Method and structure for tungsten gate metal surface treatment while preventing oxidation
As disclosed herein, an FEOL line conductor stack is formed including a base conductor layer, an overlying layer of tungsten, and an optional gate capping layer. The stack, including layers from the optional capping layer down to the base conductor layer are directionally etched until an underlying layer is exposed. Then, the substrate is exposed to one or the other or both of: 1) a silicon-containing ambient to form a self-aligned layer of tungsten silicide on sidewalls of the tungsten layer; and 2) a source of nitrogen to form a thin layer of tungsten nitride on sidewalls of the tungsten layer. Such tungsten silicide and/or tungsten nitride layers serves to protect the tungsten during subsequent processing, among which may include sidewall oxidation (e.g. for a polysilicon base conductor layer) and/or the forming of silicon nitride spacers on sidewalls of the gate stack.
Latest IBM Patents:
[0001] This invention relates to semiconductor devices and more particularly, to the treatment of the surface of tungsten metal gate conductors to reduce or prevent oxidation.
BACKGROUND OF THE INVENTION[0002] Since the advent of vertical transistors in trench-type dynamic random access memories (DRAMs), those skilled in the art will recognize that the actual gates of such devices are formed by a polysilicon plug inside an upper portion of a trench, the lower portion containing a storage capacitor. However, the wordlines which access the vertical transistor gates extend in linear paths above the substrate, and have a similar structure and extent to actual gate conductors, which contact the gate oxide of planar transistors. Such wordlines, and actual gate conductors are formed as line structures in a front-end-of-line (FEOL) process. Both types often have a stacked structure, including a lower layer of polysilicon, and an overlying low resistance layer, often including a metal silicide, over which a capping layer may optionally be formed. While they can both be referred to as FEOL conductive line stacks, in the description which follows, the terms “gate” and “gate conductor” are intended to refer to either type of structure, whether the “gate conductor” actually and directly contacts a gate oxide of a transistor, or whether it merely acts as an FEOL line conductor, for example as a wordline for accessing a vertical transistor of a trench DRAM, or for some other purpose as an FEOL conductor.
[0003] In the manufacture of integrated circuits, including DRAMs, the manufacturing of gate conductors has become more and more important. Particularly, in dynamic random access memories (DRAMs), gate conductors must be manufactured at very tight pitches, requiring gate height to be limited to allow effective insulative gapfill between adjacent gate conductors. On the other hand, the lengths and narrowness required of gate conductors demands that resistance along the gate conductor be kept within a tolerable limit.
[0004] The use of tungsten (W) as the gate conductor material is receiving much interest today. While polysilicon, tungsten silicide and/or a combination of the two have been popular as gate conductor materials up to now, smaller groundrules and faster speeds required in new generations demand a lower resistance gate conductor. A low resistance gate conductor material is needed for both speed and to keep the height of the gate stack low enough to permit gaps between them to be filled with an insulator. Accordingly, there is great interest today in using tungsten instead of tungsten silicide as the gate conductor.
[0005] However, the use of tungsten creates a new set of challenges. For one, in a gate stack of polysilicon and tungsten, tungsten tends to be oxidized during the selective oxidation of the polysilicon gate sidewall and/or during the deposition of gate silicon nitride spacers. Sidewall oxidation of the polysilicon is necessary to heal damage from the gate stack etch, and to round gate polysilicon corners, which could otherwise give rise to corner conduction and gate oxide breakdown. However, the poly sidewall oxidation can seriously deteriorate the tungsten. Tungsten is unlike some other metals in that when it is oxidized, a spike-like WOx “grass” is formed which “grows” out in many directions, and which may even extend far into the material. Once the tungsten oxide extends internally in such manner, efforts to remove the oxide from the material are ineffective. Consequently, a need exists for engineering the tungsten surface to prevent or reduce oxidation of tungsten when performing the gate polysilicon sidewall oxidation.
[0006] Apart from the poly sidewall oxidation, other process steps also tend to form tungsten oxides during gate stack processing, including gate sidewall spacer formation, and even oxidation just by moving the substrate from one process tool to another, because of oxygen being present in the ambient. Hence, a tightly controlled process would have to be used to remove oxygen from the ambient, such as maintaining a vacuum in the chamber, and/or pumping N2 into the chamber, and doing the same for airlock and “loadlock” chambers between successive process chambers.
