Novel nucleotide and amino acid sequences, and assays and methods of use thereof for diagnosis of ovarian cancer

Novel markers for ovarian cancer that are both sensitive and accurate. These markers are overexpressed and/or differentially expressed in ovarian cancer specifically, as opposed to normal ovarian tissue. The measurement of these markers, alone or in combination, in patient samples provides information that the diagnostician can correlate with a probable diagnosis, in ovarian cancer. The markers of the present invention, alone or in combination, show a high degree of differential detection between ovarian cancer and non-cancerous states.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is related to novel nucleotide and amino acid sequences, and assays and methods of use thereof for diagnosis of ovarian cancer, and claims priority to the below U.S. Provisional Applications which are incorporated by reference herein:

    • Application No. 60/620,916 filed Oct. 22, 2004—Differential Expression of Markers in Colon Cancer
    • Application No. 60/628,123 filed Nov. 17, 2004—Differential Expression of Markers in Colon Cancer II
    • Application No. 60/621,131 filed Oct. 25, 2004—Diagnostic Markers for Colon Cancer, and Assays and Methods of Use Thereof
    • Application No. 60/620,917 filed Oct. 22, 2004—Differential Expression of Markers in Breast Cancer
    • Application No. 60/628,101 filed Nov. 17, 2004—Differential Expression of Markers in Breast Cancer II
    • Application No. 60/620,874 filed Oct. 22, 2004—Differential Expression of Markers in Ovarian Cancer
    • Application No. 60/628,134 filed Nov. 17, 2004—Differential Expression of Markers in Ovarian Cancer II
    • Application No. 60/620,924 filed Oct. 22, 2004—Differential Expression of Markers in Stomach Cancer
    • Application No. 60/628,111 filed Nov. 17, 2004—Differential Expression of Markers in Stomach Cancer II
    • Application No. 60/620,853 filed Oct. 22, 2004-28814—Differential Expression of Markers in Lung Cancer
    • Application No. 60/628,112 filed Nov. 17, 2004—Differential Expression of Markers in Lung Cancer II
    • Application No. 60/620,974 filed Oct. 22, 2004—Differential Expression of Markers in Pancreatic Cancer
    • Application No. 60/628,145 filed Nov. 17, 2004—Differential Expression of Markers in Pancreatic Cancer II
    • Application No. 60/620,656 filed Oct. 22, 2004—Differential Expression of Markers in Prostate Cancer
    • Application No. 60/628,251 filed Nov. 17, 2004—Differential Expression of Markers in Prostate Cancer II
    • Application No. 60/620,975 filed Oct. 22, 2004—Differential Expression of Markers in Brain Cancer
    • Application No. 60/628,178 filed Nov. 17, 2004—Differential Expression of Markers in Brain Cancer II
    • Application No. 60/622,320 filed Oct. 27, 2004—Diagnostic Markers for Cardiac Disease and/or Pathological Conditions, and Assays and Methods of Use Thereof
    • Application No. 60/628,190 filed Nov. 17, 2004—Diagnostic Markers for Cardiac Disease and/or Pathological Conditions, and Assays and Methods of Use Thereof II
    • Application No. 60/630,559 filed Nov. 26, 2004—Diagnostic Markers for Cardiac Disease and/or Pathological Conditions, and Assays and Methods of Use Thereof II
    • Application No. 60/628,231 filed Nov. 17, 2004—Novel Diagnostic Serum Markers, and Assays and Methods of Use Thereof
    • Application No. 60/620,918 filed Oct. 22, 2004—Diagnostic Markers for Renal Cancer, and Assays and Methods of Use Thereof
    • Application No. 60/628,156 filed Nov. 17, 2004—Diagnostic Markers for Renal Cancer, and Assays and Methods of Use Thereof II
    • Application No. 60/620,677 filed Oct. 22, 2004—Differential Expression of Markers in Bladder Cancer
    • Application No. 60/628,167 filed Nov. 17, 2004—Differential Expression of Markers in Bladder Cancer II
    • Application No. 60/621,004 filed Oct. 22, 2004—Differential Expression of Markers in Skin and Epithelial Cancer II
    • Application No. ______ filed Nov. 17, 2004—Novel Diagnostic Markers, and Assays and Methods of Use Thereof
    • Application No. 60/622,017 filed Oct. 27, 2004—Variants of Nonspecific Alkaline Phosphatase, Use of Diagnostic Markers, and Assays and Methods of Use Thereof
    • Application No. 60/539,129 filed Jan. 27, 2004—Methods and Systems for Annotating Biomolecular Sequences
    • Application No. 60/539,128 filed Jan. 27, 2004—Evolutionary Conserved Spliced Sequences and Methods and Systems for Identifying Thereof

FIELD OF THE INVENTION

The present invention is related to novel nucleotide and protein sequences that are diagnostic markers for ovarian cancer, and assays and methods of use thereof.

BACKGROUND OF THE INVENTION

Ovarian cancer causes more deaths than any other cancer of the female reproductive system. An estimated 25,580 new cases will be diagnosed during 2004 in the United States, and approximately 16,090 of these women will die of the disease. Despite advances in the management of advanced ovarian cancer, 70% to 80% of patients will ultimately succumb to disease that is diagnosed in late stages. When ovarian cancer is diagnosed in stage I, more than 90% of patients can be cured with conventional surgery and chemotherapy. At present, however, only 25% of ovarian cancers are detected in stage I. Detection of a greater fraction of ovarian cancers at an early stage might significantly affect survival. A worldwide research effort, aiming at early detection of ovarian cancer, is currently being performed; finding molecular markers for the disease is one of the major research topics (J Clin Oncol. 2003 May 15; 21(10 Suppl):200-5).

No single marker has been shown to be sufficiently sensitive or specific to contribute to the diagnosis of ovarian cancer. The marker that is currently most frequently used is CA-125 (Br J Cancer. 2000 May; 82(9):1535-8). Its properties do not support its use for screening, but it is a major diagnostic tool. CA-125 is a member of the epithelial sialomucins markers group and is the most well documented and the best performing single marker from this group. Another name for CA-125 is mucin 16, and although it is a membrane protein, it can be found in the serum. Its greatest sensitivity is achieved for serous and emdometrioid ovarian tumors compared to mucinous or clear cell tumors. Other than diagnosis, it can be used for disease monitoring (Eur J Gynaecol Oncol. 2000; 21(1):64-9). In about 70% of patients, a rising level of CA-125 may be the first indication of relapse, predating clinical relapse by a median of 4 months. The serum concentration of CA-125 is elevated by the vascular invasion, tissue destruction and inflammation associated with malignant disease and is elevated in over 90% of those women with advanced ovarian cancer. Yet, CA-125 is not specific to ovarian cancer. It is elevated in 40% of all patients with advanced intra-abdominal malignancy. Levels can also be elevated during menstruation or pregnancy and in other benign conditions such as endometriosis, peritonitis or cirrhosis, particularly with ascites. CA-125 is not a marker that can be detected through use of urine samples due to a high molecular weight.

There are other ovarian cancer markers originating from epithelial mucins but none can replace CA-125, due to poorer specificity and sensitivity. These other markers may prove complementary to CA-125. CA-50, CA 54-61, CA-195 and CA 19-9 all appear to have greater sensitivity for detection of mucinous tumors while STN and TAG-72 have better sensitivity for detection of clear cell tumors (Dis Markers. 2004; 20(2):53-70).

Kallikreins, a family of serine proteases, and other protease-related proteins are also potential markers for ovarian cancer. Indeed, the entire family of kallikreins map to a region on chromosome 19q which is shown to be amplified in ovarian cancers. In particular, kallikrein 6 (protease M) and kallilrein 10 have been reported to have sensitivity up to 75% and specificity up to 100%. Matrix metalloproteinases (MMPs) are another family of proteases useful in ovarian cancer screening and prognosis. MMP-2 was reported to have 66% sensitivity and 100% specificity in one study. Cathepsin L, a cystein protease, was described to have a lower false positive rate compared with CA-125. Based on their biochemical proteolytic role, it would seem likely that these proteases would be active in invasion and metastasis formation and indeed these markers appear to have higher sensitivity for advanced stages of the disease. Due to their relatively low molecular weight, such proteases are candidates to be urine markers, or markers which can be detected in urine samples (Dis Markers. 2004; 20(2):53-70).

Hormones have a role in normal ovarian physiology. Therefore, it is not surprising that hormones, and growth and inhibition factors as well, are suitable for ovarian cancer detection. Measurements of fragments of gonadotropin in the urine were found to have sensitivity up to 83% and specificity up to 92% for detecting ovarian cancer. Inhibins, members of the Transforming Growth Factors (TGF) beta superfamily, have been shown to have a diagnostic value in the detection of granulosa cell tumor, a relatively uncommon type of ovarian cancer, associated with better prognosis overall. Serum inhibin is an ovarian product which decreases to non detectable levels after menopause, however, certain ovarian cancers (mucinous carcinomas and sex cord stromal tumours such as granulosa cell tumours) continue to produce inhibin. Studies have shown that that inhibin assays which detect all inhibin forms (as opposed to test detecting specific members of the inhibins family) provide the highest sensitivity/specificity characteristics as an ovarian cancer diagnostic test (Mol Cell Endocrinol. 2002 May 31; 191(1):97-103). Measurement of serum TGF-alpha itself was found to have sensitivity up to 70% and specificity of 89% in early stage disease. The growth factor Mesothelin was also found to have diagnostic value but only for late stage disease.

Immunohistochemistry is frequently used to assess the origin of tumor and staging when a pathological tissue sample is available. A few molecular markers have been shown to have diagnostic value in Immunohistochemistry of ovarian cancer, among them Epidermal Growth Factor, p53 and HER-2. P53 expression is much lower at early stage than late stage disease. P53 high expression is more typical or characteristic of invasive serous tumors than of mucinous tumors. No benign tumors are stained with P53. HER-2 is found in less than 25% of newly diagnosed ovarian cancers. Ovarian cancer of type granulosa cell tumor has in general better prognosis with late relapse and/or metastasis formation. However, about 50% of patients still die within 20 years of diagnosis. In this specific tumor type, immunohistochemistry staining of estrogen receptor beta (ERb) and proliferating cell nuclear antigen (PCNA) showed that loss of ERb expression and high PCNA expression, characterized a subgroup of granulosa cell tumors with a worse outcome (Histopathology. 2003 September; 43(3):254-62). Survivin expression was also shown to be correlated to tumor grade, histologic type and mutant p53, but actual correlation to survival is questionable (Mod Pathol. 2004 February; 17(2):264)

Many other markers have been tested over the years for ovarian cancer detection. Some markers have shown only limited value while others are still under investigation. Among them are TPA and TPS, two cytokeratins whose inclusion in a panel with CA-125 resulted in diagnoses with sensitivity up to 93% and specificity up to 98%. LPA—lysophosphatidic acid—was a very promising marker with one study demonstrating 98% sensitivity and 90% specificity. However, this marker is very unstable and requires quick processing and freezing of plasma, and therefore has limited usage.

As previously described, no single marker has been shown to be sufficiently sensitive or specific to contribute to the diagnosis of ovarian cancer. Therefore combinations of markers in panel are being tested. Usually CA-125 is one of the panel members. The best performing panel combinations so far have been CA-125 with CA 15-3 with sensitivity of 93% and specificity of 93%, CA-125 with CEA (which has very little sensitivity by itself) with specificity of 93% and specificity of 93%, and CA-125 with TAG-72 and CA 15-3 where specificity becomes 95% but sensitivity is diminished (Dis Markers. 2004; 20(2):53-70).

SUMMARY OF THE INVENTION

The background art does not teach or suggest markers for ovarian cancer that are sufficiently sensitive and/or accurate, alone or in combination.

The present invention overcomes these deficiencies of the background art by providing novel markers for ovarian cancer that are both sensitive and accurate. These markers are differentially expressed and preferably overexpressed in ovarian cancer specifically, as opposed to normal ovarian tissue. The measurement of these markers, alone or in combination, in patient (biological) samples provides information that the diagnostician can correlate with a probable diagnosis of ovarian cancer. The markers of the present invention, alone or in combination, show a high degree of differential detection between ovarian cancer and non-cancerous states.

According to preferred embodiments of the present invention, examples of suitable biological samples which may optionally be used with preferred embodiments of the present invention include but are not limited to blood, serum, plasma, blood cells, urine, sputum, saliva, stool, spinal fluid or CSF, lymph fluid, the external secretions of the skin, respiratory, intestinal, and genitourinary tracts, tears, milk, neuronal tissue, ovarian tissue, any human organ or tissue, including any tumor or normal tissue, any sample obtained by lavage (for example of the bronchial system or of the female reproductive system), and also samples of in vivo cell culture constituents. In a preferred embodiment, the biological sample comprises ovarian tissue and/or a serum sample and/or a urine sample and/or secretions or other samples from the female reproductive system and/or any other tissue or liquid sample. The sample can optionally be diluted with a suitable eluant before contacting the sample to an antibody and/or performing any other diagnostic assay.

Information given in the text with regard to cellular localization was determined according to four different software programs: (i) tmhmm (from Center for Biological Sequence Analysis, Technical University of Denmark DTU, http://www.cbs.dtu.dk/services/TMHMM/TMHMM2.0b.guide.php) or (ii) tmpred (from EMBnet, maintained by the ISREC Bionformatics group and the LICR Information Technology Office, Ludwig Institute for Cancer Research, Swiss Institute of Bioinformatics, http://www.ch.embnet.org/software/TMPRED_form.html) for transmembrane region prediction; (iii) signalp_hmm or (iv) signalp_nn (both from Center for Biological Sequence Analysis, Technical University of Denmark DTU, http://www.cbs.dtu.dk/services/SignalP/background/prediction.php) for signal peptide prediction. The terms “signalp_hmm” and “signalp_nn” refer to two modes of operation for the program SignalP: hmm refers to Hidden Markov Model, while nn refers to neural networks. Localization was also determined through manual inspection of known protein localization and/or gene structure, and the use of heuristics by the individual inventor. In some cases for the manual inspection of cellular localization prediction inventors used the ProLoc computational platform [Einat Hazkani-Covo, Erez Levanon, Galit Rotman, Dan Graur and Amit Novik; (2004) “Evolution of multicellularity in metazoa: comparative analysis of the subcellular localization of proteins in Saccharomyces, Drosophila and Caenorhabditis.” Cell Biology International 2004; 28(3):171-8.], which predicts protein localization based on various parameters including, protein domains (e.g., prediction of trans-membranous regions and localization thereof within the protein), pI, protein length, amino acid composition, homology to pre-annotated proteins, recognition of sequence patterns which direct the protein to a certain organelle (such as, nuclear localization signal, NLS, mitochondria localization signal), signal peptide and anchor modeling and using unique domains from Pfam that are specific to a single compartment.

Information is given in the text with regard to SNPs (single nucleotide polymorphisms). A description of the abbreviations is as follows. “T->C”, for example, means that the SNP results in a change at the position given in the table from T to C. Similarly, “M->Q”, for example, means that the SNP has caused a change in the corresponding amino acid sequence, from methionine (M) to glutamine (Q). If, in place of a letter at the right hand side for the nucleotide sequence SNP, there is a space, it indicates that a frameshift has occurred. A frameshift may also be indicated with a hyphen (-). A stop codon is indicated with an asterisk at the right hand side (*). As part of the description of an SNP, a comment may be found in parentheses after the above description of the SNP itself. This comment may include an FTId, which is an identifier to a SwissProt entry that was created with the indicated SNP. An FTId is a unique and stable feature identifier, which allows construction of links directly from position-specific annotation in the feature table to specialized protein-related databases. The FTId is always the last component of a feature in the description field, as follows: FTId=XXX_number, in which XXX is the 3-letter code for the specific feature key, separated by an underscore from a 6-digit number. In the table of the amino acid mutations of the wild type proteins of the selected splice variants of the invention, the header of the first column is “SNP position(s) on amino acid sequence”, representing a position of a known mutation on amino acid sequence. SNPs may optionally be used as diagnostic markers according to the present invention, alone or in combination with one or more other SNPs and/or any other diagnostic marker. Preferred embodiments of the present invention comprise such SNPs, including but not limited to novel SNPs on the known (WT or wild type) protein sequences given below, as well as novel nucleic acid and/or amino acid sequences formed through such SNPs, and/or any SNP on a variant amino acid and/or nucleic acid sequence described herein.

Information given in the text with regard to the Homology to the known proteins was determined by Smith-Waterman version 5.1.2 using special (non default) parameters as follows:

    • model=sw.model
    • GAPEXT=0
    • GAPOP=100.0
      • MATRIX=blosum 100

Information is given with regard to overexpression of a cluster in cancer based on ESTs. A key to the p values with regard to the analysis of such overexpression is as follows:

    • library-based statistics: P-value without including the level of expression in cell-lines (P1)
    • library based statistics: P-value including the level of expression in cell-lines (P2)
    • EST clone statistics: P-value without including the level of expression in cell-lines (SP1)
    • EST clone statistics: predicted overexpression ratio without including the level of expression in cell-lines (R3)
    • EST clone statistics: P-value including the level of expression in cell-lines (SP2)
    • EST clone statistics: predicted overexpression ratio including the level of expression in cell-lines (R4)

Library-based statistics refer to statistics over an entire library, while EST clone statistics refer to expression only for ESTs from a particular tissue or cancer.

Information is given with regard to overexpression of a cluster in cancer based on microarrays. As a microarray reference, in the specific segment paragraphs, the unabbreviated tissue name was used as the reference to the type of chip for which expression was measured.

There are two types of microarray results: those from microarrays prepared according to a design by the present inventors, for which the microarray fabrication procedure is described in detail in Materials and Experimental Procedures section herein; and those results from microarrays using Affymetrix technology. As a microarray reference, in the specific segment paragraphs, the unabbreviated tissue name was used as the reference to the type of chip for which expression was measured. For microarrays prepared according to a design by the present inventors, the probe name begins with the name of the cluster (gene), followed by an identifying number. These probes are listed below with their respective sequences.

>H61775_0_11_0 (SEQ ID NO:1031) CCCCAGCTTTTATAGAGCGGCCCAAGGAAGAATATTTCCAAGAAGTAGGG >HSAPHOL_0_11_0 (SEQ ID NO:1012) GGAACATTCTGGATCTGACCCTCCCAGTCTCATCTCCTGACCCTCCCACT >HUMGRP5E_0_0_16630 (SEQ ID NO:1013) GCTGATATGGAAGTTGGGGAATCTGAATTGCCAGAGAATCTTGGGAAGAG >HUMGRP5E_0_2_0 (SEQ ID NO:1014) TCTCATAGAAGCAAAGGAGAACAGAAACCACCAGCCACCTCAACCCAAGG >D56406_0_5_0 (SEQ ID NO:1015) TCTGACTTTTACGGACTTGGCTTGTTAGAAGGCTGAAAGATGATGGCAGG >M77904_0_8_0 (SEQ ID NO:1016) AGTCTGTGTTTGAGGGTGAAGGCTCAGCAACCCTGATGTCTGCCAACTAC >Z25299_0_3_0 (SEQ ID NO:1017) AACTCTGGCACCTTGGGCTGTGGAAGGCTCTGGAAAGTCCTTCAAAGCTG >Z44808_0_8_0 (SEQ ID NO:1018) AAAAGCATGAGTTTCTGACCAGCGTTCTGGACGCGCTGTCCACGGACATG >Z44808_0_0_72347 (SEQ ID NO:1019) ATGTTCTTAGGAGGCAAGCCAGGAGAAGCCGGGTCTGACTTTTCAGCTCA >Z44808_0_0_72349 (SEQ ID NO:1020) TCCTCCAGACCCAAAGCCACAACCCATCGCAAGTCAAGAACACTTTCCAG >S67314_0_0_741 (SEQ ID NO:1021) CACAGAGCCAGGATGTTCTTCTGACCTCAGTATCTACTCCAGCTCCAGCT >S67314_0_0_744 (SEQ ID NO:1022) TGGCATGCTGGAACATGGACTCTAGCTAGCAAGAAGGGCTCAAGGAGGTG >Z39337_0_0_66755 (SEQ ID NO:1023) GCAGGGGTTAAAAGGACGTTCCAGAAGCATCTGGGGACAGAACCAGCCTC >Z39337_0_9_0 (SEQ ID NO:1024) TAATAAACGCAGCGACGTGAGGGTCCTGATTCTCCCTGGTTTTACCCCAG >HUMPHOSLIP_0_0_18458 (SEQ ID NO:1025) AAGGAAGCAGGACCAGTGGATGTGAGGCGTGGTCGAAGAACAACAGAAAG >HUMPHOSLIP_0_0_18487 (SEQ ID NO:1026) ACAGGGGCCAGATGGTGACCCATGACCCAGCCTAAAAGGCAGCCAGAGGG >M78530_0_6_0 (SEQ ID NO:1027) CTTCCTACACACATCTAGACGTTCAAGTTTGCAAATCAGTTTTTAGCAAG >HSMUC1A_0_37_0 (SEQ ID NO:1028) AAAAGGAGACTTCGGCTACCCAGAGAAGTTCAGTGCCCAGCTCTACTGAG >HSMUC1A_0_0_11364 (SEQ ID NO:1029) AAAGGCTGGCATAGGGGGAGGTTTCCCAGGTAGAAGAAGAAGTGTCAGCA >HSMUC1A_0_0_11365 (SEQ ID NO:1030) AATTAACCCTTTGAGAGCTGGCCAGGACTCTGGACTGATTACCCCAGCCT

Oligonucleotide microarray results taken from Affymetrix data were from chips available from Affymetrix Inc, Santa Clara, Calif., USA (see for example data regarding the Human Genome U133 (HG-U133) Set at www.affymetrix.com/products/arrays/specific/hgu133.affx; GeneChip Human Genome U133A 2.0 Array at www.affymetrix.com/products/arrays/specific/hgu133av2.affx; and Human Genome U133 Plus 2.0 Array at www.affymetrix.com/products/arrays/specific/hgu133plus.affx). The probe names follow the Affymetrix naming convention. The data is available from NCBI Gene Expression Omnibus (see www.ncbi.nlm.nih.gov/projects/geo/ and Edgar et al, Nucleic Acids Research, 2002, Vol. 30, No. 1207-210). The dataset (including results) is available from www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1133 for the Series GSE1133 database (published on March 2004); a reference to these results is as follows: Su et al (Proc Natl Acad Sci USA. 2004 Apr. 20; 101(16):6062-7. Epub 2004 Apr. 9).

The following list of abbreviations for tissues was used in the TAA histograms. The term “TAA” stands for “Tumor Associated Antigen”, and the TAA histograms, given in the text, represent the cancerous tissue expression pattern as predicted by the biomarkers selection engine, as described in detail in examples 1-5 below (the first word is the abbreviation while the second word is the full name):

  • (“BONE”, “bone”);
  • (“COL”, “colon”);
  • (“EPI”, “epithelial”);
  • (“GEN”, “general”);
  • (“LIVER”, “liver”);
  • (“LUN”, “lung”);
  • (“LYMPH”, “lymph nodes”);
  • (“MARROW”, “bone marrow”);
  • (“OVA”, “ovary”);
  • (“PANCREAS”, “pancreas”);
  • (“PRO”, “prostate”);
  • (“STOMACH”, “stomach”);
  • (“TCELL”, “T cells”);
  • (“THYROID”, “Thyroid”);
  • (“MAM”, “breast”);
  • (“BRAIN”, “brain”);
  • (“UTERUS”, “uterus”);
  • (“SKIN”, “skin”);
  • (“KIDNEY”, “kidney”);
  • (“MUSCLE”, “muscle”);
  • (“ADREN”, “adrenal”);
  • (“HEAD”, “head and neck”);
  • (“BLADDER”, “bladder”);

It should be noted that the terms “segment”, “seg” and “node” are used interchangeably in reference to nucleic acid sequences of the present invention; they refer to portions of nucleic acid sequences that were shown to have one or more properties as described below. They are also the building blocks that were used to construct complete nucleic acid sequences as described in greater detail below. Optionally and preferably, they are examples of oligonucleotides which are embodiments of the present invention, for example as amplicons, hybridization units and/or from which primers and/or complementary oligonucleotides may optionally be derived, and/or for any other use.

Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). All of these are hereby incorporated by reference as if fully set forth herein. As used herein, the following terms have the meanings ascribed to them unless specified otherwise.

As used herein the phrase “ovarian cancer” refers to cancers of the ovary including but not limited to Ovarian epithelial tumors (serous, mucinous, endometroid, clear cell, and Brenner tumor), ovarian germ-cell tumors, (teratoma, dysgerminoma, endodermal sinus tumor, and embryonal carcinoma) and ovarian stromal tumors (originating from granulosa, theca, Sertoli, Leydig, and collagen-producing stromal cells).

The term “marker” in the context of the present invention refers to a nucleic acid fragment, a peptide, or a polypeptide, which is differentially present in a sample taken from subjects (patients) having ovarian cancer as compared to a comparable sample taken from subjects who do not have ovarian cancer.

