comprising:

placing a compression sheath between the composite strength member and the conductive strands at a proximal end of the overhead electrical cable;
placing an outer metallic sleeve over at least the proximal end of the overhead electrical cable and the compression sheath; and
compressing at least a portion of the outer metallic sleeve onto the conductive strands.

36. The method recited in claim 35, wherein the compressing step comprises applying a pressure of at least about 15 tons to the outer metallic sleeve.

37. The method recited in claim 35, further comprising the step of securing a proximal end of the composite strength member to a connector.

38. The method recited in claim 37, further comprising the step of anchoring the connector to a dead-end structure.

39. A kit comprising components that are configured to be assembled into a termination arrangement for securing an overhead electrical cable to a dead-end structure, the overhead electrical cable having a composite strength member and conductive strands surrounding the composite strength member, the kit comprising:

a connector configured to anchor the termination arrangement to a dead-end structure;
a gripping element configured to be secured by the connector and to operatively grip the composite strength member at a proximal end of the overhead electrical cable;
an outer metallic sleeve configured to surround at least the gripping element and the proximal end of the overhead electrical cable; and
a compression sheath configured to be disposed between the composite strength member and the conductive strands along at least the length of the outer metallic sleeve.

40. The termination arrangement recited in claim 26, wherein the compression sheath has a thickness of at least about 0.5 mm.

41. The method recited in claim 35, wherein the compression sheath has a thickness of at least about 0.2 mm.

42. The method recited in claim 35, wherein the compression sheath is fabricated from aluminum.

43. The method recited in claim 35, wherein the compression sheath is a cylindrical tube having a slot along a length thereof to facilitate placement of the compression sheath over the composite strength member.

44. The kit recited in claim 39, wherein the compression sheath is a cylindrical tube that is sized and shaped to slide over the strength member.

45. The kit recited in claim 39, wherein the compression sheath is a cylindrical tube having a slot along a length thereof to facilitate placement of the compression sheath over the composite strength member.

46. The kit recited in claim 39, wherein the compression sheath has a thickness of at least about 0.2 mm.

47. The kit recited in claim 39, wherein the compression sheath is fabricated from aluminum.

Referenced Cited
U.S. Patent Documents
3468119 September 1969 Tatsuo
5554826 September 10, 1996 Gentry
5711143 January 27, 1998 Munakata
6015953 January 18, 2000 Tosaka
6323251 November 27, 2001 Perez et al.
6805596 October 19, 2004 Quesnel
7131308 November 7, 2006 McCullough
7348489 March 25, 2008 Chadbourne
7385138 June 10, 2008 De France
7462781 December 9, 2008 Varkey
7563983 July 21, 2009 Bryant
8525033 September 3, 2013 Grether
9490050 November 8, 2016 Lancaster
9685257 June 20, 2017 Daniel
9748670 August 29, 2017 Quesnel
10690839 June 23, 2020 Lee
20030145936 August 7, 2003 Hrycyk
20030194916 October 16, 2003 Quesnel
20040132366 July 8, 2004 Hiel
20040182597 September 23, 2004 Smith
20050181228 August 18, 2005 McCullough et al.
20060084327 April 20, 2006 Chadbourne
20080233787 September 25, 2008 Geibel et al.
20090114419 May 7, 2009 Park
20100243320 September 30, 2010 Bryant et al.
20110297441 December 8, 2011 Quesnel
20120090892 April 19, 2012 Meyer et al.
20120174557 July 12, 2012 Boisseau
20120261158 October 18, 2012 Daniel
20120305312 December 6, 2012 McCullough et al.
20140295057 October 2, 2014 Ryabova
20150075837 March 19, 2015 Welborn
20150308904 October 29, 2015 Shu
20160099090 April 7, 2016 Huang
20170288383 October 5, 2017 Quesnel
20180226174 August 9, 2018 Rose
20190288497 September 19, 2019 Nakamura
20200194989 June 18, 2020 Pilling
Foreign Patent Documents
1821318 August 2007 EP
H03129606 June 1991 JP
H0583931 November 1993 JP
6201042 September 2017 JP
20190037592 April 2019 KR
2015170389 November 2015 WO
2017130928 August 2017 WO
Other references
  • International Search Report and Written Opinion dated Apr. 12, 2019 for International Patent Application No. PCT/US2019/014986.
  • International Search Report and Written Opinion dated Jan. 19, 2021 for International Patent Application No. PCT/US2020/043526.
  • Office Action dated Apr. 16, 2021 for Eurasian Patent Application No. 202091770.
  • Office Action dated Apr. 3, 2021 for Sri Lankan Patent Application No. 21248.
  • Extended European Search Report dated Sep. 23, 2021 for European Patent Application No. 19743339.4.
  • Non-Final Office Action dated Jul. 21, 2021 for U.S. Appl. No. 16/521,580.
  • Office Action dated Aug. 16, 2021 for Chilean Patent Application No. 1952-2020.
  • Office Action dated Jul. 28, 2021 for Canadian Patent Application No. 3,088,407.
  • Search Report issued in Panama Patent Application No. 93147-01 dated Jul. 7, 2021.
Patent History
Patent number: 11329467
Type: Grant
Filed: Jan 24, 2019
Date of Patent: May 10, 2022
Patent Publication Number: 20200343711
Assignee: CTC Global Corporation (Irvine, CA)
Inventors: Eric Bosze (San Diego, CA), Christopher Wong (Santa Ana, CA), Ian M. Pilling (Rancho Santa Margarita, CA), William Webb (Laguna Niguel, CA), Douglas A. Pilling (Bonita, CA)
Primary Examiner: Timothy J Thompson
Assistant Examiner: Michael F McAllister
Application Number: 16/961,358
Classifications
Current U.S. Class: Coated Or Impregnated (57/223)
International Classification: H01R 11/12 (20060101); H02G 1/02 (20060101); H02G 7/00 (20060101); H02G 15/06 (20060101); H02G 15/18 (20060101); H02G 7/05 (20060101); H01B 5/10 (20060101);