SUMMARY OF THE INVENTION[0007] A gate stack is formed including a lower base conductor layer, an overlying layer of tungsten, and an optional gate capping layer, preferably of silicon nitride. According to an embodiment of the invention, the gate stack, including layers from the optional capping layer down to the base conductor layer are directionally etched until an underlying layer is exposed. Then, the substrate is exposed to one or the other or both of: 1) a silicon-containing ambient to form a self-aligned layer of tungsten silicide on sidewalls of the tungsten layer; and 2) a source of nitrogen to form a thin layer of tungsten nitride on sidewalls of the tungsten layer. Thereafter, usual processes are resumed, among which may be a gate poly sidewall oxidation and/or the forming of silicon nitride spacers on sidewalls of the gate stack.
[0008] In another embodiment, the gate stack is only partially etched, from the capping layer down through the tungsten layer until at least the base conductor layer is exposed, but not completely etched. Then, a thin layer of silicon is deposited and then annealed to form tungsten silicide on the exposed tungsten sidewalls. Thereafter, the base conductor layer etch is completed, and then any necessary sidewall oxidation (e.g. for polysilicon gate sidewalls) is performed.
BRIEF DESCRIPTION OF THE DRAWINGS[0009] FIGS. 1 and 2 illustrate a first embodiment in which a protective silicidation and/or nitridation is applied to sidewalls of a tungsten gate.
[0010] FIGS. 3 through 6 illustrate a second embodiment in which a self-aligned silicide is formed on sidewalls of a tungsten gate prior to etching an underlying base conductor layer of a gate stack.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS[0011] FIG. 1 illustrates a first embodiment. As shown in FIG. 1, an exemplary gate stack 100 has been formed and etched, having the following layers: a gate cap layer of silicon nitride (160) overlying a tungsten layer (140), which, in turn, overlies a base conductor layer (130), overlying a substrate 110. In the illustrated embodiment, base conductor layer 130 preferably comprises polysilicon, and a gate oxide 120 is shown between the semiconductor substrate 110 and the polysilicon 130. However, those skilled in the art will understand that the gate oxide 120 need not be present, and the semiconductor substrate need not be in close proximity to the polysilicon 130, as the term “gate stack” includes the structure of an FEOL conductive line stack, such as may be used as a wordline in a vertical transistor trench DRAM. Thus, the gate stack may be an FEOL conductive line stack including a tungsten layer 140 formed over a base conductor layer 130, the base conductor layer comprising one or more conductor layers, e.g. of metals, metal nitrides, metal silicides, or other conductors. Moreover, the FEOL conductive line stack may be placed in contact with either the semiconductor substrate, a gate dielectric, or even a thick dielectric, e.g. an interlevel dielectric, such as for use as a tungsten bitline of a DRAM array formed over a lowest level interlevel dielectric.
[0012] Prior to later processes, such as performing sidewall oxidation of the gate polysilicon 130, the gate stack 100 is exposed to a silicon-containing ambient such as mono-silane (SiH4), di-silane (Si2H2), dichlor-silane (SiCl2H2) or other Si containing ambient to deposit silicon onto sidewalls of the tungsten layer 140. As shown in FIG. 2, during either a separate anneal without oxygen present, or during subsequent hot processing, during which a poly sidewall oxidation may be done, a thin layer of WSix is formed from the deposited silicon on the sidewalls of the tungsten, thereby protecting the tungsten from oxidation.
[0013] Still referring to FIGS. 1 and 2, as an alternative, or in conjunction with forming tungsten silicide on the tungsten sidewalls 140, a protective tungsten nitride layer 210 is formed on the sidewalls 140. Nitridation may be performed by one or more of the following, among others: directing UV light onto N2 gas above the substrate to dissociate N2 to N+, the N+ ions then reacting with the tungsten, by forming a tungsten nitride and/or oxynitride layer which prevents further oxidation, such as by using ammonia (NH3) , nitric oxide (NO), nitrous oxide (N2O) or similar substances; and/or annealing the gate stack in NH3 or other nitrogen containing ambient to form a thin layer of WNx layer on the sidewalls of the tungsten metal. When tungsten oxynitride is formed (WOxNy), the ratio x:y of oxygen to nitrogen in the oxynitride layer should preferably be between 0.1 and 10. Tungsten nitride is less readily oxidized than tungsten. When WNx is oxidized, at most a smooth layer of WOx is formed, instead of the aforementioned spike-like WOx “grass”, which forms on tungsten metal.
[0014] Another embodiment of the invention is illustrated with respect to FIGS. 3 through 6. In this embodiment, on substrate 330, the gate stack 340, including an optional gate cap layer 320 (preferably of silicon nitride), tungsten layer 310, and base conductor layer (again preferably polysilicon) 300, are etched through tungsten layer 310, stopping when the base conductor layer 300 is exposed, as shown in FIG. 3. The gate stack preferably includes a gate oxide 305 between the base conductor layer 300 and the substrate 330. Endpoint detection can be used, but a timed etch is also adequate. A thin layer of silicon 410 is then deposited, as shown in FIG. 4, for example by exposing the substrate 330 to a silicon-containing ambient such as mono-silane (SiH4), disilane (Si2H2), dichlor-silane (SiCl2H2) or other Si containing ambient.