The phrase “differentially present” refers to differences in the quantity of a marker present in a sample taken from patients having ovarian cancer as compared to a comparable sample taken from patients who do not have ovarian cancer. For example, a nucleic acid fragment may optionally be differentially present between the two samples if the amount of the nucleic acid fragment in one sample is significantly different from the amount of the nucleic acid fragment in the other sample, for example as measured by hybridization and/or NAT-based assays. A polypeptide is differentially present between the two samples if the amount of the polypeptide in one sample is significantly different from the amount of the polypeptide in the other sample. It should be noted that if the marker is detectable in one sample and not detectable in the other, then such a marker can be considered to be differentially present.

As used herein the phrase “diagnostic” means identifying the presence or nature of a pathologic condition. Diagnostic methods differ in their sensitivity and specificity. The “sensitivity” of a diagnostic assay is the percentage of diseased individuals who test positive (percent of “true positives”). Diseased individuals not detected by the assay are “false negatives.” Subjects who are not diseased and who test negative in the assay are termed “true negatives.” The “specificity” of a diagnostic assay is 1 minus the false positive rate, where the “false positive” rate is defined as the proportion of those without the disease who test positive. While a particular diagnostic method may not provide a definitive diagnosis of a condition, it suffices if the method provides a positive indication that aids in diagnosis.

As used herein the phrase “diagnosing” refers to classifying a disease or a symptom, determining a severity of the disease, monitoring disease progression, forecasting an outcome of a disease and/or prospects of recovery. The term “detecting” may also optionally encompass any of the above.

Diagnosis of a disease according to the present invention can be effected by determining a level of a polynucleotide or a polypeptide of the present invention in a biological sample obtained from the subject, wherein the level determined can be correlated with predisposition to, or presence or absence of the disease. It should be noted that a “biological sample obtained from the subject” may also optionally comprise a sample that has not been physically removed from the subject, as described in greater detail below.

As used herein, the term “level” refers to expression levels of RNA and/or protein or to DNA copy number of a marker of the present invention.

Typically the level of the marker in a biological sample obtained from the subject is different (i.e., increased or decreased) from the level of the same variant in a similar sample obtained from a healthy individual (examples of biological samples are described herein).

Numerous well known tissue or fluid collection methods can be utilized to collect the biological sample from the subject in order to determine the level of DNA, RNA and/or polypeptide of the variant of interest in the subject.

Examples include, but are not limited to, fine needle biopsy, needle biopsy, core needle biopsy and surgical biopsy (e.g., brain biopsy), and lavage. Regardless of the procedure employed, once a biopsy/sample is obtained the level of the variant can be determined and a diagnosis can thus be made.

Determining the level of the same variant in normal tissues of the same origin is preferably effected along-side to detect an elevated expression and/or amplification and/or a decreased expression, of the variant as opposed to the normal tissues.

A “test amount” of a marker refers to an amount of a marker in a subject's sample that is consistent with a diagnosis of ovarian cancer. A test amount can be either in absolute amount (e.g., microgram/ml) or a relative amount (e.g., relative intensity of signals).

A “control amount” of a marker can be any amount or a range of amounts to be compared against a test amount of a marker. For example, a control amount of a marker can be the amount of a marker in a patient with ovarian cancer or a person without ovarian cancer. A control amount can be either in absolute amount (e.g., microgram/ml) or a relative amount (e.g., relative intensity of signals).

“Detect” refers to identifying the presence, absence or amount of the object to be detected.

A “label” includes any moiety or item detectable by spectroscopic, photo chemical, biochemical, immunochemical, or chemical means. For example, useful labels include 32P, 35S, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin-streptavadin, dioxigenin, haptens and proteins for which antisera or monoclonal antibodies are available, or nucleic acid molecules with a sequence complementary to a target. The label often generates a measurable signal, such as a radioactive, chromogenic, or fluorescent signal, that can be used to quantify the amount of bound label in a sample. The label can be incorporated in or attached to a primer or probe either covalently, or through ionic, van der Waals or hydrogen bonds, e.g., incorporation of radioactive nucleotides, or biotinylated nucleotides that are recognized by streptavadin. The label may be directly or indirectly detectable. Indirect detection can involve the binding of a second label to the first label, directly or indirectly. For example, the label can be the ligand of a binding partner, such as biotin, which is a binding partner for streptavadin, or a nucleotide sequence, which is the binding partner for a complementary sequence, to which it can specifically hybridize. The binding partner may itself be directly detectable, for example, an antibody may be itself labeled with a fluorescent molecule. The binding partner also may be indirectly detectable, for example, a nucleic acid having a complementary nucleotide sequence can be a part of a branched DNA molecule that is in turn detectable through hybridization with other labeled nucleic acid molecules (see, e.g., P. D. Fahrlander and A. Klausner, Bio/Technology 6:1165 (1988)). Quantitation of the signal is achieved by, e.g., scintillation counting, densitometry, or flow cytometry.

Exemplary detectable labels, optionally and preferably for use with immunoassays, include but are not limited to magnetic beads, fluorescent dyes, radiolabels, enzymes (e.g., horse radish peroxide, alkaline phosphatase and others commonly used in an ELISA), and calorimetric labels such as colloidal gold or colored glass or plastic beads. Alternatively, the marker in the sample can be detected using an indirect assay, wherein, for example, a second, labeled antibody is used to detect bound marker-specific antibody, and/or in a competition or inhibition assay wherein, for example, a monoclonal antibody which binds to a distinct epitope of the marker are incubated simultaneously with the mixture.

“Immunoassay” is an assay that uses an antibody to specifically bind an antigen. The immunoassay is characterized by the use of specific binding properties of a particular antibody to isolate, target, and/or quantify the antigen.

The phrase “specifically (or selectively) binds” to an antibody or “specifically (or selectively) immunoreactive with,” when referring to a protein or peptide (or other epitope), refers to a binding reaction that is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein at least two times greater than the background (non-specific signal) and do not substantially bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies raised to seminal basic protein from specific species such as rat, mouse, or human can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with seminal basic protein and not with other proteins, except for polymorphic variants and alleles of seminal basic protein. This selection may be achieved by subtracting out antibodies that cross-react with seminal basic protein molecules from other species. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988), for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity). Typically a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 to 100 times background.

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name H61775_T21 (SEQ ID NO. 1) H61775_T22 (SEQ ID NO: 2)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name H61775_node_2 (SEQ ID NO: 3) H61775_node_4 (SEQ ID NO: 4) H61775_node_6 (SEQ ID NO: 5) H61775_node_8 (SEQ ID NO: 6) H61775_node_0 (SEQ ID NO: 7) H61775_node_5 (SEQ ID NO: 8)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below amino acid sequence comprising a sequence in the table below:

Protein Name H61775_P16 (SEQ ID NO: 9) H61775_P17 (SEQ ID NO: 10)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HUMCEA_PEA_1_T8 (SEQ ID NO: 502) HUMCEA_PEA_1_T9 (SEQ ID NO: 503) HUMCEA_PEA_1_T20 (SEQ ID NO: 504) HUMCEA_PEA_1_T25 (SEQ ID NO: 505) HUMCEA_PEA_1_T26 (SEQ ID NO: 506)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HUMCEA_PEA_1_node_0 (SEQ ID NO: 507) HUMCEA_PEA_1_node_2 (SEQ ID NO: 508) HUMCEA_PEA_1_node_11 (SEQ ID NO: 509) HUMCEA_PEA_1_node_12 (SEQ ID NO: 510) HUMCEA_PEA_1_node_31 (SEQ ID NO: 511) HUMCEA_PEA_1_node_36 (SEQ ID NO: 512) HUMCEA_PEA_1_node_44 (SEQ ID NO: 513) HUMCEA_PEA_1_node_46 (SEQ ID NO: 514) HUMCEA_PEA_1_node_63 (SEQ ID NO: 515) HUMCEA_PEA_1_node_65 (SEQ ID NO: 516) HUMCEA_PEA_1_node_67 (SEQ ID NO: 517) HUMCEA_PEA_1_node_3 (SEQ ID NO: 518) HUMCEA_PEA_1_node_7 (SEQ ID NO: 519) HUMCEA_PEA_1_node_8 (SEQ ID NO: 520) HUMCEA_PEA_1_node_9 (SEQ ID NO: 521) HUMCEA_PEA_1_node_10 (SEQ ID NO: 522) HUMCEA_PEA_1_node_15 (SEQ ID NO: 523) HUMCEA_PEA_1_node_16 (SEQ ID NO: 524) HUMCEA_PEA_1_node_17 (SEQ ID NO: 525) HUMCEA_PEA_1_node_18 (SEQ ID NO: 526) HUMCEA_PEA_1_node_19 (SEQ ID NO: 527) HUMCEA_PEA_1_node_20 (SEQ ID NO: 528) HUMCEA_PEA_1_node_21 (SEQ ID NO: 529) HUMCEA_PEA_1_node_22 (SEQ ID NO: 530) HUMCEA_PEA_1_node_23 (SEQ ID NO: 531) HUMCEA_PEA_1_node_24 (SEQ ID NO: 532) HUMCEA_PEA_1_node_27 (SEQ ID NO: 533) HUMCEA_PEA_1_node_29 (SEQ ID NO: 534) HUMCEA_PEA_1_node_30 (SEQ ID NO: 535) HUMCEA_PEA_1_node_33 (SEQ ID NO: 536) HUMCEA_PEA_1_node_34 (SEQ ID NO: 537) HUMCEA_PEA_1_node_35 (SEQ ID NO: 538) HUMCEA_PEA_1_node_45 (SEQ ID NO: 539) HUMCEA_PEA_1_node_50 (SEQ ID NO: 540) HUMCEA_PEA_1_node_51 (SEQ ID NO: 541) HUMCEA_PEA_1_node_56 (SEQ ID NO: 542) HUMCEA_PEA_1_node_57 (SEQ ID NO: 543) HUMCEA_PEA_1_node_58 (SEQ ID NO: 544) HUMCEA_PEA_1_node_60 (SEQ ID NO: 545) HUMCEA_PEA_1_node_61 (SEQ ID NO: 546) HUMCEA_PEA_1_node_62 (SEQ ID NO: 547) HUMCEA_PEA_1_node_64 (SEQ ID NO: 548)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name Corresponding Transcript(s) HUMCEA_PEA_1_P4 (SEQ ID NO: 550) HUMCEA_PEA_1_T8 (SEQ ID NO: 502) HUMCEA_PEA_1_P5 (SEQ ID NO: 551) HUMCEA_PEA_1_T9 (SEQ ID NO: 503) HUMCEA_PEA_1_P14 HUMCEA_PEA_1_T20 (SEQ ID NO: 552) (SEQ ID NO: 504) HUMCEA_PEA_1_P19 HUMCEA_PEA_1_T25 (SEQ ID NO: 553) (SEQ ID NO: 505) HUMCEA_PEA_1_P20 HUMCEA_PEA_1_T26 (SEQ ID NO: 554) (SEQ ID NO: 506)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HUMEDF_PEA_2_T5 (SEQ ID NO: 555) HUMEDF_PEA_2_T10 (SEQ ID NO: 556) HUMEDF_PEA_2_T11 (SEQ ID NO: 557)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HUMEDF_PEA_2_node_6 (SEQ ID NO: 558) HUMEDF_PEA_2_node_11 (SEQ ID NO: 559) HUMEDF_PEA_2_node_18 (SEQ ID NO: 560) HUMEDF_PEA_2_node_19 (SEQ ID NO: 561) HUMEDF_PEA_2_node_22 (SEQ ID NO: 562) HUMEDF_PEA_2_node_2 (SEQ ID NO: 563) HUMEDF_PEA_2_node_8 (SEQ ID NO: 564) HUMEDF_PEA_2_node_20 (SEQ ID NO: 565)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name Corresponding Transcript(s) HUMEDF_PEA_2_P5 (SEQ ID NO: 567) HUMEDF_PEA_2_T10 (SEQ ID NO: 556) HUMEDF_PEA_2_P6 (SEQ ID NO: 568) HUMEDF_PEA_2_T11 (SEQ ID NO: 557) HUMEDF_PEA_2_P8 (SEQ ID NO: 569) HUMEDF_PEA_2_T5 (SEQ ID NO: 555)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HSAPHOL_T10 (SEQ ID NO: 11) HSAPHOL_T4 (SEQ ID NO: 12) HSAPHOL_T5 (SEQ ID NO: 13) HSAPHOL_T6 (SEQ ID NO: 14) HSAPHOL_T7 (SEQ ID NO: 15) HSAPHOL_T8 (SEQ ID NO: 16) HSAPHOL_T9 (SEQ ID NO: 17)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HSAPHOL_node_11 (SEQ ID NO: 18) HSAPHOL_node_13 (SEQ ID NO: 19) HSAPHOL_node_15 (SEQ ID NO: 20) HSAPHOL_node_19 (SEQ ID NO: 21) HSAPHOL_node_2 (SEQ ID NO: 22) HSAPHOL_node_21 (SEQ ID NO: 23) HSAPHOL_node_23 (SEQ ID NO: 24) HSAPHOL_node_26 (SEQ ID NO: 25) HSAPHOL_node_28 (SEQ ID NO: 26) HSAPHOL_node_38 (SEQ ID NO: 27) HSAPHOL_node_40 (SEQ ID NO: 28) HSAPHOL_node_42 (SEQ ID NO: 29) HSAPHOL_node_16 (SEQ ID NO: 30) HSAPHOL_node_25 (SEQ ID NO: 31) HSAPHOL_node_34 (SEQ ID NO: 32) HSAPHOL_node_35 (SEQ ID NO: 33) HSAPHOL_node_36 (SEQ ID NO: 34) HSAPHOL_node_41 (SEQ ID NO: 35)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HSAPHOL_P2 (SEQ ID NO: 37) HSAPHOL_P3 (SEQ ID NO: 38) HSAPHOL_P4 (SEQ ID NO: 39) HSAPHOL_P5 (SEQ ID NO: 40) HSAPHOL_P6 (SEQ ID NO: 41) HSAPHOL_P7 (SEQ ID NO: 42) HSAPHOL_P8 (SEQ ID NO: 43)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name T10888_PEA_1_T1 (SEQ ID NO: 44) T10888_PEA_1_T4 (SEQ ID NO: 45) T10888_PEA_1_T5 (SEQ ID NO: 46) T10888_PEA_1_T6 (SEQ ID NO: 47)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name T10888_PEA_1_node_11 (SEQ ID NO: 48) T10888_PEA_1_node_12 (SEQ ID NO: 49) T10888_PEA_1_node_17 (SEQ ID NO: 50) T10888_PEA_1_node_4 (SEQ ID NO: 51) T10888_PEA_1_node_6 (SEQ ID NO: 52) T10888_PEA_1_node_7 (SEQ ID NO: 53) T10888_PEA_1_node_9 (SEQ ID NO: 54) T10888_PEA_1_node_15 (SEQ ID NO: 55)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name T10888_PEA_1_P2 (SEQ ID NO: 57) T10888_PEA_1_P4 (SEQ ID NO: 58) T10888_PEA_1_P5 (SEQ ID NO: 59) T10888_PEA_1_P6 (SEQ ID NO: 60)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HSECADH_T11 (SEQ ID NO: 61) HSECADH_T18 (SEQ ID NO: 62) HSECADH_T19 (SEQ ID NO: 63) HSECADH_T20 (SEQ ID NO: 64)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HSECADH_node_0 (SEQ ID NO: 65) HSECADH_node_14 (SEQ ID NO: 66) HSECADH_node_15 (SEQ ID NO: 67) HSECADH_node_21 (SEQ ID NO: 68) HSECADH_node_22 (SEQ ID NO: 69) HSECADH_node_25 (SEQ ID NO: 70) HSECADH_node_26 (SEQ ID NO: 71) HSECADH_node_48 (SEQ ID NO: 72) HSECADH_node_52 (SEQ ID NO: 73) HSECADH_node_53 (SEQ ID NO: 74) HSECADH_node_54 (SEQ ID NO: 75) HSECADH_node_57 (SEQ ID NO: 76) HSECADH_node_60 (SEQ ID NO: 77) HSECADH_node_62 (SEQ ID NO: 78) HSECADH_node_63 (SEQ ID NO: 79) HSECADH_node_7 (SEQ ID NO: 80) HSECADH_node_1 (SEQ ID NO: 81) HSECADH_node_11 (SEQ ID NO: 82) HSECADH_node_12 (SEQ ID NO: 83) HSECADH_node_17 (SEQ ID NO: 84) HSECADH_node_18 (SEQ ID NO: 85) HSECADH_node_19 (SEQ ID NO: 86) HSECADH_node_3 (SEQ ID NO: 87) HSECADH_node_42 (SEQ ID NO: 88) HSECADH_node_45 (SEQ ID NO: 89) HSECADH_node_46 (SEQ ID NO: 90) HSECADH_node_55 (SEQ ID NO: 91) HSECADH_node_56 (SEQ ID NO: 92) HSECADH_node_58 (SEQ ID NO: 93) HSECADH_node_59 (SEQ ID NO: 94)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HSECADH_P9 (SEQ ID NO: 96) HSECADH_P13 (SEQ ID NO: 97) HSECADH_P14 (SEQ ID NO: 98) HSECADH_P15 (SEQ ID NO: 99)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HUMGRP5E_T4 (SEQ ID NO: 100) HUMGRP5E_T5 (SEQ ID NO: 101)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HUMGRP5E_node_0 (SEQ ID NO: 102) HUMGRP5E_node_2 (SEQ ID NO: 103) HUMGRP5E_node_8 (SEQ ID NO: 104) HUMGRP5E_node_3 (SEQ ID NO: 105) HUMGRP5E_node_7 (SEQ ID NO: 106)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HUMGRP5E_P4 (SEQ ID NO: 108) HUMGRP5E_P5 (SEQ ID NO: 109)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name R11723_PEA_1_T15 (SEQ ID NO: 110) R11723_PEA_1_T17 (SEQ ID NO: 111) R11723_PEA_1_T19 (SEQ ID NO: 112) R11723_PEA_1_T20 (SEQ ID NO: 113) R11723_PEA_1_T5 (SEQ ID NO: 114) R11723_PEA_1_T6 (SEQ ID NO: 115)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name R11723_PEA_1_node_13 (SEQ ID NO: 116) R11723_PEA_1_node_16 (SEQ ID NO: 117) R11723_PEA_1_node_19 (SEQ ID NO: 118) R11723_PEA_1_node_2 (SEQ ID NO: 119) R11723_PEA_1_node_22 (SEQ ID NO: 120) R11723_PEA_1_node_31 (SEQ ID NO: 121) R11723_PEA_1_node_10 (SEQ ID NO: 122) R11723_PEA_1_node_11 (SEQ ID NO: 123) R11723_PEA_1_node_15 (SEQ ID NO: 124) R11723_PEA_1_node_18 (SEQ ID NO: 125) R11723_PEA_1_node_20 (SEQ ID NO: 126) R11723_PEA_1_node_21 (SEQ ID NO: 127) R11723_PEA_1_node_23 (SEQ ID NO: 128) R11723_PEA_1_node_24 (SEQ ID NO: 129) R11723_PEA_1_node_25 (SEQ ID NO: 130) R11723_PEA_1_node_26 (SEQ ID NO: 131) R11723_PEA_1_node_27 (SEQ ID NO: 132) R11723_PEA_1_node_28 (SEQ ID NO: 133) R11723_PEA_1_node_29 (SEQ ID NO: 134) R11723_PEA_1_node_3 (SEQ ID NO: 135) R11723_PEA_1_node_30 (SEQ ID NO: 136) R11723_PEA_1_node_4 (SEQ ID NO: 137) R11723_PEA_1_node_5 (SEQ ID NO: 138) R11723_PEA_1_node_6 (SEQ ID NO: 139) R11723_PEA_1_node_7 (SEQ ID NO: 140) R11723_PEA_1_node_8 (SEQ ID NO: 141)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name R11723_PEA_1_P2 (SEQ ID NO: 142) R11723_PEA_1_P6 (SEQ ID NO: 143) R11723_PEA_1_P7 (SEQ ID NO: 144) R11723_PEA_1_P13 (SEQ ID NO: 145) R11723_PEA_1_P10 (SEQ ID NO: 146)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name D56406_PEA_1_T3 (SEQ ID NO: 147) D56406_PEA_1_T6 (SEQ ID NO: 148) D56406_PEA_1_T7 (SEQ ID NO: 149)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name D56406_PEA_1_node_0 (SEQ ID NO: 150) D56406_PEA_1_node_13 (SEQ ID NO: 151) D56406_PEA_1_node_11 (SEQ ID NO: 152) D56406_PEA_1_node_2 (SEQ ID NO: 153) D56406_PEA_1_node_3 (SEQ ID NO: 154) D56406_PEA_1_node_5 (SEQ ID NO: 155) D56406_PEA_1_node_6 (SEQ ID NO: 156) D56406_PEA_1_node_7 (SEQ ID NO: 157) D56406_PEA_1_node_8 (SEQ ID NO: 158) D56406_PEA_1_node_9 (SEQ ID NO: 159)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name D56406_PEA_1_P2 (SEQ ID NO: 161) D56406_PEA_1_P5 (SEQ ID NO: 162) D56406_PEA_1_P6 (SEQ ID NO: 163)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name H53393_PEA_1_T10 (SEQ ID NO: 164) H53393_PEA_1_T11 (SEQ ID NO: 165) H53393_PEA_1_T3 (SEQ ID NO: 166) H53393_PEA_1_T9 (SEQ ID NO: 167)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name H53393_PEA_1_node_0 (SEQ ID NO: 168) H53393_PEA_1_node_10 (SEQ ID NO: 169) H53393_PEA_1_node_12 (SEQ ID NO: 170) H53393_PEA_1_node_13 (SEQ ID NO: 171) H53393_PEA_1_node_15 (SEQ ID NO: 172) H53393_PEA_1_node_17 (SEQ ID NO: 173) H53393_PEA_1_node_19 (SEQ ID NO: 174) H53393_PEA_1_node_23 (SEQ ID NO: 175) H53393_PEA_1_node_24 (SEQ ID NO: 176) H53393_PEA_1_node_25 (SEQ ID NO: 177) H53393_PEA_1_node_29 (SEQ ID NO: 178) H53393_PEA_1_node_4 (SEQ ID NO: 179) H53393_PEA_1_node_6 (SEQ ID NO: 180) H53393_PEA_1_node_8 (SEQ ID NO: 181) H53393_PEA_1_node_21 (SEQ ID NO: 182) H53393_PEA_1_node_22 (SEQ ID NO: 183)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name H53393_PEA_1_P2 (SEQ ID NO: 185) H53393_PEA_1_P3 (SEQ ID NO: 186) H53393_PEA_1_P6 (SEQ ID NO: 187)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HSU40434_PEA_1_T13 (SEQ ID NO: 188)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HSU40434_PEA_1_node_1 (SEQ ID NO: 189) HSU40434_PEA_1_node_16 (SEQ ID NO: 190) HSU40434_PEA_1_node_30 (SEQ ID NO: 191) HSU40434_PEA_1_node_32 (SEQ ID NO: 192) HSU40434_PEA_1_node_57 (SEQ ID NO: 193) HSU40434_PEA_1_node_0 (SEQ ID NO: 194) HSU40434_PEA_1_node_10 (SEQ ID NO: 195) HSU40434_PEA_1_node_13 (SEQ ID NO: 196) HSU40434_PEA_1_node_18 (SEQ ID NO: 197) HSU40434_PEA_1_node_2 (SEQ ID NO: 198) HSU40434_PEA_1_node_20 (SEQ ID NO: 199) HSU40434_PEA_1_node_21 (SEQ ID NO: 200) HSU40434_PEA_1_node_23 (SEQ ID NO: 201) HSU40434_PEA_1_node_24 (SEQ ID NO: 202) HSU40434_PEA_1_node_26 (SEQ ID NO: 203) HSU40434_PEA_1_node_28 (SEQ ID NO: 204) HSU40434_PEA_1_node_3 (SEQ ID NO: 205) HSU40434_PEA_1_node_35 (SEQ ID NO: 206) HSU40434_PEA_1_node_36 (SEQ ID NO: 207) HSU40434_PEA_1_node_37 (SEQ ID NO: 208) HSU40434_PEA_1_node_38 (SEQ ID NO: 209) HSU40434_PEA_1_node_39 (SEQ ID NO: 210) HSU40434_PEA_1_node_40(SEQ ID NO: 211) HSU40434_PEA_1_node_41 (SEQ ID NO: 212) HSU40434_PEA_1_node_42 (SEQ ID NO: 213) HSU40434_PEA_1_node_43 (SEQ ID NO: 214) HSU40434_PEA_1_node_44 (SEQ ID NO: 215) HSU40434_PEA_1_node_47 (SEQ ID NO: 216) HSU40434_PEA_1_node_48 (SEQ ID NO: 217) HSU40434_PEA_1_node_51 (SEQ ID NO: 218) HSU40434_PEA_1_node_52 (SEQ ID NO: 219) HSU40434_PEA_1_node_53 (SEQ ID NO: 220) HSU40434_PEA_1_node_54 (SEQ ID NO: 221) HSU40434_PEA_1_node_56 (SEQ ID NO: 222) HSU40434_PEA_1_node_7 (SEQ ID NO: 223) HSU40434_PEA_1_node_8(SEQ ID NO: 224)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HSU40434_PEA_1_P12 (SEQ ID NO: 226)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name M77904_T11 (SEQ ID NO: 227) M77904_T3 (SEQ ID NO: 228) M77904_T8 (SEQ ID NO: 229) M77904_T9 (SEQ ID NO: 230)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name M77904_node_0 (SEQ ID NO: 231) M77904_node_11 (SEQ ID NO: 232) M77904_node_12 (SEQ ID NO: 233) M77904_node_14 (SEQ ID NO: 234) M77904_node_15 (SEQ ID NO: 235) M77904_node_17 (SEQ ID NO: 236) M77904_node_2 (SEQ ID NO: 237) M77904_node_21 (SEQ ID NO: 238) M77904_node_23 (SEQ ID NO: 239) M77904_node_24 (SEQ ID NO: 240) M77904_node_27 (SEQ ID NO: 241) M77904_node_28 (SEQ ID NO: 242) M77904_node_4 (SEQ ID NO: 243) M77904_node_6 (SEQ ID NO: 244) M77904_node_7 (SEQ ID NO: 245) M77904_node_8 (SEQ ID NO: 246) M77904_node_9 (SEQ ID NO: 247) M77904_node_19 (SEQ ID NO: 248) M77904_node_22 (SEQ ID NO: 249) M77904_node_25 (SEQ ID NO: 250) M77904_node_26 (SEQ ID NO: 251)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name M77904_P2 (SEQ ID NO: 252) M77904_P4 (SEQ ID NO: 253) M77904_P5 (SEQ ID NO: 254) M77904_P7 (SEQ ID NO: 255)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name Z25299_PEA_2_T1 (SEQ ID NO: 256) Z25299_PEA_2_T2 (SEQ ID NO: 257) Z25299_PEA_2_T3 (SEQ ID NO: 258) Z25299_PEA_2_T6 (SEQ ID NO: 259) Z25299_PEA_2_T9 (SEQ ID NO: 260)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name Z25299_PEA_2_node_20 (SEQ ID NO: 261) Z25299_PEA_2_node_21 (SEQ ID NO: 262) Z25299_PEA_2_node_23 (SEQ ID NO: 263) Z25299_PEA_2_node_24 (SEQ ID NO: 264) Z25299_PEA_2_node_8 (SEQ ID NO: 265) Z25299_PEA_2_node_12 (SEQ ID NO: 266) Z25299_PEA_2_node_13 (SEQ ID NO: 267) Z25299_PEA_2_node_14 (SEQ ID NO: 268) Z25299_PEA_2_node_17 (SEQ ID NO: 269) Z25299_PEA_2_node_18 (SEQ ID NO: 270) Z25299_PEA_2_node_19 (SEQ ID NO: 271)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name Z25299_PEA_2_P2 (SEQ ID NO: 273) Z25299_PEA_2_P3 (SEQ ID NO: 274) Z25299_PEA_2_P7 (SEQ ID NO: 275) Z25299_PEA_2_P10 (SEQ ID NO: 276)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name T39971_T10 (SEQ ID NO: 570) T39971_T12 (SEQ ID NO: 571) T39971_T16 (SEQ ID NO: 572) T39971_T5 (SEQ ID NO: 573)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name T39971_node_0 (SEQ ID NO: 574) T39971_node_18 (SEQ ID NO: 575) T39971_node_21 (SEQ ID NO: 576) T39971_node_22 (SEQ ID NO: 577) T39971_node_23 (SEQ ID NO: 578) T39971_node_31 (SEQ ID NO: 579) T39971_node_33 (SEQ ID NO: 580) T39971_node_7 (SEQ ID NO: 581) T39971_node_1 (SEQ ID NO: 582) T39971_node_10 (SEQ ID NO: 583) T39971_node_11 (SEQ ID NO: 584) T39971_node_12 (SEQ ID NO: 585) T39971_node_15 (SEQ ID NO: 586) T39971_node_16 (SEQ ID NO: 587) T39971_node_17 (SEQ ID NO: 588) T39971_node_26 (SEQ ID NO: 589) T39971_node_27 (SEQ ID NO: 590) T39971_node_28 (SEQ ID NO: 591) T39971_node_29 (SEQ ID NO: 592) T39971_node_3 (SEQ ID NO: 593) T39971_node_30 (SEQ ID NO: 594) T39971_node_34 (SEQ ID NO: 595) T39971_node_35 (SEQ ID NO: 596) T39971_node_36 (SEQ ID NO: 597) T39971_node_4 (SEQ ID NO: 598) T39971_node_5 (SEQ ID NO: 599) T39971_node_8 (SEQ ID NO: 600) T39971_node_9 (SEQ ID NO: 601)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name T39971_P6 (SEQ ID NO: 603) T39971_P9 (SEQ ID NO: 604) T39971_P11 (SEQ ID NO: 605) T39971_P12 (SEQ ID NO: 606)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name Z44808_PEA_1_T11 (SEQ ID NO: 607) Z44808_PEA_1_T4 (SEQ ID NO: 608) Z44808_PEA_1_T5 (SEQ ID NO: 609) Z44808_PEA_1_T8 (SEQ ID NO: 610) Z44808_PEA_1_T9 (SEQ ID NO: 611)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name Z44808_PEA_1_node_0 (SEQ ID NO: 612) Z44808_PEA_1_node_16 (SEQ ID NO: 613) Z44808_PEA_1_node_2 (SEQ ID NO: 614) Z44808_PEA_1_node_24 (SEQ ID NO: 615) Z44808_PEA_1_node_32 (SEQ ID NO: 616) Z44808_PEA_1_node_33 (SEQ ID NO: 617) Z44808_PEA_1_node_36 (SEQ ID NO: 618) Z44808_PEA_1_node_37 (SEQ ID NO: 619) Z44808_PEA_1_node_41 (SEQ ID NO: 620) Z44808_PEA_1_node_11 (SEQ ID NO: 621) Z44808_PEA_1_node_13 (SEQ ID NO: 622) Z44808_PEA_1_node_18 (SEQ ID NO: 623) Z44808_PEA_1_node_22(SEQ ID NO: 624) Z44808_PEA_1_node_26 (SEQ ID NO: 625) Z44808_PEA_1_node_30 (SEQ ID NO: 626) Z44808_PEA_1_node_34 (SEQ ID NO: 627) Z44808_PEA_1_node_35 (SEQ ID NO: 628) Z44808_PEA_1_node_39 (SEQ ID NO: 629) Z44808_PEA_1_node_4 (SEQ ID NO: 630) Z44808_PEA_1_node_6 (SEQ ID NO: 631) Z44808_PEA_1_node_8 (SEQ ID NO: 632)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name Z44808_PEA_1_P5 (SEQ ID NO: 634) Z44808_PEA_1_P6 (SEQ ID NO: 635) Z44808_PEA_1_P7 (SEQ ID NO: 636) Z44808_PEA_1_P11 (SEQ ID NO: 637)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name S67314_PEA_1_T4 (SEQ ID NO: 638) S67314_PEA_1_T5 (SEQ ID NO: 639) S67314_PEA_1_T6 (SEQ ID NO: 640) S67314_PEA_1_T7 (SEQ ID NO: 641