[0015] Then, as illustrated in FIG. 5, the substrate 330 is annealed such that the deposited silicon 410 reacts with the tungsten 310 to form a thin self-aligned layer of tungsten silicide 510 on the sidewalls of the tungsten layer 310. Thereafter, the gate stack etch is continued through the base conductor layer 320, stopping when the gate oxide layer 305 is exposed, as shown in FIG. 6. As a result of this silicon etch, the remaining thin silicon layer 410 is removed from sidewalls of the gate capping layer 320 and the base conductor layer 300. In such manner a self-aligned thin tungsten silicide layer 510 has been formed on sidewalls of the tungsten layer, as protection for the subsequent process steps, among which may include a polysilicon sidewall oxidation.
[0016] While the invention has been described in accordance with certain preferred embodiments thereof, those skilled in the art will understand the many modifications and enhancements which can be made thereto without departing from the true scope and spirit of the invention, which is limited only by the claims appended below.
Claims
1. In an integrated circuit, a method of forming a low resistance FEOL conductive line stack comprising:
- over an underlying layer on a semiconductor substrate, forming a stack including at least a base conductor layer and a layer of tungsten overlying said base conductor layer;
- etching said stack through said tungsten layer to at least expose a top of said base conductor layer; and
- heating said substrate after exposing said substrate to at least one of: 1) a silicon-containing ambient to thereby form a self-aligned layer of tungsten silicide on sidewalls of said tungsten layer; and 2) a source of nitrogen to thereby form a thin layer of tungsten nitride on sidewalls of said tungsten layer.
2. The method of claim 1 wherein said etching stops when a top of said base conductor layer is reached, and said etching is continued through said base conductor layer after said self-aligned tungsten silicide layer is formed.
3. The method of claim 1 wherein said base conductor layer comprises polysilicon and said base conductor layer contacts a gate dielectric formed on a semiconductor substrate.
4. The method of claim 1 wherein said silicon-containing ambient includes a gas selected from the group consisting of mono-silane, di-silane, and dichlorsilane.
5. The method of claim 1 wherein said source of nitrogen includes a gas selected from the group consisting of ammonia, ionized nitrogen, nitric oxide, and nitrous oxide.
6. The method of claim 1 wherein said etching is stopped when said base conductor layer is exposed, prior to exposing said substrate to said silicon-containing ambient.
7. The method of claim 6 wherein a layer of silicon is deposited over said partially etched stack from said silicon-containing ambient, and thereafter said substrate is heated to form said self-aligned tungsten silicide, said base conductor layer then being etched through to said underlying layer, thereby removing said layer of deposited silicon from said etched stack.
8. The method of claim 1 wherein said stack includes a capping layer formed over said tungsten layer.
9. The method of claim 8 wherein said capping layer includes silicon nitride.
10. The method of claim 2 further comprising oxidizing sidewalls of said polysilicon layer.
11. The method of claim 10 wherein said oxidizing is performed by heating said substrate in an oxygen-containing ambient.
12. In an integrated circuit, a method of fabricating tungsten gate conductors, comprising
- providing a gate stack including polysilicon layer over a gate dielectric on a substrate, a tungsten layer over said polysilicon layer, and a capping layer over said tungsten layer;
- etching said gate stack down to said gate dielectric;
- performing at least one of nitriding and siliciding sidewalls of said exposed tungsten layer; and
- thereafter exposing said gate stack to oxygen to form an oxide on sidewalls of said polysilicon layer.
13. The method of claim 12, wherein said capping layer is comprised of silicon nitride.
14. An integrated circuit including an FEOL conductive line stack, comprising:
- a base conductor layer; and
- a layer of tungsten overlying said polysilicon layer;
- wherein said tungsten layer includes sidewalls having at least one of a self-aligned tungsten silicide, a self-aligned tungsten nitride, or a self-aligned tungsten oxynitride.
15. The integrated circuit of claim 14 wherein said base conductor layer comprises polysilicon, and said base conductor layer includes oxidized sidewalls.
Type: Application
Filed: Sep 30, 2002
Publication Date: Apr 1, 2004
Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION (ARMONK, NY)
Inventor: Haining Yang (Wappingers Falls, NY)
Application Number: 10261218
International Classification: H01L029/76;