a nucleic acid sequence comprising a sequence in the table below:

Segment Name S67314_PEA_1_node_0 (SEQ ID NO: 642) S67314_PEA_1_node_11 (SEQ ID NO: 643) S67314_PEA_1_node_13 (SEQ ID NO: 644) S67314_PEA_1_node_15 (SEQ ID NO: 645) S67314_PEA_1_node_17 (SEQ ID NO: 646) S67314_PEA_1_node_4 (SEQ ID NO: 647) S67314_PEA_1_node_10 (SEQ ID NO: 648) S67314_PEA_1_node_3 (SEQ ID NO: 649)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name S67314_PEA_1_P4 (SEQ ID NO: 651) S67314_PEA_1_P5 (SEQ ID NO: 652) S67314_PEA_1_P6 (SEQ ID NO: 653) S67314_PEA_1_P7 (SEQ ID NO: 654)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name Z39337_PEA_2_PEA_1_T3 (SEQ ID NO: 655) Z39337_PEA_2_PEA_1_T6 (SEQ ID NO: 656) Z39337_PEA_2_PEA_1_T12 (SEQ ID NO: 657)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name Z39337_PEA_2_PEA_1_node_2 (SEQ ID NO: Z39337_PEA_2_PEA_1_node_15 (SEQ ID NO: 659) Z39337_PEA_2_PEA_1_node_16 (SEQ ID NO: 660) Z39337_PEA_2_PEA_1_node_18 (SEQ ID NO: 661) Z39337_PEA_2_PEA_1_node_21 (SEQ ID NO: 662) Z39337_PEA_2_PEA_1_node_22 (SEQ ID NO: 663) Z39337_PEA_2_PEA_1_node_3 (SEQ ID NO: 664) Z39337_PEA_2_PEA_1_node_5 (SEQ ID NO: 665) Z39337_PEA_2_PEA_1_node_6 (SEQ ID NO: 666) Z39337_PEA_2_PEA_1_node_10 (SEQ ID NO: 667) Z39337_PEA_2_PEA_1_node_11 (SEQ ID NO: 668) Z39337_PEA_2_PEA_1_node_14 (SEQ ID NO: 669)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name Z39337_PEA_2_PEA_1_P4 (SEQ ID NO: 671) Z39337_PEA_2_PEA_1_P9 (SEQ ID NO: 672) Z39337_PEA_2_PEA_1_P13 (SEQ ID NO: 673)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HUMPHOSLIP_PEA_2_T6 (SEQ ID NO: 674) HUMPHOSLIP_PEA_2_T7 (SEQ ID NO: 675) HUMPHOSLIP_PEA_2_T14 (SEQ ID NO: 676) HUMPHOSLIP_PEA_2_T16 (SEQ ID NO: 677) HUMPHOSLIP_PEA_2_T17 (SEQ ID NO: 678) HUMPHOSLIP_PEA_2_T18 (SEQ ID NO: 679) HUMPHOSLIP_PEA_2_T19 (SEQ ID NO: 680)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HUMPHOSLIP_PEA_2_node_0 (SEQ ID NO: 681) HUMPHOSLIP_PEA_2_node_19 (SEQ ID NO: 682) HUMPHOSLIP_PEA_2_node_34 (SEQ ID NO: 683) HUMPHOSLIP_PEA_2_node_68 (SEQ ID NO: 684) HUMPHOSLIP_PEA_2_node_70 (SEQ ID NO: 685) HUMPHOSLIP_PEA_2_node_75 (SEQ ID NO: 686) HUMPHOSLIP_PEA_2_node_2 (SEQ ID NO: 687) HUMPHOSLIP_PEA_2_node_3 (SEQ ID NO: 688) HUMPHOSLIP_PEA_2_node_4 (SEQ ID NO: 689) HUMPHOSLIP_PEA_2_node_6 (SEQ ID NO: 690) HUMPHOSLIP_PEA_2_node_7 (SEQ ID NO: 691) HUMPHOSLIP_PEA_2_node_8 (SEQ ID NO: 692) HUMPHOSLIP_PEA_2_node_9 (SEQ ID NO: 693) HUMPHOSLIP_PEA_2_node_14 (SEQ ID NO: 694) HUMPHOSLIP_PEA_2_node_15 (SEQ ID NO: 695) HUMPHOSLIP_PEA_2_node_16 (SEQ ID NO: 696) HUMPHOSLIP_PEA_2_node_17 (SEQ ID NO: 697) HUMPHOSLIP_PEA_2_node_23 (SEQ ID NO: 698) HUMPHOSLIP_PEA_2_node_24 (SEQ ID NO: 699) HUMPHOSLIP_PEA_2_node_25 (SEQ ID NO: 700) HUMPHOSLIP_PEA_2_node_26 (SEQ ID NO: 701) HUMPHOSLIP_PEA_2_node_29 (SEQ ID NO: 702) HUMPHOSLIP_PEA_2_node_30 (SEQ ID NO: 703) HUMPHOSLIP_PEA_2_node_33 (SEQ ID NO: 704) HUMPHOSLIP_PEA_2_node_36 (SEQ ID NO: 705) HUMPHOSLIP_PEA_2_node_37 (SEQ ID NO: 706) HUMPHOSLIP_PEA_2_node_39 (SEQ ID NO: 707) HUMPHOSLIP_PEA_2_node_40 (SEQ ID NO: 708) HUMPHOSLIP_PEA_2_node_41 (SEQ ID NO: 709) HUMPHOSLIP_PEA_2_node_42 (SEQ ID NO: 710) HUMPHOSLIP_PEA_2_node_44 (SEQ ID NO: 711) HUMPHOSLIP_PEA_2_node_45 (SEQ ID NO: 712) HUMPHOSLIP_PEA_2_node_47 (SEQ ID NO: 713) HUMPHOSLIP_PEA_2_node_51 (SEQ ID NO: 714) HUMPHOSLIP_PEA_2_node_52 (SEQ ID NO: 715) HUMPHOSLIP_PEA_2_node_53 (SEQ ID NO: 716) HUMPHOSLIP_PEA_2_node_54 (SEQ ID NO: 717) HUMPHOSLIP_PEA_2_node_55 (SEQ ID NO: 718) HUMPHOSLIP_PEA_2_node_58 (SEQ ID NO: 719) HUMPHOSLIP_PEA_2_node_59 (SEQ ID NO: 720) HUMPHOSLIP_PEA_2_node_60 (SEQ ID NO: 721) HUMPHOSLIP_PEA_2_node_61 (SEQ ID NO: 722) HUMPHOSLIP_PEA_2_node_62 (SEQ ID NO: 723) HUMPHOSLIP_PEA_2_node_63 (SEQ ID NO: 724) HUMPHOSLIP_PEA_2_node_64 (SEQ ID NO: 725) HUMPHOSLIP_PEA_2_node_65 (SEQ ID NO: 726) HUMPHOSLIP_PEA_2_node_66 (SEQ ID NO: 727) HUMPHOSLIP_PEA_2_node_67 (SEQ ID NO: 728) HUMPHOSLIP_PEA_2_node_69 (SEQ ID NO: 729) HUMPHOSLIP_PEA_2_node_71 (SEQ ID NO: 730) HUMPHOSLIP_PEA_2_node_72 (SEQ ID NO: 731) HUMPHOSLIP_PEA_2_node_73 (SEQ ID NO: 732) HUMPHOSLIP_PEA_2_node_74 (SEQ ID NO: 733)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HUMPHOSLIP_PEA_2_P10 (SEQ ID NO: 735) HUMPHOSLIP_PEA_2_P12 (SEQ ID NO: 736) HUMPHOSLIP_PEA_2_P30 (SEQ ID NO: 737) HUMPHOSLIP_PEA_2_P31 (SEQ ID NO: 738) HUMPHOSLIP_PEA_2_P33 (SEQ ID NO: 739) HUMPHOSLIP_PEA_2_P34 (SEQ ID NO: 740) HUMPHOSLIP_PEA_2_P35 (SEQ ID NO: 741)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name T59832_T6 (SEQ ID NO: 742) T59832_T8 (SEQ ID NO: 743) T59832_T11 (SEQ ID NO: 744) T59832_T15 (SEQ ID NO: 745) T59832_T22 (SEQ ID NO: 746)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name T59832_node_1 (SEQ ID NO: 747) T59832_node_7 (SEQ ID NO: 748) T59832_node_29 (SEQ ID NO: 749) T59832_node_39 (SEQ ID NO: 750) T59832_node_2 (SEQ ID NO: 751) T59832_node_3 (SEQ ID NO: 752) T59832_node_4 (SEQ ID NO: 753) T59832_node_5 (SEQ ID NO: 754) T59832_node_6 (SEQ ID NO: 755) T59832_node_8 (SEQ ID NO: 756) T59832_node_9 (SEQ ID NO: 757) T59832_node_10 (SEQ ID NO: 758) T59832_node_11 (SEQ ID NO: 759) T59832_node_12 (SEQ ID NO: 760) T59832_node_14 (SEQ ID NO: 761) T59832_node_16 (SEQ ID NO: 762) T59832_node_19 (SEQ ID NO: 763) T59832_node_20 (SEQ ID NO: 764) T59832_node_25 (SEQ ID NO: 765) T59832_node_26 (SEQ ID NO: 766) T59832_node_27 (SEQ ID NO: 767) T59832_node_28 (SEQ ID NO: 768) T59832_node_30 (SEQ ID NO: 769) T59832_node_31 (SEQ ID NO: 770) T59832_node_32 (SEQ ID NO: 771) T59832_node_34 (SEQ ID NO: 772) T59832_node_35 (SEQ ID NO: 773) T59832_node_36 (SEQ ID NO: 774) T59832_node_37 (SEQ ID NO: 775) T59832_node_38 (SEQ ID NO: 776)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name T59832_P5 (SEQ ID NO: 778) T59832_P7 (SEQ ID NO: 779) T59832_P9 (SEQ ID NO: 780) T59832_P12 (SEQ ID NO: 781) T59832_P18 (SEQ ID NO: 782)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HSCP2_PEA_1_T4 (SEQ ID NO: 783) HSCP2_PEA_1_T13 (SEQ ID NO: 784) HSCP2_PEA_1_T19 (SEQ ID NO: 785) HSCP2_PEA_1_T20 (SEQ ID NO: 786) HSCP2_PEA_1_T22 (SEQ ID NO: 787) HSCP2_PEA_1_T23 (SEQ ID NO: 788) HSCP2_PEA_1_T25 (SEQ ID NO: 789) HSCP2_PEA_1_T31 (SEQ ID NO: 790) HSCP2_PEA_1_T33 (SEQ ID NO: 791) HSCP2_PEA_1_T34 (SEQ ID NO: 792) HSCP2_PEA_1_T45 (SEQ ID NO: 793) HSCP2_PEA_1_T50 (SEQ ID NO: 794)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HSCP2_PEA_1_node_0 (SEQ ID NO: 795) HSCP2_PEA_1_node_3 (SEQ ID NO: 796) HSCP2_PEA_1_node_6 (SEQ ID NO: 797) HSCP2_PEA_1_node_8 (SEQ ID NO: 798) HSCP2_PEA_1_node_10 (SEQ ID NO: 799) HSCP2_PEA_1_node_14 (SEQ ID NO: 800) HSCP2_PEA_1_node_23 (SEQ ID NO: 801) HSCP2_PEA_1_node_26 (SEQ ID NO: 802) HSCP2_PEA_1_node_29 (SEQ ID NO: 803) HSCP2_PEA_1_node_31 (SEQ ID NO: 804) HSCP2_PEA_1_node_32 (SEQ ID NO: 805) HSCP2_PEA_1_node_34 (SEQ ID NO: 806) HSCP2_PEA_1_node_52 (SEQ ID NO: 807) HSCP2_PEA_1_node_58 (SEQ ID NO: 808) HSCP2_PEA_1_node_72 (SEQ ID NO: 809) HSCP2_PEA_1_node_73 (SEQ ID NO: 810) HSCP2_PEA_1_node_74 (SEQ ID NO: 811) HSCP2_PEA_1_node_76 (SEQ ID NO: 812) HSCP2_PEA_1_node_78 (SEQ ID NO: 813) HSCP2_PEA_1_node_80 (SEQ ID NO: 814) HSCP2_PEA_1_node_84 (SEQ ID NO: 815) HSCP2_PEA_1_node_4 (SEQ ID NO: 816) HSCP2_PEA_1_node_7 (SEQ ID NO: 817) HSCP2_PEA_1_node_13 (SEQ ID NO: 818) HSCP2_PEA_1_node_15 (SEQ ID NO: 819) HSCP2_PEA_1_node_16 (SEQ ID NO: 820) HSCP2_PEA_1_node_18 (SEQ ID NO: 821) HSCP2_PEA_1_node_20 (SEQ ID NO: 822) HSCP2_PEA_1_node_21 (SEQ ID NO: 823) HSCP2_PEA_1_node_37 (SEQ ID NO: 824) HSCP2_PEA_1_node_38 (SEQ ID NO: 825) HSCP2_PEA_1_node_39 (SEQ ID NO: 826) HSCP2_PEA_1_node_41 (SEQ ID NO: 827) HSCP2_PEA_1_node_42 (SEQ ID NO: 828) HSCP2_PEA_1_node_46 (SEQ ID NO: 829) HSCP2_PEA_1_node_47 (SEQ ID NO: 830) HSCP2_PEA_1_node_50 (SEQ ID NO: 831) HSCP2_PEA_1_node_51 (SEQ ID NO: 832) HSCP2_PEA_1_node_55 (SEQ ID NO: 833) HSCP2_PEA_1_node_56 (SEQ ID NO: 834) HSCP2_PEA_1_node_60 (SEQ ID NO: 835) HSCP2_PEA_1_node_61 (SEQ ID NO: 836) HSCP2_PEA_1_node_67 (SEQ ID NO: 837) HSCP2_PEA_1_node_68 (SEQ ID NO: 838) HSCP2_PEA_1_node_69 (SEQ ID NO: 839) HSCP2_PEA_1_node_70 (SEQ ID NO: 840) HSCP2_PEA_1_node_75 (SEQ ID NO: 841) HSCP2_PEA_1_node_77 (SEQ ID NO: 842) HHSCP2_PEA_1_node_79 (SEQ ID NO: 843) HSCP2_PEA_1_node_82 (SEQ ID NO: 844)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HSCP2_PEA_1_P4 (SEQ ID NO: 846) HSCP2_PEA_1_P8 (SEQ ID NO: 847) HSCP2_PEA_1_P14 (SEQ ID NO: 848) HSCP2_PEA_1_P15 (SEQ ID NO: 849) HSCP2_PEA_1_P2 (SEQ ID NO: 850) HSCP2_PEA_1_P16 (SEQ ID NO: 851) HSCP2_PEA_1_P6 (SEQ ID NO: 852) HSCP2_PEA_1_P22 (SEQ ID NO: 853) HSCP2_PEA_1_P24 (SEQ ID NO: 854) HSCP2_PEA_1_P25 (SEQ ID NO: 855) HSCP2_PEA_1_P33 (SEQ ID NO: 856)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HUMTEN_PEA_1_T4 (SEQ ID NO: 857) HUMTEN_PEA_1_T5 (SEQ ID NO: 858) HUMTEN_PEA_1_T6 (SEQ ID NO: 859) HUMTEN_PEA_1_T7 (SEQ ID NO: 860) HUMTEN_PEA_1_T11 (SEQ ID NO: 861) HUMTEN_PEA_1_T14 (SEQ ID NO: 862) HUMTEN_PEA_1_T16 (SEQ ID NO: 863) HUMTEN_PEA_1_T17 (SEQ ID NO: 864) HUMTEN_PEA_1_T18 (SEQ ID NO: 865) HUMTEN_PEA_1_T19 (SEQ ID NO: 866) HUMTEN_PEA_1_T20 (SEQ ID NO: 867) HUMTEN_PEA_1_T23 (SEQ ID NO: 868) HUMTEN_PEA_1_T32 (SEQ ID NO: 869) HUMTEN_PEA_1_T35 (SEQ ID NO: 870) HUMTEN_PEA_1_T36 (SEQ ID NO: 871) HUMTEN_PEA_1_T37 (SEQ ID NO: 872) HUMTEN_PEA_1_T39 (SEQ ID NO: 873) HUMTEN_PEA_1_T40 (SEQ ID NO: 874) HUMTEN_PEA_1_T41 (SEQ ID NO: 875)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HUMTEN_PEA_1_node_0 (SEQ ID NO: 876) HUMTEN_PEA_1_node_2 (SEQ ID NO: 877) HUMTEN_PEA_1_node_5 (SEQ ID NO: 878) HUMTEN_PEA_1_node_6 (SEQ ID NO: 879) HUMTEN_PEA_1_node_11 (SEQ ID NO: 880) HUMTEN_PEA_1_node_12 (SEQ ID NO: 881) HUMTEN_PEA_1_node_16 (SEQ ID NO: 882) HUMTEN_PEA_1_node_19 (SEQ ID NO: 883) HUMTEN_PEA_1_node_23 (SEQ ID NO: 884) HUMTEN_PEA_1_node_27 (SEQ ID NO: 885) HUMTEN_PEA_1_node_28 (SEQ ID NO: 886) HUMTEN_PEA_1_node_30 (SEQ ID NO: 887) HUMTEN_PEA_1_node_32 (SEQ ID NO: 888) HUMTEN_PEA_1_node_33 (SEQ ID NO: 889) HUMTEN_PEA_1_node_35 (SEQ ID NO: 890) HUMTEN_PEA_1_node_38 (SEQ ID NO: 891) HUMTEN_PEA_1_node_40 (SEQ ID NO: 892) HUMTEN_PEA_1_node_42 (SEQ ID NO: 893) HUMTEN_PEA_1_node_43 (SEQ ID NO: 894) HUMTEN_PEA_1_node_44 (SEQ ID NO: 895) HUMTEN_PEA_1_node_45 (SEQ ID NO: 896) HUMTEN_PEA_1_node_46 (SEQ ID NO: 897) HUMTEN_PEA_1_node_47 (SEQ ID NO: 898) HUMTEN_PEA_1_node_49 (SEQ ID NO: 899) HUMTEN_PEA_1_node_51 (SEQ ID NO: 900) HUMTEN_PEA_1_node_56 (SEQ ID NO: 901) HUMTEN_PEA_1_node_65 (SEQ ID NO: 902) HUMTEN_PEA_1_node_71 (SEQ ID NO: 903) HUMTEN_PEA_1_node_73 (SEQ ID NO: 904) HUMTEN_PEA_1_node_76 (SEQ ID NO: 905) HUMTEN_PEA_1_node_79 (SEQ ID NO: 906) HUMTEN_PEA_1_node_83 (SEQ ID NO: 907) HUMTEN_PEA_1_node_89 (SEQ ID NO: 908) HUMTEN_PEA_1_node_7 (SEQ ID NO: 909) HUMTEN_PEA_1_node_8 (SEQ ID NO: 910) HUMTEN_PEA_1_node_9 (SEQ ID NO: 911) HUMTEN_PEA_1_node_14 (SEQ ID NO: 912) HUMTEN_PEA_1_node_17 (SEQ ID NO: 913) HUMTEN_PEA_1_node_21 (SEQ ID NO: 914) HUMTEN_PEA_1_node_22 (SEQ ID NO: 915) HUMTEN_PEA_1_node_25 (SEQ ID NO: 916) HUMTEN_PEA_1_node_36 (SEQ ID NO: 917) HUMTEN_PEA_1_node_53 (SEQ ID NO: 918) HUMTEN_PEA_1_node_54 (SEQ ID NO: 919)) HUMTEN_PEA_1_node_57 (SEQ ID NO: 920) HUMTEN_PEA_1_node_61 (SEQ ID NO: 921) HUMTEN_PEA_1_node_62 (SEQ ID NO: 922) HUMTEN_PEA_1_node_67 (SEQ ID NO: 923) HUMTEN_PEA_1_node_68 (SEQ ID NO: 924) HUMTEN_PEA_1_node_69 (SEQ ID NO: 925) HUMTEN_PEA_1_node_70 (SEQ ID NO: 926) HUMTEN_PEA_1_node_72 (SEQ ID NO: 927) HUMTEN_PEA_1_node_84 (SEQ ID NO: 928) HUMTEN_PEA_1_node_85 (SEQ ID NO: 929) HUMTEN_PEA_1_node_86 (SEQ ID NO: 930) HUMTEN_PEA_1_node_87 (SEQ ID NO: 931) HUMTEN_PEA_1_node_88 (SEQ ID NO: 932)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HUMTEN_PEA_1_P5 (SEQ ID NO: 934) HUMTEN_PEA_1_P6 (SEQ ID NO: 935) HUMTEN_PEA_1_P7 (SEQ ID NO: 936) HUMTEN_PEA_1_P8 (SEQ ID NO: 937) HUMTEN_PEA_1_P10 (SEQ ID NO: 938) HUMTEN_PEA_1_P11 (SEQ ID NO: 939) HUMTEN_PEA_1_P13 (SEQ ID NO: 940) HUMTEN_PEA_1_P14 (SEQ ID NO: 941) HUMTEN_PEA_1_P15 (SEQ ID NO: 942) HUMTEN_PEA_1_P16 (SEQ ID NO: 943) HUMTEN_PEA_1_P17 (SEQ ID NO: 944) HUMTEN_PEA_1_P20 (SEQ ID NO: 945) HUMTEN_PEA_1_P26 (SEQ ID NO: 946) HUMTEN_PEA_1_P27 (SEQ ID NO: 947) HUMTEN_PEA_1_P28 (SEQ ID NO: 948) HUMTEN_PEA_1_P29 (SEQ ID NO: 949) HUMTEN_PEA_1_P30 (SEQ ID NO: 950) HUMTEN_PEA_1_P31 (SEQ ID NO: 951) HUMTEN_PEA_1_P32 (SEQ ID NO: 952)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HUMOSTRO_PEA_1_PEA_1_T14 (SEQ ID NO: 277) HUMOSTRO_PEA_1_PEA_1_T16 (SEQ ID NO: 278) HUMOSTRO_PEA_1_PEA_1_T30 (SEQ ID NO: 279)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HUMOSTRO_PEA_1_PEA_1_node_0 (SEQ ID NO: 280) HUMOSTRO_PEA_1_PEA_1_node_10 (SEQ ID NO: 281) HUMOSTRO_PEA_1_PEA_1_node_16 (SEQ ID NO: 282) HUMOSTRO_PEA_1_PEA_1_node_23 (SEQ ID NO: 283) HUMOSTRO_PEA_1_PEA_1_node_31 (SEQ ID NO: 284) HUMOSTRO_PEA_1_PEA_1_node_43 (SEQ ID NO: 285) HUMOSTRO_PEA_1_PEA_1_node_3 (SEQ ID NO: 286) HUMOSTRO_PEA_1_PEA_1_node_5 (SEQ ID NO: 287) HUMOSTRO_PEA_1_PEA_1_node_7 (SEQ ID NO: 288) HUMOSTRO_PEA_1_PEA_1_node_8 (SEQ ID NO: 289) HUMOSTRO_PEA_1_PEA_1_node_15 (SEQ ID NO: 290) HUMOSTRO_PEA_1_PEA_1_node_17 (SEQ ID NO: 291) HUMOSTRO_PEA_1_PEA_1_node_20 (SEQ ID NO: 292) HUMOSTRO_PEA_1_PEA_1_node_21 (SEQ ID NO: 293) HUMOSTRO_PEA_1_PEA_1_node_22 (SEQ ID NO: 294) HUMOSTRO_PEA_1_PEA_1_node_24(SEQ ID NO: 295) HUMOSTRO_PEA_1_PEA_1_node_26 (SEQ ID NO: 296) HUMOSTRO_PEA_1_PEA_1_node_27 (SEQ ID NO: 297) HUMOSTRO_PEA_1_PEA_1_node_28 (SEQ ID NO: 298) HUMOSTRO_PEA_1_PEA_1_node_29 (SEQ ID NO: 299) HUMOSTRO_PEA_1_PEA_1_node_30 (SEQ ID NO: 300) HUMOSTRO_PEA_1_PEA_1_node_32 (SEQ ID NO: 301) HUMOSTRO_PEA_1_PEA_1_node_34 (SEQ ID NO: 302) HUMOSTRO_PEA_1_PEA_1_node_36 (SEQ ID NO: 303) HUMOSTRO_PEA_1_PEA_1_node_37 (SEQ ID NO: 304) HUMOSTRO_PEA_1_PEA_1_node_38 (SEQ ID NO: 305) HUMOSTRO_PEA_1_PEA_1_node_39 (SEQ ID NO: 306) HUMOSTRO_PEA_1_PEA_1_node_40 (SEQ ID NO: 307) HUMOSTRO_PEA_1_PEA_1_node_41 (SEQ ID NO: 308) HUMOSTRO_PEA_1_PEA_1_node_42 (SEQ ID NO: 309)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HUMOSTRO_PEA_1_PEA_1_P21 (SEQ ID NO: 311) HUMOSTRO_PEA_1_PEA_1_P25 (SEQ ID NO: 312) HUMOSTRO_PEA_1_PEA_1_P30 (SEQ ID NO: 313)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name T46984_PEA_1_T2 (SEQ ID NO: 314) T46984_PEA_1_T3 (SEQ ID NO: 315) T46984_PEA_1_T12 (SEQ ID NO: 316) T46984_PEA_1_T13 (SEQ ID NO: 317) T46984_PEA_1_T14 (SEQ ID NO: 318) T46984_PEA_1_T15 (SEQ ID NO: 319) T46984_PEA_1_T19 (SEQ ID NO: 320) T46984_PEA_1_T23 (SEQ ID NO: 321) T46984_PEA_1_T27 (SEQ ID NO: 322) T46984_PEA_1_T32 (SEQ ID NO: 323) T46984_PEA_1_T34 (SEQ ID NO: 324) T46984_PEA_1_T35 (SEQ ID NO: 325) T46984_PEA_1_T40 (SEQ ID NO: 326) T46984_PEA_1_T42 (SEQ ID NO: 327) T46984_PEA_1_T43 (SEQ ID NO: 328) T46984_PEA_1_T46 (SEQ ID NO: 329) T46984_PEA_1_T47 (SEQ ID NO: 330) T46984_PEA_1_T48 (SEQ ID NO: 331) T46984_PEA_1_T51 (SEQ ID NO: 332) T46984_PEA_1_T52 (SEQ ID NO: 333) T46984_PEA_1_T54 (SEQ ID NO: 334)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name T46984_PEA_1_node_2 (SEQ ID NO: 335) T46984_PEA_1_node_4 (SEQ ID NO: 336) T46984_PEA_1_node_6 (SEQ ID NO: 337) T46984_PEA_1_node_12 (SEQ ID NO: 338) T46984_PEA_1_node_14 (SEQ ID NO: 339) T46984_PEA_1_node_25 (SEQ ID NO: 340) T46984_PEA_1_node_29 (SEQ ID NO: 341) T46984_PEA_1_node_34 (SEQ ID NO: 342) T46984_PEA_1_node_46 (SEQ ID NO: 343) T46984_PEA_1_node_47 (SEQ ID NO: 344) T46984_PEA_1_node_52 (SEQ ID NO: 345) T46984_PEA_1_node_65 (SEQ ID NO: 346) T46984_PEA_1_node_69 (SEQ ID NO: 347) T46984_PEA_1_node_75 (SEQ ID NO: 348) T46984_PEA_1_node_86 (SEQ ID NO: 349) T46984_PEA_1_node_9 (SEQ ID NO: 350) T46984_PEA_1_node_13 (SEQ ID NO: 351) T46984_PEA_1_node_19 (SEQ ID NO: 352) T46984_PEA_1_node_21 (SEQ ID NO: 353) T46984_PEA_1_node_22 (SEQ ID NO: 354) T46984_PEA_1_node_26 (SEQ ID NO: 355) T46984_PEA_1_node_28 (SEQ ID NO: 356) T46984_PEA_1_node_31 (SEQ ID NO: 357) T46984_PEA_1_node_32 (SEQ ID NO: 358) T46984_PEA_1_node_38 (SEQ ID NO: 359) T46984_PEA_1_node_39 (SEQ ID NO: 360) T46984_PEA_1_node_40 (SEQ ID NO: 361) T46984_PEA_1_node_42 (SEQ ID NO: 362) T46984_PEA_1_node_43 (SEQ ID NO: 363) T46984_PEA_1_node_48 (SEQ ID NO: 364) T46984_PEA_1_node_49 (SEQ ID NO: 365) T46984_PEA_1_node_50 (SEQ ID NO: 366) T46984_PEA_1_node_51 (SEQ ID NO: 367) T46984_PEA_1_node_53 (SEQ ID NO: 368) T46984_PEA_1_node_54 (SEQ ID NO: 369) T46984_PEA_1_node_55 (SEQ ID NO: 370) T46984_PEA_1_node_57 (SEQ ID NO: 371) T46984_PEA_1_node_60 (SEQ ID NO: 372) T46984_PEA_1_node_62 (SEQ ID NO: 373) T46984_PEA_1_node_66 (SEQ ID NO: 374) T46984_PEA_1_node_67 (SEQ ID NO: 375) T46984_PEA_1_node_70 (SEQ ID NO: 376) T46984_PEA_1_node_71 (SEQ ID NO: 377) T46984_PEA_1_node_72 (SEQ ID NO. 378) T46984_PEA_1_node_73 (SEQ ID NO: 379) T46984_PEA_1_node_74 (SEQ ID NO: 380) T46984_PEA_1_node_83 (SEQ ID NO: 381) T46984_PEA_1_node_84 (SEQ ID NO: 382) T46984_PEA_1_node_85 (SEQ ID NO: 383)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name T46984_PEA_1_P2 (SEQ ID NO: 385) T46984_PEA_1_P3 (SEQ ID NO: 386) T46984_PEA_1_P10 (SEQ ID NO: 387) T46984_PEA_1_P11 (SEQ ID NO: 388) T46984_PEA_1_P12 (SEQ ID NO: 389) T46984_PEA_1_P21 (SEQ ID NO: 390) T46984_PEA_1_P27 (SEQ ID NO: 391) T46984_PEA_1_P32 (SEQ ID NO: 392) T46984_PEA_1_P34 (SEQ ID NO: 393) T46984_PEA_1_P35 (SEQ ID NO: 394) T46984_PEA_1_P38 (SEQ ID NO: 395) T46984_PEA_1_P39 (SEQ ID NO. 396) T46984_PEA_1_P45 (SEQ ID NO: 397) T46984_PEA_1_P46 (SEQ ID NO: 398)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name M78530_PEA_1_T11 (SEQ ID NO: 399) M78530_PEA_1_T12 (SEQ ID NO: 400) M78530_PEA_1_T13 (SEQ ID NO: 401)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name M78530_PEA_1_node_0 (SEQ ID NO: 402) M78530_PEA_1_node_15 (SEQ ID NO: 403) M78530_PEA_1_node_16 (SEQ ID NO: 404) M78530_PEA_1_node_19 (SEQ ID NO: 405) M78530_PEA_1_node_21 (SEQ ID NO: 406) M78530_PEA_1_node_23 (SEQ ID NO: 407) M78530_PEA_1_node_27 (SEQ ID NO: 408) M78530_PEA_1_node_29 (SEQ ID NO: 409) M78530_PEA_1_node_36 (SEQ ID NO: 410) M78530_PEA_1_node_37 (SEQ ID NO: 411) M78530_PEA_1_node_2 (SEQ ID NO: 412) M78530_PEA_1_node_4 (SEQ ID NO: 413) M78530_PEA_1_node_5 (SEQ ID NO: 414) M78530_PEA_1_node_7 (SEQ ID NO: 415) M78530_PEA_1_node_9 (SEQ ID NO: 416) M78530_PEA_1_node_10 (SEQ ID NO: 417) M78530_PEA_1_node_18 (SEQ ID NO: 418) M78530_PEA_1_node_25 (SEQ ID NO: 419) M78530_PEA_1_node_30 (SEQ ID NO: 420) M78530_PEA_1_node_33 (SEQ ID NO: 421) M78530_PEA_1_node_34 (SEQ ID NO: 422)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name M78530_PEA_1_P15 (SEQ ID NO: 426) M78530_PEA_1_P16 (SEQ ID NO: 427) M78530_PEA_1_P17 (SEQ ID NO: 428)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name T48119_T2 (SEQ ID NO: 429)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name T48119_node_0 (SEQ ID NO: 430) T48119_node_11 (SEQ ID NO: 431) T48119_node_13 (SEQ ID NO: 432) T48119_node_38 (SEQ ID NO: 433) T48119_node_41 (SEQ ID NO: 434) T48119_node_45 (SEQ ID NO: 435) T48119_node_47 (SEQ ID NO: 436) T48119_node_4 (SEQ ID NO: 437) T48119_node_8 (SEQ ID NO: 438) T48119_node_15 (SEQ ID NO: 439) T48119_node_17 (SEQ ID NO: 440) T48119_node_20 (SEQ ID NO: 441) T48119_node_22 (SEQ ID NO: 442) T48119_node_26 (SEQ ID NO: 443) T48119_node_28 (SEQ ID NO: 444) T48119_node_31 (SEQ ID NO: 445) T48119_node_32 (SEQ ID NO: 446) T48119_node_33 (SEQ ID NO: 447) T48119_node_44 (SEQ ID NO: 448)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name T48119_P2 (SEQ ID NO: 450)

According to preferred embodiments of the present invention, there is provided an isolated polynucleotide comprising a nucleic acid sequence in the table below and/or:

Transcript Name HSMUC1A_PEA_1_T12 (SEQ ID NO: 451) HSMUC1A_PEA_1_T26 (SEQ ID NO: 452) HSMUC1A_PEA_1_T28 (SEQ ID NO: 453) HSMUC1A_PEA_1_T29 (SEQ ID NO: 454) HSMUC1A_PEA_1_T30 (SEQ ID NO: 455) HSMUC1A_PEA_1_T31 (SEQ ID NO: 456) HSMUC1A_PEA_1_T33 (SEQ ID NO: 457) HSMUC1A_PEA_1_T34 (SEQ ID NO: 458) HSMUC1A_PEA_1_T35 (SEQ ID NO: 459) HSMUC1A_PEA_1_T36 (SEQ ID NO: 460) HSMUC1A_PEA_1_T40 (SEQ ID NO: 461) HSMUC1A_PEA_1_T42 (SEQ ID NO: 462) HSMUC1A_PEA_1_T43 (SEQ ID NO: 463) HSMUC1A_PEA_1_T47 (SEQ ID NO: 464)

a nucleic acid sequence comprising a sequence in the table below:

Segment Name HSMUC1A_PEA_1_node_0 (SEQ ID NO: 465) HSMUC1A_PEA_1_node_14 (SEQ ID NO: 466) HSMUC1A_PEA_1_node_24 (SEQ ID NO: 467) HSMUC1A_PEA_1_node_29 (SEQ ID NO: 468) HSMUC1A_PEA_1_node_35 (SEQ ID NO: 469) HSMUC1A_PEA_1_node_38 (SEQ ID NO: 470) HSMUC1A_PEA_1_node_3 (SEQ ID NO: 471) HSMUC1A_PEA_1_node_4 (SEQ ID NO: 472) HSMUC1A_PEA_1_node_5 (SEQ ID NO: 473) HSMUC1A_PEA_1_node_6 (SEQ ID NO: 474) HSMUC1A_PEA_1_node_7 (SEQ ID NO: 475) HSMUC1A_PEA_1_node_17 (SEQ ID NO: 476) HSMUC1A_PEA_1_node_18 (SEQ ID NO: 477) HSMUC1A_PEA_1_node_20 (SEQ ID NO: 478) HSMUC1A_PEA_1_node_21 (SEQ ID NO: 479) HSMUC1A_PEA_1_node_23 (SEQ ID NO: 480) HSMUC1A_PEA_1_node_26 (SEQ ID NO: 481) HSMUC1A_PEA_1_node_27 (SEQ ID NO: 482) HSMUC1A_PEA_1_node_31 (SEQ ID NO: 483) HSMUC1A_PEA_1_node_34 (SEQ ID NO: 484) HSMUC1A_PEA_1_node_36 (SEQ ID NO: 485) HSMUC1A_PEA_1_node_37 (SEQ ID NO: 486)

According to preferred embodiments of the present invention, there is provided an isolated polypeptide comprising an amino acid sequence in the table below:

Protein Name HSMUC1A_PEA_1_P25 (SEQ ID NO: 488) HSMUC1A_PEA_1_P29 (SEQ ID NO: 489) HSMUC1A_PEA_1_P30 (SEQ ID NO: 490) HSMUC1A_PEA_1_P32 (SEQ ID NO: 491) HSMUC1A_PEA_1_P36 (SEQ ID NO: 492) HSMUC1A_PEA_1_P39 (SEQ ID NO: 493) HSMUC1A_PEA_1_P45 (SEQ ID NO: 494) HSMUC1A_PEA_1_P49 (SEQ ID NO: 495) HSMUC1A_PEA_1_P52 (SEQ ID NO: 496) HSMUC1A_PEA_1_P53 (SEQ ID NO: 497) HSMUC1A_PEA_1_P56 (SEQ ID NO: 498) HSMUC1A_PEA_1_P58 (SEQ ID NO: 499) HSMUC1A_PEA_1_P59 (SEQ ID NO: 500) HSMUC1A_PEA_1_P63 (SEQ ID NO: 501)

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSMUC1A_PEA1_P63 (SEQ ID NO: 501), comprising a first amino acid sequence being at least 90% homologous to MTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSV corresponding to amino acids 1-45 of MUC1_HUMAN, which also corresponds to amino acids 1-45 of HSMUC1A_PEA1_P63 (SEQ ID NO: 501), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence EEEVSADQVSVGASGVLGSFKEARNAPSFLSWSFSMGPSK (SEQ ID NO: 1060) corresponding to amino acids 46-85 of HSMUC1A_PEA1_P63 (SEQ ID NO: 501), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSMUC1A_PEA1_P63 (SEQ ID NO: 501), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence EEEVSADQVSVGASGVLGSFKEARNAPSFLSWSFSMGPSK (SEQ ID NO: 1060) in HSMUC1A_PEA1_P63 (SEQ ID NO: 501).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P2 (SEQ ID NO: 385), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQ PLTQATVKLEHAKSVASRATVLQKTSFTPVGDVFELNFMNVKFSSGYYDFLVEVEGDN RYIANTVELRVKISTEVGITNVDLSTVDKDQSIAPKTTRVTYPAKAKGTFIADSHQNFAL FFQLVDVNTGAELTPHQTFVRLHNQKTGQEVVFVAEPDNKNVYKFELDTSERKIEFDS ASGTYTLYLIIGDATLKNPILWNV corresponding to amino acids 1-498 of RIB2_HUMAN, which also corresponds to amino acids 1-498 of T46984_PEA1_P2 (SEQ ID NO: 385), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VCA corresponding to amino acids 499-501 of T46984_PEA1_P2 (SEQ ID NO: 385), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P3 (SEQ ID NO: 386), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQ PLTQATVKLEHAKSVASRATVLQKTSFTPVGDVFELNFMNVKFSSGYYDFLVEVEGDN RYIANTVELRVKISTEVGITNVDLSTVDKDQSIAPKTTRVTYPAKAKGTFIADSHQNFAL FFQLVDVNTGAELTPHQ corresponding to amino acids 1-433 of RIB2_HUMAN, which also corresponds to amino acids 1-433 of T46984_PEA1_P3 (SEQ ID NO: 386), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence ICHIWKLIFLP (SEQ ID NO: 1061) corresponding to amino acids 434-444 of T46984_PEA1_P3 (SEQ ID NO: 386), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P3 (SEQ ID NO: 386), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence ICHIWKLIFLP (SEQ ID NO: 1061) in T46984_PEA1_P3 (SEQ ID NO: 386).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P10 (SEQ ID NO: 387), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQ PLTQATVKLEHAKSVASRATVLQKTSFTPVGDVFELNFMNVKFSSGYYDFLVEVEGDN RYIANTVELRVKISTEVGITNVDLSTVDKDQSIAPKTTRVTYPAKAKGTFIADSHQNFAL FFQLVDVNTGAELTPHQTFVRLHNQKTGQEVVFVAEPDNKNVYKFELDTSERKIEFDS ASGTYTLYLIIGDATLKNPILWNV corresponding to amino acids 1-498 of RIB2_HUMAN, which also corresponds to amino acids 1-498 of T46984_PEA1_P10 (SEQ ID NO: 387), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence LMDQK (SEQ ID NO: 1062) corresponding to amino acids 499-503 of T46984_PEA1_P10 (SEQ ID NO: 387), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P10 (SEQ ID NO: 387), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence LMDQK (SEQ ID NO: 1062) in T46984_PEA1_P10 (SEQ ID NO: 387).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P11 (SEQ ID NO: 388), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQ PLTQATVKLEHAKSVASRATVLQKTSFTPVGDVFELNFMNVKFSSGYYDFLVEVEGDN RYIANTVELRVKISTEVGITNVDLSTVDKDQSIAPKTTRVTYPAKAKGTFIADSHQNFAL FFQLVDVNTGAELTPHQTFVRLHNQKTGQEVVFVAEPDNKNVYKFELDTSERKIEFDS ASGTYTLYLIIGDATLKNPILWNVADVVIKFPEEEAPSTVLSQNLFTPKQEIQHLFREPEK RPPTVVSNTFTALILSPLLLLFALWIRIGANVSNFTFAPSTIIFHLGHAAMLGLMYVYWT QLNMFQTLKYLAILGSVTFLAGNRMLAQQAVKR corresponding to amino acids 1-628 of RIB2_HUMAN, which also corresponds to amino acids 1-628 of T46984_PEA1_P11 (SEQ ID NO: 388).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P12 (SEQ ID NO: 389), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQ PLTQATVKLEHAKSVASRATVLQKTSFTPVGDVFELNFMN corresponding to amino acids 1-338 of RIB2_HUMAN, which also corresponds to amino acids 1-338 of T46984_PEA1_P12 (SEQ ID NO: 389), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence SQDLH (SEQ ID NO: 1063) corresponding to amino acids 339-343 of T46984_PEA1_P12 (SEQ ID NO: 389), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P12 (SEQ ID NO: 389), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence SQDLH (SEQ ID NO: 1063) in T46984_PEA1_P12 (SEQ ID NO: 389).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P21 (SEQ ID NO: 390), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence M corresponding to amino acids 1-1 of T46984_PEA1_P21 (SEQ ID NO: 390), and a second amino acid sequence being at least 90% homologous to KACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSSVTQIYHAV AALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSIVEEIEDLVA RLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNAIFSKKNFES LSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQPLTQATVKL EHAKSVASRATVLQKTSFTPVGDVFELNFMNVKFSSGYYDFLVEVEGDNRYIANTVEL RVKISTEVGITNVDLSTVDKDQSIAPKTTRVTYPAKAKGTFIADSHQNFALFFQLVDVNT GAELTPHQTFVRLHNQKTGQEVVFVAEPDNKNVYKFELDTSERKIEFDSASGTYTLYLII GDATLKNPILWNVADVVIKFPEEEAPSTVLSQNLFTPKQEIQHLFREPEKRPPTVVSNTF TALILSPLLLLFALWIRIGANVSNFTFAPSTIIFHLGHAAMLGLMYVYWTQLNMFQTLKY LAILGSVTFLAGNRMLAQQAVKRTAH corresponding to amino acids 70-631 of RIB2_HUMAN, which also corresponds to amino acids 2-563 of T46984_PEA1_P21 (SEQ ID NO: 390), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P27 (SEQ ID NO: 391), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQ PLTQATVKLEHAKSVASRATVLQKTSFTPVGDVFELNFMNVKFSSGYYDFLVEVEGDN RYIANTVELRVKISTEVGITNVDLSTVDKDQSIAPKTTRVTYPAKAKGTFIADSHQNFA corresponding to amino acids 1-415 of RIB2_HUMAN, which also corresponds to amino acids 1-415 of T46984_PEA1_P27 (SEQ ID NO: 391), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence FGSGLVPMSPTSLLLLARLYFTWDMLLCWDSCMSTGLSSTCSRP (SEQ ID NO: 1064) corresponding to amino acids 416-459 of T46984_PEA1_P27 (SEQ ID NO: 391), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P27 (SEQ ID NO: 391), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence FGSGLVPMSPTSLLLLARLYFTWDMLLCWDSCMSTGLSSTCSRP (SEQ ID NO: 1064) in T46984_PEA1_P27 (SEQ ID NO: 391).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P32 (SEQ ID NO: 392), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQ PLTQATVKLEHAKSVASRATVLQKTSFTPVGDVFELNFMNVKFSSGYYDFLVEVEGDN RYIANTVE corresponding to amino acids 1-364 of RIB2_HUMAN, which also corresponds to amino acids 1-364 of T46984_PEA1_P32 (SEQ ID NO: 392), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GQVRWLTPVIPALWEAKAGGSPEVRSSILAWPT (SEQ ID NO: 1065) corresponding to amino acids 365-397 of T46984_PEA1_P32 (SEQ ID NO: 392), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P32 (SEQ ID NO: 392), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GQVRWLTPVIPALWEAKAGGSPEVRSSILAWPT (SEQ ID NO: 1065) in T46984_PEA1_P32 (SEQ ID NO: 392).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P34 (SEQ ID NO: 393), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAILRLQVTNVLSQ PLTQATVKLEHAKSVASRATVLQKTSFTPVG corresponding to amino acids 1-329 of RIB2_HUMAN, which also corresponds to amino acids 1-329 of T46984_PEA1_P34 (SEQ ID NO: 393).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P35 (SEQ ID NO: 394), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLATVQALQTASHLSQQADLRSI VEEIEDLVARLDELGGVYLQFEEGLETTALFVAATYKLMDHVGTEPSIKEDQVIQLMNA IFSKKNFESLSEAFSVASAAAVLSHNRYHVPVVVVPEGSASDTHEQAI corresponding to amino acids 1-287 of RIB2_HUMAN, which also corresponds to amino acids 1-287 of T46984_PEA1_P35 (SEQ ID NO: 394), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GCWPSRQSREQHISSRRKMEILKTECQEKESRTIHSMRRKMEKKNFI (SEQ ID NO: 1066) orresponding to amino acids 288-334 of T46984_PEA1_P35 (SEQ ID NO: 394), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P35 (SEQ ID NO: 394), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GCWPSRQSREQHISSRRKMEILKTECQEKESRTIHSMRRKMEKKNFI (SEQ ID NO: 1066) in T46984_PEA1_P35 (SEQ ID NO: 394).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P38 (SEQ ID NO: 395), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEAL corresponding to amino acids 1-145 of RIB2_HUMAN, which also corresponds to amino acids 1-145 of T46984_PEA1_P38 (SEQ ID NO: 395), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MDPDWCQCLQLHFCS (SEQ ID NO: 1067) corresponding to amino acids 146-160 of T46984_PEA1_P38 (SEQ ID NO: 395), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P38 (SEQ ID NO: 395), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MDPDWCQCLQLHFCS (SEQ ID NO: 1067) in T46984_PEA1_P38 (SEQ ID NO: 395).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P39 (SEQ ID NO. 396), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCEISISNETKDLLLAAVSEDSS VTQIYHAVAALSGFGLPLASQEALSALTARLSKEETVLA corresponding to amino acids 1-160 of RIB2_HUMAN, which also corresponds to amino acids 1-160 of T46984_PEA1_P39 (SEQ ID NO. 396).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P45 (SEQ ID NO: 397), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAKKACTYIRSNLDPSNVDSLFYAAQASQALSGCE corresponding to amino acids 1-101 of RIB2_HUMAN, which also corresponds to amino acids 1-101 of T46984_PEA1_P45 (SEQ ID NO: 397), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NSPGSADSIPPVPAG (SEQ ID NO: 1068) corresponding to amino acids 102-116 of T46984_PEA1_P45 (SEQ ID NO: 397), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P45 (SEQ ID NO: 397), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NSPGSADSIPPVPAG (SEQ ID NO: 1068) in T46984_PEA1_P45 (SEQ ID NO: 397).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T46984_PEA1_P46 (SEQ ID NO: 398), comprising a first amino acid sequence being at least 90% homologous to MAPPGSSTVFLLALTIIASTWALTPTHYLTKHDVERLKASLDRPFTNLESAFYSIVGLSSL GAQVPDAK corresponding to amino acids 1-69 of RIB2_HUMAN, which also corresponds to amino acids 1-69 of T46984_PEA1_P46 (SEQ ID NO: 398), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NSPGSADSIPPVPAG (SEQ ID NO: 1068) corresponding to amino acids 70-84 of T46984_PEA1_P46 (SEQ ID NO: 398), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T46984_PEA1_P46 (SEQ ID NO: 398), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NSPGSADSIPPVPAG (SEQ ID NO: 1068) in T46984_PEA1_P46 (SEQ ID NO: 398).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M78530_PEA1_P15 (SEQ ID NO: 426), comprising a first amino acid sequence being at least 90% homologous to MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLSAAPPSYFRGFTLIALRENREGDKEEDHAGTFQIIDEE ETQFMSNCPVAVTESTPRRRTRIQVFWIAPPAGTGCVILKASIVQKRIIYFQDEGSLTKKL CEQDSTFDGVTDKPILDCCACGTAKYRLTFYGNWSEKTHPKDYPRRANHWSAIIGGSH SKNYVLWEYGGYASEGVKQVAELGSPVKMEEEIRQQSDEVLTVIKAKAQWPAWQPLN VRAAPSAEFSVDRTRHLMSFLTMMGPSPDWNVGLSAEDLCTKECGWVQKVVQDLIPW DAGTDSGVTYESPNKPTIPQEKIRPLTSLDHPQSPFYDPEGGSITQVARVVIERIARKGEQ CNIVPDNVDDIVADLAPEEKDEDDTPETCIYSNWSPWSACSSSTCDKGKRMRQRMLKA QLDLSVPCPDTQDFQPCMGPGCSDEDGSTCTMSEWITWSPCSISCGMGMRSRERYVKQ FPEDGSVCTLPTEE corresponding to amino acids 1-544 of Q9HCB6 (SEQ ID NO: 424), which also corresponds to amino acids 1-544 of M78530_PEA1_P15 (SEQ ID NO: 426), a bridging amino acid T corresponding to amino acid 545 of M78530_PEA1_P15 (SEQ ID NO: 426), a second amino acid sequence being at least 90% homologous to EKCTVNEECSPSSCLMTEWGEWDECSATCGMGMKKRHRMIKMNPADGSMCKAETSQ AEKCMMPECHTIPCLLSPWSEWSDCSVTCGKGMRTRQRMLKSLAELGDCNEDLEQVE KCMLPEC corresponding to amino acids 546-665 of Q9HCB6 (SEQ ID NO: 424), which also corresponds to amino acids 546-665 of M78530_PEA1_P15 (SEQ ID NO: 426), and a third amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence RKSWSSSRPITSMFLSPGSPEPASANTARS (SEQ ID NO: 1070) corresponding to amino acids 666-695 of M78530_PEA1_P15 (SEQ ID NO: 426), wherein said first amino acid sequence, bridging amino acid, second amino acid sequence and third amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M78530_PEA1_P115 (SEQ ID NO: 426), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence RKSWSSSRPITSMFLSPGSPEPASANTARS (SEQ ID NO: 1070) in M78530_PEA1_P15 (SEQ ID NO: 426).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M78530_PEA1_P15 (SEQ ID NO: 426), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLS (SEQ ID NO: 1071) corresponding to amino acids 1-83 of M78530_PEA1_P15 (SEQ ID NO: 426), a second amino acid sequence being at least 90% homologous to AAPPSYFRGFTLIALRENREGDKEEDHAGTFQIIDEEETQFMSNCPVAVTESTPRRRTRIQ VFWIAPPAGTGCVILKASIVQKRIIYFQDEGSLTKKLCEQDSTFDGVTDKPILDCCACGT AKYRLTFYGNWSEKTHPKDYPRRANHWSAIIGGSHSKNYVLWEYGGYASEGVKQVAE LGSPVKMEEEIRQQSDEVLTVIKAKAQWPAWQPLNVRAAPSAEFSVDRTRHLMSFLTM MGPSPDWNVGLSAEDLCTKECGWVQKVVQDLIPWDAGTDSGVTYESPNKPTIPQEKIR PLTSLDHPQSPFYDPEGGSITQVARVVIERIARKGEQCNIVPDNVDDIVADLAPEEKDED DTPETCIYSNWSPWSACSSSTCDKGKRMRQRMLKAQLDLSVPCPDTQDFQPCMGPGCS DEDGSTCTMSEWITWSPCSISCGMGMRSRERYVKQFPEDGSVCTLPTEETEKCTVNEEC SPSSCLMTEWGEWDECSATCGMGMKKRHRMIKMNPADGSMCKAETSQAEKCMMPE CHTIPCLLSPWSEWSDCSVTCGKGMRTRQRMLKSLAELGDCNEDLEQVEKCMLPEC corresponding to amino acids 1-582 of 094862 (SEQ ID NO: 425), which also corresponds to amino acids 84-665 of M78530_PEA1_P15 (SEQ ID NO: 426), and a third amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence RKSWSSSRPITSMFLSPGSPEPASANTARS (SEQ ID NO: 1070) corresponding to amino acids 666-695 of M78530_PEA1_P15 (SEQ ID NO: 426), wherein said first amino acid sequence, second amino acid sequence and third amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of M78530_PEA1_P115 (SEQ ID NO: 426), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLS (SEQ ID NO: 1071) of M78530_PEA1_P15 (SEQ ID NO: 426).

An isolated polypeptide encoding for a tail of M78530_PEA1_P15 (SEQ ID NO: 426), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence RKSWSSSRPITSMFLSPGSPEPASANTARS (SEQ ID NO: 1070) in M78530_PEA1_P15 (SEQ ID NO: 426).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M78530_PEA1_P16 (SEQ ID NO: 427), comprising a first amino acid sequence being at least 90% homologous to MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLSAAPPSYFRGFTLIALRENREGDKEEDHAGTFQIIDEE ETQFMSNCPVAVTESTPRRRTRIQVFWIAPPAGTGCVILKASIVQKRIIYFQDEGSLTKKL CEQDSTFDGVTDKPILDCCACGTAKYRLTFYGNWSEKTHPKDYPRRANHWSAIIGGSH SKNYVLWEYGGYASEGVKQVAELGSPVKMEEEIRQQSDEVLTVIKAKAQWPAWQPLN V corresponding to amino acids 1-297 of Q8NCD7 (SEQ ID NO: 423), which also corresponds to amino acids 1-297 of M78530_PEA1_P16 (SEQ ID NO: 427).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M78530_PEA1_P16 (SEQ ID NO: 427), comprising a first amino acid sequence being at least 90% homologous to MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLSAAPPSYFRGFTLIALRENREGDKEEDHAGTFQIIDEE ETQFMSNCPVAVTESTPRRRTRIQVFWIAPPAGTGCVILKASIVQKRIIYFQDEGSLTKKL CEQDSTFDGVTDKPILDCCACGTAKYRLTFYGNWSEKTHPKDYPRRANHWSAIIGGSH SKNYVLWEYGGYASEGVKQVAELGSPVKMEEEIRQQSDEVLTVIKAKAQWPAWQPLN V corresponding to amino acids 1-297 of Q9HCB6 (SEQ ID NO: 424), which also corresponds to amino acids 1-297 of M78530_PEA1_P16 (SEQ ID NO: 427).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M78530_PEA1_P16 (SEQ ID NO: 427), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLS (SEQ ID NO: 1071) corresponding to amino acids 1-83 of M78530_PEA1_P16 (SEQ ID NO: 427), and a second amino acid sequence being at least 90% homologous to AAPPSYFRGFTLIALRENREGDKEEDHAGTFQIIDEEETQFMSNCPVAVTESTPRRRTRIQ VFWIAPPAGTGCVILKASIVQKRIIYFQDEGSLTKKLCEQDSTFDGVTDKPILDCCACGT AKYRLTFYGNWSEKTHPKDYPRRANHWSAIIGGSHSKNYVLWEYGGYASEGVKQVAE LGSPVKMEEEIRQQSDEVLTVIKAKAQWPAWQPLNV corresponding to amino acids 1-214 of 094862 (SEQ ID NO: 425), which also corresponds to amino acids 84-297 of M78530_PEA1_P16 (SEQ ID NO: 427), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of M78530_PEA1_P16 (SEQ ID NO: 427), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLS (SEQ ID NO: 1071) of M78530_PEA1_P16 (SEQ ID NO: 427).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M78530_PEA1_P17 (SEQ ID NO: 428), comprising a first amino acid sequence being at least 90% homologous to MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLSAAPPSYFRGFTLIALRENREGDKEEDHAGTFQIIDEE ETQFMSNCPVAVTESTPRRRTRIQVFWIAPPAGTGCVILKASIVQKRIIYFQDEGSLTKKL CEQDSTFDGVTDKPILDCCACGTAKYRLTFYGNWSEKTHPKDYPRRANHWSAIIGGSH SKNYVLWEYGGYASEGVKQVAELGSPVKMEEEIRQQ corresponding to amino acids 1-275 of Q8NCD7 (SEQ ID NO: 423), which also corresponds to amino acids 1-275 of M78530_PEA1_P17 (SEQ ID NO: 428), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRQKNHRMTK (SEQ ID NO: 1073) corresponding to amino acids 276-285 of M78530_PEA1_P17 (SEQ ID NO: 428), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M78530_PEA1_P17 (SEQ ID NO: 428), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRQKNHRMTK (SEQ ID NO: 1073) in M78530_PEA1_P17 (SEQ ID NO: 428).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M78530_PEA1_P17 (SEQ ID NO: 428), comprising a first amino acid sequence being at least 90% homologous to MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLSAAPPSYFRGFTLIALRENREGDKEEDHAGTFQIIDEE ETQFMSNCPVAVTESTPRRRTRIQVFWIAPPAGTGCVILKASIVQKRIIYFQDEGSLTKKL CEQDSTFDGVTDKPILDCCACGTAKYRLTFYGNWSEKTHPKDYPRRANHWSAIIGGSH SKNYVLWEYGGYASEGVKQVAELGSPVKMEEEIRQQ corresponding to amino acids 1-275 of Q9HCB6 (SEQ ID NO: 424), which also corresponds to amino acids 1-275 of M78530_PEA1_P17 (SEQ ID NO: 428), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRQKNHRMTK (SEQ ID NO: 1073) corresponding to amino acids 276-285 of M78530_PEA1_P17 (SEQ ID NO: 428), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M78530_PEA1_P17 (SEQ ID NO: 428), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRQKNHRMTK (SEQ ID NO: 1073) in M78530_PEA1_P17 (SEQ ID NO: 428).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M78530_PEA1_P17 (SEQ ID NO: 428), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLS (SEQ ID NO: 1071) corresponding to amino acids 1-83 of M78530_PEA1_P17 (SEQ ID NO: 428), a second amino acid sequence being at least 90% homologous to AAPPSYFRGFTLIALRENREGDKEEDHAGTFQIIDEEETQFMSNCPVAVTESTPRRRTRIQ VFWIAPPAGTGCVILKASIVQKRIIYFQDEGSLTKKLCEQDSTFDGVTDKPILDCCACGT AKYRLTFYGNWSEKTHPKDYPRRANHWSAIIGGSHSKNYVLWEYGGYASEGVKQVAE LGSPVKMEEEIRQQ corresponding to amino acids 1-192 of 094862 (SEQ ID NO: 425), which also corresponds to amino acids 84-275 of M78530_PEA1_P17 (SEQ ID NO: 428), and a third amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRQKNHRMTK (SEQ ID NO: 1073) corresponding to amino acids 276-285 of M78530_PEA1_P17 (SEQ ID NO: 428), wherein said first amino acid sequence, second amino acid sequence and third amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of M78530_PEA_L_P17 (SEQ ID NO: 428), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MRLSPAPLKLSRTPALLALALPLAAALAFSDETLDKVPKSEGYCSRILRAQGTRREGYT EFSLRVEGDPDFYKPGTSYRVTLS (SEQ ID NO: 1071) of M78530_PEA1_P17 (SEQ ID NO: 428).

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M78530_PEA1_P17 (SEQ ID NO: 428), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRQKNHRMTK (SEQ ID NO: 1073) in M78530_PEA1_P17 (SEQ ID NO: 428).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T48119_P2 (SEQ ID NO: 450), comprising a first amino acid sequence being at least 90% homologous to MTRQMASSGASGGKIDNSVLVLIVGLSTVGAGAYAYKTMKEDEKRYNERISGLGLTPE QKQKKAALSASEGEEVPQDKAPSHVPFLLIGGGTAAFAAARSIRARDPGARVLIVSEDP ELPYMRPPLSKELWFSDDPNVTKTLRFKQWNGKERSIYFQPPSFYVSAQDLPHIENGGV AVLTGKKVVQLDVRDNMVKLNDGSQITYEKCLIATGGTPRSLSAIDRAGAEVKSRTTL FRKIGDFRSLEKISREVKSITIIGGGFLGSELACALGRKARALGTEVIQLFPEKGNMGKILP EYLSNWTMEKVRREGVKVMPNAIVQSVGVSSGKLLIKLKDGRKVETDHIVAAVGLEP NVELAKTGGLEIDSDFGGFRVNAELQARSNIWVAGDAACFYDIKLGRRRVEHHDHAV VSGRLAGENMTGAAKPYWHQSMFWSDLGPDVGYEAIGLVDSSLPTVGVFAKATAQD NPKSATEQSGTGIRSESETESEASEITIPPSTPAVPQAPVQGEDYGKGVIFYLRDKVVVGI VLWNIFNRMPIARKIIKDGEQHEDLNEVAKLFNIHED corresponding to amino acids 50-613 of PCD8_HUMAN, which also corresponds to amino acids 1-564 of T48119_P2 (SEQ ID NO: 450).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T48119_P2 (SEQ ID NO: 450), comprising a first amino acid sequence being at least 90% homologous to MTRQMASSGASGGKIDNSVLVLIVGLSTVGAGAYAYKTMKEDEKRYNERISGLGLTPE QKQKKAALSASEGEEVPQDKAPSHVPFLLIGGGTAAFAAARSIRARDPGARVLIVSEDP ELPYMRPPLSKELWFSDDPNVTKTLRFKQWNGKERSIYFQPPSFYVSAQDLPHIENGGV AVLTGKKVVQLDVRDNMVKLNDGSQITYEKCLIATGGTPRSLSAIDRAGAEVKSRTTL FRKIGDFRSLEKISREVKSITIIGGGFLGSELACALGRKARALGTEVIQLFPEKGNMGKILP EYLSNWTMEKVRREGVKVMPNAIVQSVGVSSGKLLIKLKDGRKVETDHIVAAVGLEP NVELAKTGGLEIDSDFGGFRVNAELQARSNIWVAGDAACFYDIKLGRRRVEHHDHAV VSGRLAGENMTGAAKPYWHQSMFWSDLGPDVGYEAIGLVDSSLPTVGVFAKATAQD NPKSATEQSGTGIRSESETESEASEITIPPSTPAVPQAPVQGEDYGKGVIFYLRDKVVVGI VLWNIFNRMPIARKIIKDGEQHEDLNEVAKLFNIHED corresponding to amino acids 50-613 of PCD8_HUMAN, which also corresponds to amino acids 1-564 of T48119_P2 (SEQ ID NO: 450).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T39971_P6 (SEQ ID NO: 603), comprising a first amino acid sequence being at least 90% homologous to MAPLRPLLILALLAWVALADQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAEC KPQVTRGDVFTMPEDEYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPV LKPEEEAPAPEVGASKPEGIDSRPETLHPGRPQPPAEEELCSGKPFDAFTDLKNGSLFAFR GQYCYELDEKAVRPGYPKLIRDVWGIEGPIDAAFTRINCQGKTYLFKGSQYWRFEDGV LDPDYPRNISDGFDGIPDNVDAALALPAHSYSGRERVYFFKG corresponding to amino acids 1-276 of VTNC_HUMAN, which also corresponds to amino acids 1-276 of T39971_P6 (SEQ ID NO: 603), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence TQGVVGD corresponding to amino acids 277-283 of T39971_P6 (SEQ ID NO: 603), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T39971_P6 (SEQ ID NO: 603), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence TQGVVGD in T39971_P6 (SEQ ID NO: 603).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T39971_P9 (SEQ ID NO: 604), comprising a first amino acid sequence being at least 90% homologous to MAPLRPLLILALLAWVALADQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAEC KPQVTRGDVFTMPEDEYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPV LKPEEEAPAPEVGASKPEGIDSRPETLHPGRPQPPAEEELCSGKPFDAFTDLKNGSLFAFR GQYCYELDEKAVRPGYPKLIRDVWGIEGPIDAAFTRINCQGKTYLFKGSQYWRFEDGV LDPDYPRNISDGFDGIPDNVDAALALPAHSYSGRERVYFFKGKQYWEYQFQHQPSQEE CEGSSLSAVFEHFAMMQRDSWEDIFELLFWGRT corresponding to amino acids 1-325 of VTNC_HUMAN, which also corresponds to amino acids 1-325 of T39971_P9 (SEQ ID NO: 604), and a second amino acid sequence being at least 90% homologous to SGMAPRPSLAKKQRFRHRNRKGYRSQRGHSRGRNQNSRRPSRATWLSLFSSEESNLGA NNYDDYRMDWLVPATCEPIQSVFFFSGDKYYRVNLRTRRVDTVDPPYPRSIAQYWLGC PAPGHL corresponding to amino acids 357-478 of VTNC_HUMAN, which also corresponds to amino acids 326-447 of T39971_P9 (SEQ ID NO: 604), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T39971_P9 (SEQ ID NO: 604), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise TS, having a structure as follows: a sequence starting from any of amino acid numbers 325−x to 325; and ending at any of amino acid numbers 326+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T39971_P11 (SEQ ID NO: 605), comprising a first amino acid sequence being at least 90% homologous to MAPLRPLLILALLAWVALADQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAEC KPQVTRGDVFTMPEDEYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPV LKPEEEAPAPEVGASKPEGIDSRPETLHPGRPQPPAEEELCSGKPFDAFTDLKNGSLFAFR GQYCYELDEKAVRPGYPKLIRDVWGIEGPIDAAFTRINCQGKTYLFKGSQYWRFEDGV LDPDYPRNISDGFDGIPDNVDAALALPAHSYSGRERVYFFKGKQYWEYQFQHQPSQEE CEGSSLSAVFEHFAMMQRDSWEDIFELLFWGRTS corresponding to amino acids 1-326 of VTNC_HUMAN, which also corresponds to amino acids 1-326 of T39971_P11 (SEQ ID NO: 605), and a second amino acid sequence being at least 90% homologous to DKYYRVNLRTRRVDTVDPPYPRSIAQYWLGCPAPGHL corresponding to amino acids 442-478 of VTNC_HUMAN, which also corresponds to amino acids 327-363 of T39971_P11 (SEQ ID NO: 605), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T39971_P11 (SEQ ID NO: 605), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise SD, having a structure as follows: a sequence starting from any of amino acid numbers 326−x to 326; and ending at any of amino acid numbers 327+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T39971_P11 (SEQ ID NO: 605), comprising a first amino acid sequence being at least 90% homologous to MAPLRPLLILALLAWVALADQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAEC KPQVTRGDVFTMPEDEYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPV LKPEEEAPAPEVGASKPEGIDSRPETLHPGRPQPPAEEELCSGKPFDAFTDLKNGSLFAFR GQYCYELDEKAVRPGYPKLIRDVWGIEGPIDAAFTRINCQGKTYLFKGSQYWRFEDGV LDPDYPRNISDGFDGIPDNVDAALALPAHSYSGRERVYFFKGKQYWEYQFQHQPSQEE CEGSSLSAVFEHFAMMQRDSWEDIFELLFWGRTS corresponding to amino acids 1-326 of Q9BSH7 (SEQ ID NO: 1000), which also corresponds to amino acids 1-326 of T39971_P11 (SEQ ID NO: 605), and a second amino acid sequence being at least 90% homologous to DKYYRVNLRTRRVDTVDPPYPRSIAQYWLGCPAPGHL corresponding to amino acids 442-478 of Q9BSH7 (SEQ ID NO: 1000), which also corresponds to amino acids 327-363 of T39971_P11 (SEQ ID NO: 605), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T39971_P11 (SEQ ID NO: 605), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise SD, having a structure as follows: a sequence starting from any of amino acid numbers 326−x to 326; and ending at any of amino acid numbers 327+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T39971_P12 (SEQ ID NO: 606), comprising a first amino acid sequence being at least 90% homologous to MAPLRPLLILALLAWVALADQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAEC KPQVTRGDVFTMPEDEYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPV LKPEEEAPAPEVGASKPEGIDSRPETLHPGRPQPPAEEELCSGKPFDAFTDLKNGSLFAFR GQYCYELDEKAVRPGYPKLIRDVWGIEGPIDAAFTRINCQGKTYLFK corresponding to amino acids 1-223 of VTNC_HUMAN, which also corresponds to amino acids 1-223 of T39971_P12 (SEQ ID NO: 606), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VPGAVGQGRKHLGRV (SEQ ID NO: 1076) corresponding to amino acids 224-238 of T39971_P12 (SEQ ID NO: 606), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T39971_P12 (SEQ ID NO: 606), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VPGAVGQGRKHLGRV (SEQ ID NO: 1076) in T39971_P12 (SEQ ID NO: 606).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T39971_P12 (SEQ ID NO: 606), comprising a first amino acid sequence being at least 90% homologous to MAPLRPLLILALLAWVALADQESCKGRCTEGFNVDKKCQCDELCSYYQSCCTDYTAEC KPQVTRGDVFTMPEDEYTVYDDGEEKNNATVHEQVGGPSLTSDLQAQSKGNPEQTPV LKPEEEAPAPEVGASKPEGIDSRPETLHPGRPQPPAEEELCSGKPFDAFTDLKNGSLFAFR GQYCYELDEKAVRPGYPKLIRDVWGIEGPIDAAFTRINCQGKTYLFK corresponding to amino acids 1-223 of Q9BSH7 (SEQ ID NO: 1000), which also corresponds to amino acids 1-223 of T39971_P12 (SEQ ID NO: 606), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VPGAVGQGRKHLGRV (SEQ ID NO: 1076) corresponding to amino acids 224-238 of T39971_P12 (SEQ ID NO: 606), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T39971_P12 (SEQ ID NO: 606), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VPGAVGQGRKHLGRV (SEQ ID NO: 1076) in T39971_P12 (SEQ ID NO: 606).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z44808_PEA1_P5 (SEQ ID NO: 634), comprising a first amino acid sequence being at least 90% homologous to MLLPQLCWLPLLAGLLPPVPAQKFSALTFLRVDQDKDKDCSLDCAGSPQKPLCASDGR TFLSRCEFQRAKCKDPQLEIAYRGNCKDVSRCVAERKYTQEQARKEFQQVFIPECNDD GTYSQVQCHSYTGYCWCVTPNGRPISGTAVAHKTPRCPGSVNEKLPQREGTGKTDDAA APALETQPQGDEEDIASRYPTLWTEQVKSRQNKTNKNSVSSCDQEHQSALEEAKQPKN DNVVIPECAHGGLYKPVQCHPSTGYCWCVLVDTGRPIPGTSTRYEQPKCDNTARAHPA KARDLYKGRQLQGCPGAKKHEFLTSVLDALSTDMVHAASDPSSSSGRLSEPDPSHTLEE RVVHWYFKLLDKNSSGDIGKKEIKPFKRFLRKKSKPKKCVKKFVEYCDVNNDKSISVQ ELMGCLGVAKEDGKADTKKRHTPRGHAESTSNRQ corresponding to amino acids 1-441 of SMO2_HUMAN, which also corresponds to amino acids 1-441 of Z44808_PEA1_P5 (SEQ ID NO: 634), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DAMVVSSRPKATTHRKSRTLSRR (SEQ ID NO: 1077) corresponding to amino acids 442-464 of Z44808_PEA1_P5 (SEQ ID NO: 634), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of Z44808_PEA1_P5 (SEQ ID NO: 634), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DAMVVSSRPKATTHRKSRTLSRR (SEQ ID NO: 1077) in Z44808_PEA1_P5 (SEQ ID NO: 634).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z44808_PEA1_P6 (SEQ ID NO: 635), comprising a first amino acid sequence being at least 90% homologous to MLLPQLCWLPLLAGLLPPVPAQKFSALTFLRVDQDKDKDCSLDCAGSPQKPLCASDGR TFLSRCEFQRAKCKDPQLEIAYRGNCKDVSRCVAERKYTQEQARKEFQQVFIPECNDD GTYSQVQCHSYTGYCWCVTPNGRPISGTAVAHKTPRCPGSVNEKLPQREGTGKTDDAA APALETQPQGDEEDIASRYPTLWTEQVKSRQNKTNKNSVSSCDQEHQSALEEAKQPKN DNVVIPECAHGGLYKPVQCHPSTGYCWCVLVDTGRPIPGTSTRYEQPKCDNTARAHPA KARDLYKGRQLQGCPGAKKHEFLTSVLDALSTDMVHAASDPSSSSGRLSEPDPSHTLEE RVVHWYFKLLDKNSSGDIGKKEIKPFKRFLRKKSKPKKCVKKFVEYCDVNNDKSISVQ ELMGCLGVAKEDGKADTKKRH corresponding to amino acids 1-428 of SMO2_HUMAN, which also corresponds to amino acids 1-428 of Z44808_PEA1_P6 (SEQ ID NO: 635), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence RSKRNL (SEQ ID NO: 1078) corresponding to amino acids 429-434 of Z44808_PEA1_P6 (SEQ ID NO: 635), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of Z44808_PEA1_P6 (SEQ ID NO: 635), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence RSKRNL (SEQ ID NO: 1078) in Z44808_PEA1_P6 (SEQ ID NO: 635).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z44808_PEA1_P7 (SEQ ID NO: 636), comprising a first amino acid sequence being at least 90% homologous to MLLPQLCWLPLLAGLLPPVPAQKFSALTFLRVDQDKDKDCSLDCAGSPQKPLCASDGR TFLSRCEFQRAKCKDPQLEIAYRGNCKDVSRCVAERKYTQEQARKEFQQVFIPECNDD GTYSQVQCHSYTGYCWCVTPNGRPISGTAVAHKTPRCPGSVNEKLPQREGTGKTDDAA APALETQPQGDEEDIASRYPTLWTEQVKSRQNKTNKNSVSSCDQEHQSALEEAKQPKN DNVVIPECAHGGLYKPVQCHPSTGYCWCVLVDTGRPIPGTSTRYEQPKCDNTARAHPA KARDLYKGRQLQGCPGAKKHEFLTSVLDALSTDMVHAASDPSSSSGRLSEPDPSHTLEE RVVHWYFKLLDKNSSGDIGKKEIKPFKRFLRKKSKPKKCVKKFVEYCDVNNDKSISVQ ELMGCLGVAKEDGKADTKKRHTPRGHAESTSNRQ corresponding to amino acids 1-441 of SMO2_HUMAN, which also corresponds to amino acids 1-441 of Z44808_PEA1_P7 (SEQ ID NO: 636), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence LLWLRGKVSFYCF (SEQ ID NO: 1079) corresponding to amino acids 442-454 of Z44808_PEA1_P7 (SEQ ID NO: 636), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of Z44808_PEA1_P7 (SEQ ID NO: 636), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence LLWLRGKVSFYCF (SEQ ID NO: 1079) in Z44808_PEA1_P7 (SEQ ID NO: 636).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z44808_PEA1_P11 (SEQ ID NO: 637), comprising a first amino acid sequence being at least 90% homologous to MLLPQLCWLPLLAGLLPPVPAQKFSALTFLRVDQDKDKDCSLDCAGSPQKPLCASDGR TFLSRCEFQRAKCKDPQLEIAYRGNCKDVSRCVAERKYTQEQARKEFQQVFIPECNDD GTYSQVQCHSYTGYCWCVTPNGRPISGTAVAHKTPRCPGSVNEKLPQREGTGKT corresponding to amino acids 1-170 of SMO2_HUMAN, which also corresponds to amino acids 1-170 of Z44808_PEA1_P11 (SEQ ID NO: 637), and a second amino acid sequence being at least 90% homologous to DIASRYPTLWTEQVKSRQNKTNKNSVS SCDQEHQSALEEAKQPKNDNVVIPECAHGGL YKPVQCHPSTGYCWCVLVDTGRPIPGTSTRYEQPKCDNTARAHPAKARDLYKGRQLQ GCPGAKKHEFLTSVLDALSTDMVHAASDPSSSSGRLSEPDPSHTLEERVVHWYFKLLD KNSSGDIGKKEIKPFKRFLRKKSKPKKCVKKFVEYCDVNNDKSISVQELMGCLGVAKE DGKADTKKRHTPRGHAESTSNRQPRKQG corresponding to amino acids 188-446 of SMO2_HUMAN, which also corresponds to amino acids 171-429 of Z44808_PEA1_P11 (SEQ ID NO: 637), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of Z44808_PEA1_P11 (SEQ ID NO: 637), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise TD, having a structure as follows: a sequence starting from any of amino acid numbers 170−x to −170; and ending at any of amino acid numbers 171+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for S67314_PEA1_P4 (SEQ ID NO: 651), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MVDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTF KNTEISFKLGVEFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLIL corresponding to amino acids 1-116 of FABH_HUMAN, which also corresponds to amino acids 1-116 of S67314_PEA1_P4 (SEQ ID NO: 651), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRWATLELYLIGYYYCSFSQACSKKPSPPLRAVEAGTREWLWVRVVSGGNFLCSGFGL TQAGTQILPYRLHDCGQITFSKCNCKTGINNTNLVGLLGSL (SEQ ID NO: 1080) corresponding to amino acids 117-215 of S67314_PEA1_P4 (SEQ ID NO: 651), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of S67314_PEA1_P4 (SEQ ID NO: 651), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRWATLELYLIGYYYCSFSQACSKKPSPPLRAVEAGTREWLWVRVVSGGNFLCSGFGL TQAGTQILPYRLHDCGQITFSKCNCKTGINNTNLVGLLGSL (SEQ ID NO: 1080) in S67314_PEA1_P4 (SEQ ID NO: 651).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for S67314_PEA1_P4 (SEQ ID NO: 651), comprising a first amino acid sequence being at least 90% homologous to MVDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTF KNTEISFKLGVEFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLIL corresponding to amino acids 1-116 of AAP35373 (SEQ ID NO: 1007), which also corresponds to amino acids 1-116 of S67314_PEA1_P4 (SEQ ID NO: 651), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRWATLELYLIGYYYCSFSQACSKKPSPPLRAVEAGTREWLWVRVVSGGNFLCSGFGL TQAGTQILPYRLHDCGQITFSKCNCKTGINNTNLVGLLGSL (SEQ ID NO: 1080) corresponding to amino acids 117-215 of S67314_PEA1_P4 (SEQ ID NO: 651), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of S67314_PEA1_P4 (SEQ ID NO: 651), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRWATLELYLIGYYYCSFSQACSKKPSPPLRAVEAGTREWLWVRVVSGGNFLCSGFGL TQAGTQILPYRLHDCGQITFSKCNCKTGINNTNLVGLLGSL (SEQ ID NO: 1080) in S67314_PEA1_P4 (SEQ ID NO: 651).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for S67314_PEA1_P5 (SEQ ID NO: 652), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MVDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTF KNTEISFKLGVEFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLIL corresponding to amino acids 1-116 of FABH_HUMAN, which also corresponds to amino acids 1-116 of S67314_PEA1_P5 (SEQ ID NO: 652), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DVLTAWPSIYRRQVKVLREDEITILPWHLQWSREKATKLLRPTLPSYNNHGWEELRVG KSIV (SEQ ID NO: 1081) corresponding to amino acids 117-178 of S67314_PEA1_P5 (SEQ ID NO: 652), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of S67314_PEA1_P5 (SEQ ID NO: 652), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DVLTAWPSIYRRQVKVLREDEITILPWHLQWSREKATKLLRPTLPSYNNHGWEELRVG KSIV (SEQ ID NO: 1081) in S67314_PEA1_P5 (SEQ ID NO: 652).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for S67314_PEA1_P5 (SEQ ID NO: 652), comprising a first amino acid sequence being at least 90% homologous to MVDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTF KNTEISFKLGVEFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLIL corresponding to amino acids 1-116 of AAP35373 (SEQ ID NO: 1007), which also corresponds to amino acids 1-116 of S67314_PEA1_P5 (SEQ ID NO: 652), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DVLTAWPSIYRRQVKVLREDEITILPWHLQWSREKATKLLRPTLPSYNNHGWEELRVG KSIV (SEQ ID NO: 1081) corresponding to amino acids 117-178 of S67314_PEA1_P5 (SEQ ID NO: 652), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of S67314_PEA1_P5 (SEQ ID NO: 652), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DVLTAWPSIYRRQVKVLREDEITILPWHLQWSREKATKLLRPTLPSYNNHGWEELRVG KSIV (SEQ ID NO: 1081) in S67314_PEA1_P5 (SEQ ID NO: 652).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for S67314_PEA1_P6 (SEQ ID NO: 653), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MVDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTF KNTEISFKLGVEFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLIL corresponding to amino acids 1-116 of FABH_HUMAN, which also corresponds to amino acids 1-116 of S67314_PEA1_P6 (SEQ ID NO: 653), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MEKLQLRNVK (SEQ ID NO: 1082) corresponding to amino acids 117-126 of S67314_PEA1_P6 (SEQ ID NO: 653), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of S67314_PEA1_P6 (SEQ ID NO: 653), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MEKLQLRNVK (SEQ ID NO: 1082) in S67314_PEA1_P6 (SEQ ID NO: 653).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for S67314_PEA1_P6 (SEQ ID NO: 653), comprising a first amino acid sequence being at least 90% homologous to MVDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTF KNTEISFKLGVEFDETTADDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLIL corresponding to amino acids 1-116 of AAP35373 (SEQ ID NO: 1007), which also corresponds to amino acids 1-116 of S67314_PEA1_P6 (SEQ ID NO: 653), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MEKLQLRNVK (SEQ ID NO: 1082) corresponding to amino acids 117-126 of S67314_PEA1_P6 (SEQ ID NO: 653), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of S67314_PEA1_P6 (SEQ ID NO: 653), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MEKLQLRNVK (SEQ ID NO: 1082) in S67314_PEA1_P6 (SEQ ID NO: 653).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for S67314_PEA1_P7 (SEQ ID NO: 654), comprising a first amino acid sequence being at least 90% homologous to MVDAFLGTWKLVDSKNFDDYMKSL corresponding to amino acids 1-24 of FABH_HUMAN, which also corresponds to amino acids 1-24 of S67314_PEA1_P7 (SEQ ID NO: 654), second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence AHILITFPLPS (SEQ ID NO: 1143) corresponding to amino acids 25-35 of S67314_PEA1_P7 (SEQ ID NO: 654), and a third amino acid sequence being at least 90% homologous to GVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTADDRKVKSI VTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKEA corresponding to amino acids 25-133 of FABH_HUMAN, which also corresponds to amino acids 36-144 of S67314_PEA1_P7 (SEQ ID NO: 654), wherein said first, second, third and fourth amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for an edge portion of S67314_PEA1_P7 (SEQ ID NO: 654), comprising an amino acid sequence being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence encoding for AHILITFPLPS (SEQ ID NO: 1143), corresponding to S67314_PEA1_P7 (SEQ ID NO: 654).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for S67314_PEA1_P7 (SEQ ID NO: 654), comprising a first amino acid sequence being at least 90% homologous to MVDAFLGTWKLVDSKNFDDYMKSL corresponding to amino acids 1-24 of AAP35373 (SEQ ID NO: 1007), which also corresponds to amino acids 1-24 of S67314_PEA1_P7 (SEQ ID NO: 654), second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence AHILITFPLPS (SEQ ID NO: 1143) corresponding to amino acids 25-35 of S67314_PEA1_P7 (SEQ ID NO: 654), and a third amino acid sequence being at least 90% homologous to GVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTADDRKVKSI VTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKEA corresponding to amino acids 25-133 of AAP35373 (SEQ ID NO: 1007), which also corresponds to amino acids 36-144 of S67314_PEA1_P7 (SEQ ID NO: 654), wherein said first, second and third amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for an edge portion of S67314_PEA1_P7 (SEQ ID NO: 654), comprising an amino acid sequence being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence encoding for AHILITFPLPS (SEQ ID NO: 1143), corresponding to S67314_PEA1_P7 (SEQ ID NO: 654).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z39337_PEA2_PEA1_P4 (SEQ ID NO: 671), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MWLPLSGAA (SEQ ID NO: 1083) corresponding to amino acids 1-9 of Z39337_PEA2_PEA1_P4 (SEQ ID NO: 671), and a second amino acid sequence being at least 90% homologous to MKKLMVVLSLIAAAWAEEQNKLVHGGPCDKTSHPYQAALYTSGHLLCGGVLIHPLWV LTAAHCKKPNLQVFLGKHNLRQRESSQEQSSVVRAVIHPDYDAASHDQDIMLLRLARP AKLSELIQPLPLERDCSANTTSCHILGWGKTADGDFPDTIQCAYIHLVSREECEHAYPGQ ITQNMLCAGDEKYGKDSCQGDSGGPLVCGDHLRGLVSWGNIPCGSKEKPGVYTNVCR YTNWIQKTIQAK corresponding to amino acids 1-244 of KLK6_HUMAN, which also corresponds to amino acids 10-253 of Z39337_PEA2_PEA1_P4 (SEQ ID NO: 671), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of Z39337_PEA2_PEA1_P4 (SEQ ID NO: 671), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MWLPLSGAA (SEQ ID NO: 1083) of Z39337_PEA2_PEA1_P4 (SEQ ID NO: 671).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z39337_PEA2_PEA1_P9 (SEQ ID NO: 672), comprising a first amino acid sequence being at least 90% homologous to MKKLMVVLSLIAAAWAEEQNKLVHGGPCDKTSHPYQAALYTSGHLLCGGVLIHPLWV LTAAHCKKPNLQVFLGKHNLRQRESSQEQSSVVRAVIHPDYDAASHDQDIMLLRLARP AKLSELIQPLPLERDCSANTTSCHILGWGKTADG corresponding to amino acids 1-149 of KLK6_HUMAN, which also corresponds to amino acids 1-149 of Z39337_PEA2_PEA1_P9 (SEQ ID NO: 672), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence Q corresponding to amino acids 150-150 of Z39337_PEA2_PEA1_P9 (SEQ ID NO: 672), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMPHOSLIP_PEA2_P10 (SEQ ID NO: 735), comprising a first amino acid sequence being at least 90% homologous to MALFGALFLALLAGAHAEFPGCKIRVTSKALELVKQEGLRFLEQELETITIPDLRGKEGH FYYNISE corresponding to amino acids 1-67 of PLTP_HUMAN, which also corresponds to amino acids 1-67 of HUMPHOSLIP_PEA2_P10 (SEQ ID NO: 735), and a second amino acid sequence being at least 90% homologous to KVYDFLSTFITSGMRFLLNQQICPVLYHAGTVLLNSLLDTVPVRSSVDELVGIDYSLMK DPVASTSNLDMDFRGAFFPLTERNWSLPNRAVEPQLQEEERMVYVAFSEFFFDSAMES YFRAGALQLLLVGDKVPHDLDMLLRATYFGSIVLLSPAVIDSPLKLELRVLAPPRCTIKP SGTTISVTASVTIALVPPDQPEVQLSSMTMDARLSAKMALRGKALRTQLDLRRFRIYSN HSALESLALIPLQAPLKTMLQIGVMPMLNERTWRGVQIPLPEGINFVHEVVTNHAGFLTI GADLHFAKGLREVIEKNRPADVRASTAPTPSTAAV corresponding to amino acids 163-493 of PLTP_HUMAN, which also corresponds to amino acids 68-398 of HUMPHOSLIP_PEA2_P10 (SEQ ID NO: 735), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HUMPHOSLIP_PEA2_P10 (SEQ ID NO: 735), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise EK, having a structure as follows: a sequence starting from any of amino acid numbers 67−x to 67; and ending at any of amino acid numbers 68+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMPHOSLIP_PEA2_P12 (SEQ ID NO: 736), comprising a first amino acid sequence being at least 90% homologous to MALFGALFLALLAGAHAEFPGCKIRVTSKALELVKQEGLRFLEQELETITIPDLRGKEGH FYYNISEVKVTELQLTSSELDFQPQQELMLQITNASLGLRFRRQLLYWFFYDGGYINAS AEGVSIRTGLELSRDPAGRMKVSNVSCQASVSRMHAAFGGTFKKVYDFLSTFITSGMRF LLNQQICPVLYHAGTVLLNSLLDTVPVRSSVDELVGIDYSLMKDPVASTSNLDMDFRG AFFPLTERNWSLPNRAVEPQLQEEERMVYVAFSEFFFDSAMESYFRAGALQLLLVGDK VPHDLDMLLRATYFGSIVLLSPAVIDSPLKLELRVLAPPRCTIKPSGTTISVTASVTIALVP PDQPEVQLSSMTMDARLSAKMALRGKALRTQLDLRRFRIYSNHSALESLALIPLQAPLK TMLQIGVMPMLN corresponding to amino acids 1-427 of PLTP_HUMAN, which also corresponds to amino acids 1-427 of HUMPHOSLIP_PEA2_P12 (SEQ ID NO: 736), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GKAGV (SEQ ID NO: 1084) corresponding to amino acids 428-432 of HUMPHOSLIP_PEA2_P12 (SEQ ID NO: 736), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMPHOSLIP_PEA2_P12 (SEQ ID NO: 736), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GKAGV (SEQ ID NO: 1084) in HUMPHOSLIP_PEA2_P12 (SEQ ID NO: 736).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMPHOSLIP_PEA2_P31 (SEQ ID NO: 738), comprising a first amino acid sequence being at least 90% homologous to MALFGALFLALLAGAHAEFPGCKIRVTSKALELVKQEGLRFLEQELETITIPDLRGKEGH FYYNISE corresponding to amino acids 1-67 of PLTP_HUMAN, which also corresponds to amino acids 1-67 of HUMPHOSLIP_PEA2_P31 (SEQ ID NO: 738), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence PGLERGADKFPVVGGSSLFLALDLTLRPPVG (SEQ ID NO: 1085) corresponding to amino acids 68-98 of HUMPHOSLIP_PEA2_P31 (SEQ ID NO: 738), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMPHOSLIP_PEA2_P31 (SEQ ID NO: 738), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence PGLERGADKFPVVGGSSLFLALDLTLRPPVG (SEQ ID NO: 1085) in HUMPHOSLIP_PEA2_P31 (SEQ ID NO: 738).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMPHOSLIP_PEA2_P33 (SEQ ID NO: 739), comprising a first amino acid sequence being at least 90% homologous to MALFGALFLALLAGAHAEFPGCKIRVTSKALELVKQEGLRFLEQELETITIPDLRGKEGH FYYNISEVKVTELQLTSSELDFQPQQELMLQITNASLGLRFRRQLLYWFFYDGGYINAS AEGVSIRTGLELSRDPAGRMKVSNVSCQASVSRMHAAFGGTFKKVYDFLSTFITSGMRF LLNQQ corresponding to amino acids 1-183 of PLTP_HUMAN, which also corresponds to amino acids 1-183 of HUMPHOSLIP_PEA2_P33 (SEQ ID NO: 739), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VWAATGRRVARVGMLSL (SEQ ID NO: 1086) corresponding to amino acids 184-200 of HUMPHOSLIP_PEA2_P33 (SEQ ID NO: 739), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMPHOSLIP_PEA2_P33 (SEQ ID NO: 739), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VWAATGRRVARVGMLSL (SEQ ID NO: 1086) in HUMPHOSLIP_PEA2_P33 (SEQ ID NO: 739).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMPHOSLIP_PEA2_P34 (SEQ ID NO: 740), comprising a first amino acid sequence being at least 90% homologous to MALFGALFLALLAGAHAEFPGCKIRVTSKALELVKQEGLRFLEQELETITIPDLRGKEGH FYYNISEVKVTELQLTSSELDFQPQQELMLQITNASLGLRFRRQLLYWFFYDGGYINAS AEGVSIRTGLELSRDPAGRMKVSNVSCQASVSRMHAAFGGTFKKVYDFLSTFITSGMRF LLNQQICPVLYHAGTVLLNSLLDTVPV corresponding to amino acids 1-205 of PLTP_HUMAN, which also corresponds to amino acids 1-205 of HUMPHOSLIP_PEA2_P34 (SEQ ID NO: 740), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence LWTSLLALTIPS (SEQ ID NO: 1087) corresponding to amino acids 206-217 of HUMPHOSLIP_PEA2_P34 (SEQ ID NO: 740), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMPHOSLIP_PEA2_P34 (SEQ ID NO: 740), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence LWTSLLALTIPS (SEQ ID NO: 1087) in HUMPHOSLIP_PEA2_P34 (SEQ ID NO: 740).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMPHOSLIP_PEA2_P35 (SEQ ID NO: 741), comprising a first amino acid sequence being at least 90% homologous to MALFGALFLALLAGAHAEFPGCKIRVTSKALELVKQEGLRFLEQELETITIPDLRGKEGH FYYNISEVKVTELQLTSSELDFQPQQELMLQITNASLGLRFRRQLLYWF corresponding to amino acids 1-109 of PLTP_HUMAN, which also corresponds to amino acids 1-109 of HUMPHOSLIP_PEA2_P35 (SEQ ID NO: 741), a second amino acid sequence bridging amino acid sequence comprising of L, a third amino acid sequence being at least 90% homologous to KVYDFLSTFITSGMRFLLNQQ corresponding to amino acids 163-183 of PLTP_HUMAN, which also corresponds to amino acids 111-131 of HUMPHOSLIP_PEA2_P35 (SEQ ID NO: 741), and a fourth amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VWAATGRRVARVGMLSL (SEQ ID NO: 1086) corresponding to amino acids 132-148 of HUMPHOSLIP_PEA2_P35 (SEQ ID NO: 741), wherein said first amino acid sequence, second amino acid sequence, third amino acid sequence and fourth amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for an edge portion of HUMPHOSLIP_PEA2_P35 (SEQ ID NO: 741), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise FLK having a structure as follows (numbering according to HUMPHOSLIP_PEA2_P35 (SEQ ID NO: 741)): a sequence starting from any of amino acid numbers 109−x to 109; and ending at any of amino acid numbers 111+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMPHOSLIP_PEA2_P35 (SEQ ID NO: 741), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VWAATGRRVARVGMLSL (SEQ ID NO: 1086) in HUMPHOSLIP_PEA2_P35 (SEQ ID NO: 741).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P7 (SEQ ID NO: 779), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVEACVLDELDMELAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIM ECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNG corresponding to amino acids 12-223 of GILT_HUMAN, which also corresponds to amino acids 1-212 of T59832_P7 (SEQ ID NO: 779), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) corresponding to amino acids 213-238 of T59832_P7 (SEQ ID NO: 779), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P7 (SEQ ID NO: 779), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) in T59832_P7 (SEQ ID NO: 779).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P9 (SEQ ID NO: 780), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVEACVLDELDMELAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIM ECAMGDRGMQLMHANAQRTDALQPPHE corresponding to amino acids 12-214 of GILT_HUMAN, which also corresponds to amino acids 1-203 of T59832_P9 (SEQ ID NO: 780), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) corresponding to amino acids 204-244 of T59832_P9 (SEQ ID NO: 780), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P9 (SEQ ID NO: 780), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) in T59832_P9 (SEQ ID NO: 780).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P12 (SEQ ID NO: 781), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVE corresponding to amino acids 12-141 of GILT_HUMAN, which also corresponds to amino acids 1-130 of T59832_P12 (SEQ ID NO: 781), and a second amino acid sequence being at least 90% homologous to CLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNGKPLED QTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK corresponding to amino acids 173-261 of GILT_HUMAN, which also corresponds to amino acids 131-219 of T59832_P12 (SEQ ID NO: 781), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T59832_P12 (SEQ ID NO: 781), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise EC, having a structure as follows: a sequence starting from any of amino acid numbers 130−x to 130; and ending at any of amino acid numbers 131+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P18 (SEQ ID NO: 782), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYK corresponding to amino acids 12-55 of GILT_HUMAN, which also corresponds to amino acids 1-44 of T59832_P18 (SEQ ID NO: 782), and a second amino acid sequence being at least 90% homologous to CLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNGKPLED QTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK corresponding to amino acids 173-261 of GILT_HUMAN, which also corresponds to amino acids 45-133 of T59832_P18 (SEQ ID NO: 782), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T59832_P118 (SEQ ID NO: 782), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise KC, having a structure as follows: a sequence starting from any of amino acid numbers 44−x to 44; and ending at any of amino acid numbers 45+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P4 (SEQ ID NO: 846), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKKDSLDKEKEKHIDREFVVMFSVVDENFSWYLEDNIKTY CSEPEKVDKDNEDFQESNRMYSVNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVH AAFFHGQALTNKNYRIDTINLFPATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFF QVQECNKSSSKDNIRGKHVRHYYIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQG TTRIGGSYKKLVYREYTDASFTNRKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAY PLSIEPIGVRFNKNNEGTYYSPNYNPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNAD PVCLAKMYYSAVDPTKDIFTGLIGPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENES LLLEDNIRMFTTAPDQVDKEDEDFQESNKMHSMNGFMYGNQPGLTMCKGDSVVWYL FSAGNEADVHGIYFSGNTYLWRGERRDTANLFPQTSLTLHMWPDTEGTFNVECLTTDH YTGGMKQKYTVNQCRRQSEDSTFYLGERTYYIAAVEVEWDYSPQREWEKELHHLQEQ NVSNAFLDKGEFYIGSKYKKVVYRQYTDSTFRVPVERKAEEEHLGILGPQLHADVGDK VKIIFKNMATRPYSIHAHGVQTESSTVTPTLPGETLTYVWKIPERSGAGTEDSACIPWAY YSTVDQVKDLYSGLIGPLIVCRRPYLKVFNPRRKLEFALLFLVFDENESWYLDDNIKTYS DHPEKVNKDDEEFIESNKMHAINGRMFGNLQGLTMHVGDEVNWYLMGMGNEIDLHT VHFHGHSFQYKHRGVYSSDVFDIFPGTYQTLEMFPRTPGIWLLHCHVTDHIHAGMETT YTVLQNE corresponding to amino acids 1-1060 of CERU_HUMAN, which also corresponds to amino acids 1-1060 of HSCP2_PEA1_P4 (SEQ ID NO: 846), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GGTSM (SEQ ID NO: 1091) corresponding to amino acids 1061-1065 of HSCP2_PEA1_P4 (SEQ ID NO: 846), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSCP2_PEA1_P4 (SEQ ID NO: 846), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GGTSM (SEQ ID NO: 1091) in HSCP2_PEA1_P4 (SEQ ID NO: 846).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P8 (SEQ ID NO: 847), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKKDSLDKEKEKHIDREFVVMFSVVDENFSWYLEDNIKTY CSEPEKVDKDNEDFQESNRMYSVNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVH AAFFHGQALTNKNYRIDTINLFPATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFF QVQECNKSSSKDNIRGKHVRHYYIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQG TTRIGGSYKKLVYREYTDASFTNRKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAY PLSIEPIGVRFNKNNEGTYYSPNYNPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNAD PVCLAKMYYSAVDPTKDIFTGLIGPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENES LLLEDNIRMFTTAPDQVDKEDEDFQESNKMHSMNGFMYGNQPGLTMCKGDSVVWYL FSAGNEADVHGIYFSGNTYLWRGERRDTANLFPQTSLTLHMWPDTEGTFNVECLTTDH YTGGMKQKYTVNQCRRQSEDSTFYLGERTYYIAAVEVEWDYSPQREWEKELHHLQEQ NVSNAFLDKGEFYIGSKYKKVVYRQYTDSTFRVPVERKAEEEHLGILGPQLHADVGDK VKIIFKNMATRPYSIHAHGVQTESSTVTPTLPGETLTYVWKIPERSGAGTEDSACIPWAY YSTVDQVKDLYSGLIGPLIVCRRPYLKVFNPRRKLEFALLFLVFDENESWYLDDNIKTYS DHPEKVNKDDEEFIESNKMHAINGRMFGNLQGLTMHVGDEVNWYLMGMGNEIDLHT VHFHGHSFQYK corresponding to amino acids 1-1006 of CERU_HUMAN, which also corresponds to amino acids 1-1006 of HSCP2_PEA1_P8 (SEQ ID NO: 847), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence KCFQEHLEFGYSTAM (SEQ ID NO: 1092) corresponding to amino acids 1007-1021 of HSCP2_PEA1_P8 (SEQ ID NO: 847), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSCP2_PEA1_P8 (SEQ ID NO: 847), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence KCFQEHLEFGYSTAM (SEQ ID NO: 1092) in HSCP2_PEA1_P8 (SEQ ID NO: 847).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P14 (SEQ ID NO: 848), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKKDSLDKEKEKHIDREFVVMFSVVDENFSWYLEDNIKTY CSEPEKVDKDNEDFQESNRMYSVNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVH AAFFHGQALTNKNYRIDTINLFPATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFF QVQECNKSSSKDNIRGKHVRHYYIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQG TTRIGGSYKKLVYREYTDASFTNRKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAY PLSIEPIGVRFNKNNEGTYYSPNYNPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNAD PVCLAKMYYSAVDPTKDIFTGLIGPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENES LLLEDNIRMFTTAPDQVDKEDEDFQESNKMH corresponding to amino acids 1-621 of CERU_HUMAN, which also corresponds to amino acids 1-621 of HSCP2_PEA1_P14 (SEQ ID NO: 848), a second amino acid sequence bridging amino acid sequence comprising of W, and a third amino acid sequence being at least 90% homologous to TFNVECLTTDHYTGGMKQKYTVNQCRRQSEDSTFYLGERTYYIAAVEVEWDYSPQRE WEKELHHLQEQNVSNAFLDKGEFYIGSKYKKVVYRQYTDSTFRVPVERKAEEEHLGIL GPQLHADVGDKVKIIFKNMATRPYSIHAHGVQTESSTVTPTLPGETLTYVWKIPERSGA GTEDSACIPWAYYSTVDQVKDLYSGLIGPLIVCRRPYLKVFNPRRKLEFALLFLVFDENE SWYLDDNIKTYSDHPEKVNKDDEEFIESNKMHAINGRMFGNLQGLTMHVGDEVNWYL MGMGNEIDLHTVHFHGHSFQYKHRGVYSSDVFDIFPGTYQTLEMFPRTPGIWLLHCHV TDHIHAGMETTYTVLQNEDTKSG corresponding to amino acids 694-1065 of CERU_HUMAN, which also corresponds to amino acids 623-994 of HSCP2_PEA1_P14 (SEQ ID NO: 848), wherein said first amino acid sequence, second amino acid sequence and third amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for an edge portion of HSCP2_PEA1_P14 (SEQ ID NO: 848), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise HWT having a structure as follows (numbering according to HSCP2_PEA1_P14 (SEQ ID NO: 848)): a sequence starting from any of amino acid numbers 621−x to 621; and ending at any of amino acid numbers 623+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P15 (SEQ ID NO: 849), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKKDSLDKEKEKHIDREFVVMFSVVDENFSWYLEDNIKTY CSEPEKVDKDNEDFQESNRMYSVNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVH AAFFHGQALTNKNYRIDTINLFPATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFF QVQECNKSSSKDNIRGKHVRHYYIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQG TTRIGGSYKKLVYREYTDASFTNRKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAY PLSIEPIGVRFNKNNEGTYYSPNYNPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNAD PVCLAKMYYSAVDPTKDIFTGLIGPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENES LLLEDNIRMFTTAPDQVDKEDEDFQESNKMHSMNGFMYGNQPGLTMCKGDSVVWYL FSAGNEADVHGIYFSGNTYLWRGERRDTANLFPQTSLTLHMWPDTEGTFNVECLTTDH YTGGMKQKYTVNQCRRQSEDSTFYLGERTYYIAAVEVEWDYSPQREWEKELHHLQEQ NVSNAFLDKGEFYIGSKYKKVVYRQYTDSTFRVPVERKAEEEHLGILGPQLHADVGDK VKIIFKNMATRPYSIHAHGVQTESSTVTPTLPGETLTYVWKIPERSGAGTEDSACIPWAY YSTVDQVKDLYSGLIGPLIVCRRPYLKVFNPRRKLEFALLFLVFDENESWYLDDNIKTYS DHPEKVNKDDEEFIESNKMHAINGRMFGNLQGLTMHVGDEVNWYLMGMGNEIDLHT VHFHGHSFQYKHRGVYSSDVFDIFPGTYQTLEMFPRTPGIWLLHCHVTDHIHAGMETT YTVLQNE corresponding to amino acids 1-1060 of CERU_HUMAN, which also corresponds to amino acids 1-1060 of HSCP2_PEA1_P15 (SEQ ID NO: 849), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GEYPASSETHRRIWNVIYPITVSVIILFQISTKE (SEQ ID NO: 1093) corresponding to amino acids 1061-1094 of HSCP2_PEA1_P15 (SEQ ID NO: 849), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSCP2_PEA1_P15 (SEQ ID NO: 849), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GEYPASSETHRRIWNVIYPITVSVIILFQISTKE (SEQ ID NO: 1093) in HSCP2_PEA1_P15 (SEQ ID NO: 849).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P2 (SEQ ID NO: 850), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKKDSLDKEKEKHIDREFVVMFSVVDENFSWYLEDNIKTY CSEPEKVDKDNEDFQESNRMYSVNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVH AAFFHGQALTNKNYRIDTINLFPATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFF QVQECNKSSSKDNIRGKHVRHYYIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQG TTRIGGSYKKLVYREYTDASFTNRKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAY PLSIEPIGVRFNKNNEGTYYSPNYNPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNAD PVCLAKMYYSAVDPTKDIFTGLIGPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENES LLLEDNIRMFTTAPDQVDKEDEDFQESNKMHSMNGFMYGNQPGLTMCKGDSVVWYL FSAGNEADVHGIYFSGNTYLWRGERRDTANLFPQTSLTLHMWPDTEGTFNVECLTTDH YTGGMKQKYTVNQCRRQSEDSTFYLGERTYYIAAVEVEWDYSPQREWEKELHHLQEQ corresponding to amino acids 1-761 of CERU_HUMAN, which also corresponds to amino acids 1-761 of HSCP2_PEA1_P2 (SEQ ID NO: 850), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence K corresponding to amino acids 762-762 of HSCP2_PEA1_P2 (SEQ ID NO: 850), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P16 (SEQ ID NO: 851), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKKDSLDKEKEKHIDREFVVMFSVVDENFSWYLEDNIKTY CSEPEKVDKDNEDFQESNRMYSVNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVH AAFFHGQALTNKNYRIDTINLFPATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFF QVQECNKSSSKDNIRGKHVRHYYIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQG TTRIGGSYKKLVYREYTDASFTNRKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAY PLSIEPIGVRFNKNNEGTYYSPNYNPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNAD PVCLAKMYYSAVDPTKDIFTGLIGPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENES LLLEDNIRMFTTAPDQVDKEDEDFQESNKMHSMNGFMYGNQPGLTMCKGDSVVWYL FSAGNEADVHGIYFSGNTYLWRGERRDTANLFPQTSLTLHMWPDTEGTFNVECLTTDH YTGGMKQKYTVNQCRRQSEDSTFYLGERTYYIAAVEVEWDYSPQREWEKELHHLQEQ NVSNAFLDKGEFYIGSKYKKVVYRQYTDSTFRVPVERKAEEEHLGILGPQLHADVGDK VKIIFKNMATRPYSIHAHGVQTESSTVTPTLPGETLTYVWKIPERSGAGTEDSACIPWAY YSTVDQVKDLYSGLIGPLIVCRRPYLKVFNPRRKLEFALLFLVFDENESWYLDDNIKTYS DHPEKVNKDDEEFIESNKMHAINGRMFGNLQGLTMHVGDEVNWYLMGMGNEIDLHT VHFHGHSFQYKH corresponding to amino acids 1-1007 of CERU_HUMAN, which also corresponds to amino acids 1-1007 of HSCP2_PEA1_P16 (SEQ ID NO: 851), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence LLRLTGEYGM (SEQ ID NO: 1094) corresponding to amino acids 1008-1017 of HSCP2_PEA1_P16 (SEQ ID NO: 851), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSCP2_PEA1_P16 (SEQ ID NO: 851), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence LLRLTGEYGM (SEQ ID NO: 1094) in HSCP2_PEA1_P16 (SEQ ID NO: 851).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P6 (SEQ ID NO: 852), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKKDSLDKEKEKHIDREFVVMFSVVDENFSWYLEDNIKTY CSEPEKVDKDNEDFQESNRMYSVNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVH AAFFHGQALTNKNYRIDTINLFPATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFF QVQECNKSSSKDNIRGKHVRHYYIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQG TTRIGGSYKKLVYREYTDASFTNRKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAY PLSIEPIGVRFNKNNEGTYYSPNYNPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNAD PVCLAKMYYSAVDPTKDIFTGLIGPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENES LLLEDNIRMFTTAPDQVDKEDEDFQESNKMHSMNGFMYGNQPGLTMCKGDSVVWYL FSAGNEADVHGIYFSGNTYLWRGERRDTANLFPQTSLTLHMWPDTEGTFNVECLTTDH YTGGMKQKYTVNQCRRQSEDSTFYLGERTYYIAAVEVEWDYSPQREWEKELHHLQEQ NVSNAFLDKGEFYIGSKYKKVVYRQYTDSTFRVPVERKAEEEHLGILGPQLHADVGDK VKIIFKNMATRPYSIHAHGVQTESSTVTPTLPGETLTYVWKIPERSGAGTEDSACIPWAY YSTVDQVKDLYSGLIGPLIVCRRPYLKVFNPRRKLEFALLFLVFDENESWYLDDNIKTYS DHPEKVNKDDEEFIESNKMHAINGRMFGNLQGLTMHVGDEVNWYLMGMGNEIDLHT VHFHGHSFQYK corresponding to amino acids 1-1006 of CERU_HUMAN, which also corresponds to amino acids 1-1006 of HSCP2_PEA1_P6 (SEQ ID NO: 852), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GSL corresponding to amino acids 1007-1009 of HSCP2_PEA1_P6 (SEQ ID NO: 852), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P22 (SEQ ID NO: 853), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHE corresponding to amino acids 1-131 of CERU_HUMAN, which also corresponds to amino acids 1-131 of HSCP2_PEA1_P22 (SEQ ID NO: 853), a second amino acid sequence bridging amino acid sequence comprising of A, and a third amino acid sequence being at least 90% homologous to VNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVHAAFFHGQALTNKNYRIDTINLFP ATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFFQVQECNKSSSKDNIRGKHVRHY YIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQGTTRIGGSYKKLVYREYTDASFTN RKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAYPLSIEPIGVRFNKNNEGTYYSPNY NPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNADPVCLAKMYYSAVDPTKDIFTGLI GPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENESLLLEDNIRMFTTAPDQVDKEDE DFQESNKMHSMNGFMYGNQPGLTMCKGDSVVWYLFSAGNEADVHGIYFSGNTYLWR GERRDTANLFPQTSLTLHMWPDTEGTFNVECLTTDHYTGGMKQKYTVNQCRRQSEDS TFYLGERTYYIAAVEVEWDYSPQREWEKELHHLQEQNVSNAFLDKGEFYIGSKYKKVV YRQYTDSTFRVPVERKAEEEHLGILGPQLHADVGDKVKIIFKNMATRPYSIHAHGVQTE SSTVTPTLPGETLTYVWKIPERSGAGTEDSACIPWAYYSTVDQVKDLYSGLIGPLIVCRR PYLKVFNPRRKLEFALLFLVFDENESWYLDDNIKTYSDHPEKVNKDDEEFIESNKMHAI NGRMFGNLQGLTMHVGDEVNWYLMGMGNEIDLHTVHFHGHSFQYKHRGVYSSDVF DIFPGTYQTLEMFPRTPGIWLLHCHVTDHIHAGMETTYTVLQNEDTKSG corresponding to amino acids 262-1065 of CERU_HUMAN, which also corresponds to amino acids 133-936 of HSCP2_PEA1_P22 (SEQ ID NO: 853), wherein said first amino acid sequence, second amino acid sequence and third amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for an edge portion of HSCP2_PEA1_P22 (SEQ ID NO: 853), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise EAV having a structure as follows (numbering according to HSCP2_PEA1_P22 (SEQ ID NO: 853)): a sequence starting from any of amino acid numbers 131−x to 131; and ending at any of amino acid numbers 133+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P24 (SEQ ID NO: 854), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MPLTMGKRNLFLLTP (SEQ ID NO: 1095) corresponding to amino acids 1-15 of HSCP2_PEA1_P24 (SEQ ID NO: 854), and a second amino acid sequence being at least 90% homologous to VNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVHAAFFHGQALTNKNYRIDTINLFP ATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFFQVQECNKSSSKDNIRGKHVRHY YIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQGTTRIGGSYKKLVYREYTDASFTN RKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAYPLSIEPIGVRFNKNNEGTYYSPNY NPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNADPVCLAKMYYSAVDPTKDIFTGLI GPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENESLLLEDNIRMFTTAPDQVDKEDE DFQESNKMHSMNGFMYGNQPGLTMCKGDSVVWYLFSAGNEADVHGIYFSGNTYLWR GERRDTANLFPQTSLTLHMWPDTEGTFNVECLTTDHYTGGMKQKYTVNQCRRQSEDS TFYLGERTYYIAAVEVEWDYSPQREWEKELHHLQEQNVSNAFLDKGEFYIGSKYKKVV YRQYTDSTFRVPVERKAEEEHLGILGPQLHADVGDKVKIIFKNMATRPYSIHAHGVQTE SSTVTPTLPGETLTYVWKIPERSGAGTEDSACIPWAYYSTVDQVKDLYSGLIGPLIVCRR PYLKVFNPRRKLEFALLFLVFDENESWYLDDNIKTYSDHPEKVNKDDEEFIESNKMHAI NGRMFGNLQGLTMHVGDEVNWYLMGMGNEIDLHTVHFHGHSFQYKHRGVYSSDVF DIFPGTYQTLEMFPRTPGIWLLHCHVTDHIHAGMETTYTVLQNEDTKSG corresponding to amino acids 262-1065 of CERU_HUMAN, which also corresponds to amino acids 16-819 of HSCP2_PEA1_P24 (SEQ ID NO: 854), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of HSCP2_PEA1_P24 (SEQ ID NO: 854), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MPLTMGKRNLFLLTP (SEQ ID NO: 1095) of HSCP2_PEA1_P24 (SEQ ID NO: 854).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P25 (SEQ ID NO: 855), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKKDSLDKEKEKHIDREFVVMFSVVDENFSWYLEDNIKTY CSEPEKVDKDNEDFQESNRMYSVNGYTFGSLPGLSMCAEDRVKWYLFGMGNEVDVH AAFFHGQALTNKNYRIDTINLFPATLFDAYMVAQNPGEWMLSCQNLNHLKAGLQAFF QVQECNKSSSKDNIRGKHVRHYYIAAEEIIWNYAPSGIDIFTKENLTAPGSDSAVFFEQG TTRIGGSYKKLVYREYTDASFTNRKERGPEEEHLGILGPVIWAEVGDTIRVTFHNKGAY PLSIEPIGVRFNKNNEGTYYSPNYNPQSRSVPPSASHVAPTETFTYEWTVPKEVGPTNAD PVCLAKMYYSAVDPTKDIFTGLIGPMKICKKGSLHANGRQKDVDKEFYLFPTVFDENES LLLEDNIRMFTTAPDQVDKEDEDFQESNKMH corresponding to amino acids 1-621 of CERU_HUMAN, which also corresponds to amino acids 1-621 of HSCP2_PEA1_P25 (SEQ ID NO: 855), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence CKYCIIHQSTKLF (SEQ ID NO: 1096) corresponding to amino acids 622-634 of HSCP2_PEA1_P25 (SEQ ID NO: 855), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSCP2_PEA1_P25 (SEQ ID NO: 855), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence CKYCIIHQSTKLF (SEQ ID NO: 1096) in HSCP2_PEA1_P25 (SEQ ID NO: 855).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSCP2_PEA1_P33 (SEQ ID NO: 856), comprising a first amino acid sequence being at least 90% homologous to MKILILGIFLFLCSTPAWAKEKHYYIGIIETTWDYASDHGEKKLISVDTEHSNIYLQNGPD RIGRLYKKALYLQYTDETFRTTIEKPVWLGFLGPIIKAETGDKVYVHLKNLASRPYTFHS HGITYYKEHEGAIYPDNTTDFQRADDKVYPGEQYTYMLLATEEQSPGEGDGNCVTRIY HSHIDAPKDIASGLIGPLIICKK corresponding to amino acids 1-202 of CERU_HUMAN, which also corresponds to amino acids 1-202 of HSCP2_PEA1_P33 (SEQ ID NO: 856), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GTSSPYCTCYMTKRQGQGSLSFKKKSSLLC (SEQ ID NO: 1097) corresponding to amino acids 203-232 of HSCP2_PEA1_P33 (SEQ ID NO: 856), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSCP2_PEA1_P33 (SEQ ID NO: 856), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GTSSPYCTCYMTKRQGQGSLSFKKKSSLLC (SEQ ID NO: 1097) in HSCP2_PEA1_P33 (SEQ ID NO: 856).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P5 (SEQ ID NO: 934), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA T corresponding to amino acids 1-1525 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1525 of HUMTEN_PEA1_P5 (SEQ ID NO: 934), a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence TEPKPQLGTLIFSNITPKSFNMSWTTQAGLFAKIVINVSDAHSLHESQQFTVSGDAKQAH ITGLVENTGYDVSVAGTTLAGDPTRPLTAFVI (SEQ ID NO: 1144) corresponding to amino acids 1526-1617 of HUMTEN_PEA1_P5 (SEQ ID NO: 934), and a third amino acid sequence being at least 90% homologous to TEALPLLENLTISDINPYGFTVSWMASENAFDSFLVTVVDSGKLLDPQEFTLSGTQRKLE LRGLITGIGYEVMVSGFTQGHQTKPLRAEIVTEAEPEVDNLLVSDATPDGFRLSWTADE GVFDNFVLKIRDTKKQSEPLEITLLAPERTRDLTGLREATEYEIELYGISKGRRSQTVSAI ATTAMGSPKEVIFSDITENSATVSWRAPTAQVESFRITYVPITGGTPSMVTVDGTKTQTR LVKLIPGVEYLVSIIAMKGFEESEPVSGSFTTALDGPSGLVTANITDSEALARWQPAIATV DSYVISYTGEKVPEITRTVSGNTVEYALTDLEPATEYTLRIFAEKGPQKSSTITAKFTTDL DSPRDLTATEVQSETALLTWRPPRASVTGYLLVYESVDGTVKEVIVGPDTTSYSLADLS PSTHYTAKIQALNGPLRSNMIQTIFTTIGLLYPFPKDCSQAMLNGDTTSGLYTIYLNGDK AQALEVFCDMTSDGGGWIVFLRRKNGRENFYQNWKAYAAGFGDRREEFWLGLDNLN KITAQGQYELRVDLRDHGETAFAVYDKFSVGDAKTRYKLKVEGYSGTAGDSMAYHN GRSFSTFDKDTDSAITNCALSYKGAFWYRNCHRVNLMGRYGDNNHSQGVNWFHWKG HEHSIQFAEMKLRPSNFRNLEGRRKRA corresponding to amino acids 1526-2201 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1618-2293 of HUMTEN_PEA1_P5 (SEQ ID NO: 934), wherein said first amino acid sequence, second amino acid sequence and third amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for an edge portion of HUMTEN_PEA1_P5 (SEQ ID NO: 934), comprising an amino acid sequence being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence encoding for TEPKPQLGTLIFSNITPKSFNMSWTTQAGLFAKIVINVSDAHSLHESQQFTVSGDAKQAH ITGLVENTGYDVSVAGTTLAGDPTRPLTAFVI (SEQ ID NO: 1144), corresponding to HUMTEN_PEA1_P5 (SEQ ID NO: 934).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P6 (SEQ ID NO: 935), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA TTE corresponding to amino acids 1-1527 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1527 of HUMTEN_PEA1_P6 (SEQ ID NO: 935), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence PKPQLGTLIFSNITPKSFNMSWTTQAGLFAKIVINVSDAHSLHESQQFTVSGDAKQAHIT GLVENTGYDVSVAGTTLAGDPTRPLTAFVITGTQSEVLTCLTQREKEISHLKGKFNKNTI FTANVYSLIFN (SEQ ID NO: 1098) corresponding to amino acids 1528-1658 of HUMTEN_PEA1_P6 (SEQ ID NO: 935), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P6 (SEQ ID NO: 935), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence PKPQLGTLIFSNITPKSFNMSWTTQAGLFAKIVINVSDAHSLHESQQFTVSGDAKQAHIT GLVENTGYDVSVAGTTLAGDPTRPLTAFVITGTQSEVLTCLTQREKEISHLKGKFNKNTI FTANVYSLIFN (SEQ ID NO: 1098) in HUMTEN_PEA1_P6 (SEQ ID NO: 935).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P7 (SEQ ID NO: 936), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA TTEALPLLENLTISDINPYGFTVSWMASENAFDSFLVTVVDSGKLLDPQEFTLSGTQRKL ELRGLITGIGYEVMVSGFTQGHQTKPLRAEIVT corresponding to amino acids 1-1617 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1617 of HUMTEN_PEA1_P7 (SEQ ID NO: 936), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GISNQVSHLFLFLVPFCVICLPDRHDFNIFVHIPYLIHKCSLLFHLLPTLPLVICT (SEQ ID NO: 1099) corresponding to amino acids 1618-1673 of HUMTEN_PEA1_P7 (SEQ ID NO: 936), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P7 (SEQ ID NO: 936), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GISNQVSHLFLFLVPFCVICLPDRHDFNIFVHIPYLIHKCSLLFHLLPTLPLVICT in (SEQ ID NO: 1099) HUMTEN_PEA1_P7 (SEQ ID NO: 936).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P8 (SEQ ID NO: 937), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA T corresponding to amino acids 1-1525 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1525 of HUMTEN_PEA1_P8 (SEQ ID NO: 937), and a second amino acid sequence being at least 90% homologous to TEAEPEVDNLLVSDATPDGFRLSWTADEGVFDNFVLKIRDTKKQSEPLEITLLAPERTRD LTGLREATEYEIELYGISKGRRSQTVSAIATTAMGSPKEVIFSDITENSATVSWRAPTAQV ESFRITYVPITGGTPSMVTVDGTKTQTRLVKLIPGVEYLVSIIAMKGFEESEPVSGSFTTA LDGPSGLVTANITDSEALARWQPAIATVDSYVISYTGEKVPEITRTVSGNTVEYALTDLE PATEYTLRIFAEKGPQKSSTITAKFTTDLDSPRDLTATEVQSETALLTWRPPRASVTGYL LVYESVDGTVKEVIVGPDTTSYSLADLSPSTHYTAKIQALNGPLRSNMIQTIFTTIGLLYP FPKDCSQAMLNGDTTSGLYTIYLNGDKAQALEVFCDMTSDGGGWIVFLRRKNGRENF YQNWKAYAAGFGDRREEFWLGLDNLNKITAQGQYELRVDLRDHGETAFAVYDKFSV GDAKTRYKLKVEGYSGTAGDSMAYHNGRSFSTFDKDTDSAITNCALSYKGAFWYRNC HRVNLMGRYGDNNHSQGVNWFHWKGHEHSIQFAEMKLRPSNFRNLEGRRKRA corresponding to amino acids 1617-2201 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1526-2110 of HUMTEN_PEA1_P8 (SEQ ID NO: 937), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HUMTEN_PEA1_P8 (SEQ ID NO: 937), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise TT, having a structure as follows: a sequence starting from any of amino acid numbers 1525-x to 1525; and ending at any of amino acid numbers 1526+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P10 (SEQ ID NO: 938), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVL corresponding to amino acids 1-1252 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1252 of HUMTEN_PEA1_P10 (SEQ ID NO: 938), and a second amino acid sequence being at least 90% homologous to TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA TTEALPLLENLTISDINPYGFTVSWMASENAFDSFLVTVVDSGKLLDPQEFTLSGTQRKL ELRGLITGIGYEVMVSGFTQGHQTKPLRAEIVTEAEPEVDNLLVSDATPDGFRLSWTAD EGVFDNFVLKIRDTKKQSEPLEITLLAPERTRDLTGLREATEYEIELYGISKGRRSQTVSA IATTAMGSPKEVIFSDITENSATVSWRAPTAQVESFRITYVPITGGTPSMVTVDGTKTQT RLVKLIPGVEYLVSIIAMKGFEESEPVSGSFTTALDGPSGLVTANITDSEALARWQPAIAT VDSYVISYTGEKVPEITRTVSGNTVEYALTDLEPATEYTLRIFAEKGPQKSSTITAKFTTD LDSPRDLTATEVQSETALLTWRPPRASVTGYLLVYESVDGTVKEVIVGPDTTSYSLADL SPSTHYTAKIQALNGPLRSNMIQTIFTTIGLLYPFPKDCSQAMLNGDTTSGLYTIYLNGD KAQALEVFCDMTSDGGGWIVFLRRKNGRENFYQNWKAYAAGFGDRREEFWLGLDNL NKITAQGQYELRVDLRDHGETAFAVYDKFSVGDAKTRYKLKVEGYSGTAGDSMAYH NGRSFSTFDKDTDSAITNCALSYKGAFWYRNCHRVNLMGRYGDNNHSQGVNWFHWK GHEHSIQFAEMKLRPSNFRNLEGRRKRA corresponding to amino acids 1344-2201 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1253-2110 of HUMTEN_PEA1_P10 (SEQ ID NO: 938), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HUMTEN_PEA1_P10 (SEQ ID NO: 938), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise LT, having a structure as follows: a sequence starting from any of amino acid numbers 1252-x to 1252; and ending at any of amino acid numbers 1253+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P13 (SEQ ID NO: 940), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV corresponding to amino acids 1-1343 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1343 of HUMTEN_PEA1_P13 (SEQ ID NO: 940), and a second amino acid sequence being at least 90% homologous to TAMGSPKEVIFSDITENSATVSWRAPTAQVESFRITYVPITGGTPSMVTVDGTKTQTRLV KLIPGVEYLVSIIAMKGFEESEPVSGSFTTALDGPSGLVTANITDSEALARWQPAIATVDS YVISYTGEKVPEITRTVSGNTVEYALTDLEPATEYTLRIFAEKGPQKSSTITAKFTTDLDS PRDLTATEVQSETALLTWRPPRASVTGYLLVYESVDGTVKEVIVGPDTTSYSLADLSPS THYTAKIQALNGPLRSNMIQTIFTTIGLLYPFPKDCSQAMLNGDTTSGLYTIYLNGDKAQ ALEVFCDMTSDGGGWIVFLRRKNGRENFYQNWKAYAAGFGDRREEFWLGLDNLNKIT AQGQYELRVDLRDHGETAFAVYDKFSVGDAKTRYKLKVEGYSGTAGDSMAYHNGRS FSTFDKDTDSAITNCALSYKGAFWYRNCHRVNLMGRYGDNNHSQGVNWFHWKGHEH SIQFAEMKLRPSNFRNLEGRRKRA corresponding to amino acids 1708-2201 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1344-1837 of HUMTEN_PEA1_P13 (SEQ ID NO: 940), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HUMTEN_PEA1_P13 (SEQ ID NO: 940), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise VT, having a structure as follows: a sequence starting from any of amino acid numbers 1343-x to 1343; and ending at any of amino acid numbers 1344+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P14 (SEQ ID NO: 941), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA TTEALPLLENLTISDINPYGFTVSWMASENAFDSFLVTVVDSGKLLDPQEFTLSGTQRKL ELRGLITGIGYEVMVSGFTQGHQTKPLRAEIVTEAEPEVDNLLVSDATPDGFRLSWTAD EGVFDNFVLKIRDTKKQSEPLEITLLAPERTRDLTGLREATEYEIELYGISKGRRSQTVSA IATTAMGSPKEVIFSDITENSATVSWRAPTAQVESFRITYVPITGGTPSMVTVDGTKTQT RLVKLIPGVEYLVSIIAMKGFEESEPVSGSFTTALDGPSGLVTANITDSEALARWQPAIAT VDSYVISYTGEKVPEITRTVSGNTVEYALTDLEPATEYTLRIFAEKGPQKSSTITAKFTTD LDSPRDLTATEVQSETALLTWRPPRASVTGYLLVYESVDGTVKEVIVGPDTTSYSLADL SPSTHYTAKIQALNGPLRSNMIQTIFTTIGLLYPFPKDCSQAMLNGDTTSGLYTIYLNGD KAQALEVFCDMTSDGGGWIV corresponding to amino acids 1-2025 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-2025 of HUMTEN_PEA1_P14 (SEQ ID NO: 941), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence STTRDCRALRPRGRGRGQSRGGEEGDLLLMHSDTPMCEALQDSACHTEALRNSLLNKR MGNTLATF (SEQ ID NO: 1100) corresponding to amino acids 2026-2091 of HUMTEN_PEA1_P14 (SEQ ID NO: 941), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P14 (SEQ ID NO: 941), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence STTRDCRALRPRGRGRGQSRGGEEGDLLLMHSDTPMCEALQDSACHTEALRNSLLNKR MGNTLATF (SEQ ID NO: 1100) in HUMTEN_PEA1_P14 (SEQ ID NO: 941).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P15 (SEQ ID NO: 942), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKAS corresponding to amino acids 1-1070 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1070 of HUMTEN_PEA1_P15 (SEQ ID NO: 942), and a second amino acid sequence being at least 90% homologous to TEAEPEVDNLLVSDATPDGFRLSWTADEGVFDNFVLKIRDTKKQSEPLEITLLAPERTRD LTGLREATEYEIELYGISKGRRSQTVSAIATTAMGSPKEVIFSDITENSATVSWRAPTAQV ESFRITYVPITGGTPSMVTVDGTKTQTRLVKLIPGVEYLVSIIAMKGFEESEPVSGSFTTA LDGPSGLVTANITDSEALARWQPAIATVDSYVISYTGEKVPEITRTVSGNTVEYALTDLE PATEYTLRIFAEKGPQKSSTITAKFTTDLDSPRDLTATEVQSETALLTWRPPRASVTGYL LVYESVDGTVKEVIVGPDTTSYSLADLSPSTHYTAKIQALNGPLRSNMIQTIFTTIGLLYP FPKDCSQAMLNGDTTSGLYTIYLNGDKAQALEVFCDMTSDGGGWIVFLRRKNGRENF YQNWKAYAAGFGDRREEFWLGLDNLNKITAQGQYELRVDLRDHGETAFAVYDKFSV GDAKTRYKLKVEGYSGTAGDSMAYHNGRSFSTFDKDTDSAITNCALSYKGAFWYRNC HRVNLMGRYGDNNHSQGVNWFHWKGHEHSIQFAEMKLRPSNFRNLEGRRKRA corresponding to amino acids 1617-2201 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1071-1655 of HUMTEN_PEA1_P15 (SEQ ID NO: 942), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HUMTEN_PEA1_P15 (SEQ ID NO: 942), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise ST, having a structure as follows: a sequence starting from any of amino acid numbers 1070-x to 1070; and ending at any of amino acid numbers 1071+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P16 (SEQ ID NO: 943), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKAS corresponding to amino acids 1-1070 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1070 of HUMTEN_PEA1_P16 (SEQ ID NO: 943), and a second amino acid sequence being at least 90% homologous to TAMGSPKEVIFSDITENSATVSWRAPTAQVESFRITYVPITGGTPSMVTVDGTKTQTRLV KLIPGVEYLVSIIAMKGFEESEPVSGSFTTALDGPSGLVTANITDSEALARWQPAIATVDS YVISYTGEKVPEITRTVSGNTVEYALTDLEPATEYTLRIFAEKGPQKSSTITAKFTTDLDS PRDLTATEVQSETALLTWRPPRASVTGYLLVYESVDGTVKEVIVGPDTTSYSLADLSPS THYTAKIQALNGPLRSNMIQTIFTTIGLLYPFPKDCSQAMLNGDTTSGLYTIYLNGDKAQ ALEVFCDMTSDGGGWIVFLRRKNGRENFYQNWKAYAAGFGDRREEFWLGLDNLNKIT AQGQYELRVDLRDHGETAFAVYDKFSVGDAKTRYKLKVEGYSGTAGDSMAYHNGRS FSTFDKDTDSAITNCALSYKGAFWYRNCHRVNLMGRYGDNNHSQGVNWFHWKGHEH SIQFAEMKLRPSNFRNLEGRRKRA corresponding to amino acids 1708-2201 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1071-1564 of HUMTEN_PEA1_P16 (SEQ ID NO: 943), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HUMTEN_PEA1_P16 (SEQ ID NO: 943), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise ST, having a structure as follows: a sequence starting from any of amino acid numbers 1070-x to 1070; and ending at any of amino acid numbers 1071+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P117 (SEQ ID NO: 944), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA TTEALPLLENLTISDINPYGFTVSWMASENAFDSFLVTVVDSGKLLDPQEFTLSGTQRKL ELRGLITGIGYEVMVSGFTQGHQTKPLRAEIVTEAEPEVDNLLVSDATPDGFRLSWTAD EGVFDNFVLKIRDTKKQSEPLEITLLAPERTRDLTGLREATEYEIELYGISKGRRSQTVSA IATTAMGSPKEVIFSDITENSATVSWRAPTAQVESFRITYVPITGGTPSMVTVDGTKTQT RLVKLIPGVEYLVSIIAMKGFEESEPVSGSFTTALDGPSGLVTANITDSEALARWQPAIAT VDSYVISYTGEKVPEITRTVSGNTVEYALTDLEPATEYTLRIFAEKGPQKSSTITAKFTTD LDSPRDLTATEVQSETALLTWRPPRASVTGYLLVYESVDGTVKEVIVGPDTTSYSLADL SPSTHYTAKIQALNGPLRSNMIQTIFTTIGLLYPFPKDCSQAMLNGDTTSGLYTIYLNGD KAQALEVFCDMTSDGGGWIV corresponding to amino acids 1-2025 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-2025 of HUMTEN_PEA1_P17 (SEQ ID NO: 944), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence TPWPTTMADPSPPLTRTQIQPSPTVLCPTKGLSGTGTVTVST (SEQ ID NO: 1101) corresponding to amino acids 2026-2067 of HUMTEN_PEA1_P17 (SEQ ID NO: 944), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA_L_P17 (SEQ ID NO: 944), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence TPWPTTMADPSPPLTRTQIQPSPTVLCPTKGLSGTGTVTVST (SEQ ID NO: 1101) in HUMTEN_PEA1_P17 (SEQ ID NO: 944).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P20 (SEQ ID NO: 945), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA TTEALPLLENLTISDINPYGFTVSWMASENAFDSFLVTVVDSGKLLDPQEFTLSGTQRKL ELRGLITGIGYEVMVSGFTQGHQTKPLRAEIVTEAEPEVDNLLVSDATPDGFRLSWTAD EGVFDNFVLKIRDTKKQSEPLEITLLAPERTRDLTGLREATEYEIELYGISKGRRSQTVSA IATTAMGSPKEVIFSDITENSATVSWRAPTAQVESFRITYVPITGGTPSMVTVDGTKTQT RLVKLIPGVEYLVSIIAMKGFEESEPVSGSFTTALDGPSGLVTANITDSEALARWQPAIAT VDSYVISYTGEKVPEITRTVSGNTVEYALTDLEPATEYTLRIFAEKGPQKSSTITAKFTTD LDSPRDLTATEVQSETALLTWRPPRASVTGYLLVYESVDGTVKEVIVGPDTTSYSLADL SPSTHYTAKIQALNGPLRSNMIQTIFTTIGLLYPFPKDCSQAMLNGDTTSGLYTIYLNGD KAQALEVFCDMTSDGGGWIVFLRRKNGRENFYQNWKAYAAGFGDRREEFWLG corresponding to amino acids 1-2057 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-2057 of HUMTEN_PEA1_P20 (SEQ ID NO: 945), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NAALHVYI (SEQ ID NO: 1102) corresponding to amino acids 2058-2065 of HUMTEN_PEA1_P20 (SEQ ID NO: 945), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P20 (SEQ ID NO: 945), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NAALHVYI (SEQ ID NO: 1102) in HUMTEN_PEA1_P20 (SEQ ID NO: 945).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P26 (SEQ ID NO: 946), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV TEDLPQLGDLAVSEVGWDGLRLNWTAADNAYEHFVIQVQEVNKVEAAQNLTLPGSLR AVDIPGLEAATPYRVSIYGVIRGYRTPVLSAEASTAKEPEIGNLNVSDITPESFNLSWMA TDGIFETFTIEIIDSNRLLETVEYNISGAERTAHISGLPPSTDFIVYLSGLAPSIRTKTISATA TTEALPLLENLTISDINPYGFTVSWMASENAFDSFLVTVVDSGKLLDPQEFTLSGTQRKL ELRGLITGIGYEVMVSGFTQGHQTKPLRAEIVTEAEPEVDNLLVSDATPDGFRLSWTAD EGVFDNFVLKIRDTKKQSEPLEITLLAPERTRDLTGLREATEYEIELYGISKGRRSQTVSA IATT corresponding to amino acids 1-1708 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1708 of HUMTEN_PEA1_P26 (SEQ ID NO: 946), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GTVNKQERTEKSHDSGVFFSQG (SEQ ID NO: 1103) corresponding to amino acids 1709-1730 of HUMTEN_PEA1_P26 (SEQ ID NO: 946), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P26 (SEQ ID NO: 946), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GTVNKQERTEKSHDSGVFFSQG (SEQ ID NO: 1103) in HUMTEN_PEA1_P26 (SEQ ID NO: 946).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P27 (SEQ ID NO: 947), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLTEEVPDMGNLTVTEVSWDALRLNWTTPDGTYD QFTIQVQEADQVEEAHNLTVPGSLRSMEIPGLRAGTPYTVTLHGEVRGHSTRPLAVEVV T corresponding to amino acids 1-1344 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1344 of HUMTEN_PEA1_P27 (SEQ ID NO: 947), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GI corresponding to amino acids 1345-1346 of HUMTEN_PEA1_P27 (SEQ ID NO: 947), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P28 (SEQ ID NO: 948), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKASTEQAPELENLTVTEVGWDGLRLNWTAADQAYEHFIIQVQE ANKVEAARNLTVPGSLRAVDIPGLKAATPYTVSIYGVIQGYRTPVLSAEASTGETPNLG EVVVAEVGWDALKLNWTAPEGAYEYFFIQVQEADTVEAAQNLTVPGGLRSTDLPGLK AATHYTITIRGVTQDFSTTPLSVEVLT corresponding to amino acids 1-1253 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1253 of HUMTEN_PEA1_P28 (SEQ ID NO: 948), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GILDEFTNSLPPLCLCSGGIKALSCFKLGSAPTTLGKYQ (SEQ ID NO: 1104) corresponding to amino acids 1254-1292 of HUMTEN_PEA1_P28 (SEQ ID NO: 948), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P28 (SEQ ID NO: 948), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GILDEFTNSLPPLCLCSGGIKALSCFKLGSAPTTLGKYQ (SEQ ID NO: 1104) in HUMTEN_PEA1_P28 (SEQ ID NO: 948).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P29 (SEQ ID NO: 949), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTGLRPGTEYGIGVSAVKEDKESNPATINAATELDTPKDLQVSE TAETSLTLLWKTPLAKFDRYRLNYSLPTGQWVGVQLPRNTTSYVLRGLEPGQEYNVLL TAEKGRHKSKPARVKAST corresponding to amino acids 1-1071 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-1071 of HUMTEN_PEA1_P29 (SEQ ID NO: 949), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GESALSFLQTLG (SEQ ID NO: 1105) corresponding to amino acids 1072-1083 of HUMTEN_PEA1_P29 (SEQ ID NO: 949), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P29 (SEQ ID NO: 949), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GESALSFLQTLG (SEQ ID NO: 1105) in HUMTEN_PEA1_P29 (SEQ ID NO: 949).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P30 (SEQ ID NO: 950), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTRLDAPSQIEVKDVT DTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRR GDMSSNPAKETFTTGLDAPRNLRRVSQTDNSITLEWRNGKAAIDSYRIKYAPISGGDHA EVDVPKSQQATTKTTLTG corresponding to amino acids 1-954 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-954 of HUMTEN_PEA1_P30 (SEQ ID NO: 950), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence ELCISASLSQPALEGP (SEQ ID NO: 1106) corresponding to amino acids 955-970 of HUMTEN_PEA1_P30 (SEQ ID NO: 950), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P30 (SEQ ID NO: 950), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence ELCISASLSQPALEGP (SEQ ID NO: 1106) in HUMTEN_PEA1_P30 (SEQ ID NO: 950).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P31 (SEQ ID NO: 951), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVATYLPAPEGLKFKSIKETSVEVEWDPLDIAFETWEIIFRNMNKEDEG EITKSLRRPETSYRQTGLAPGQEYEISLHIVKNNTRGPGLKRVTTTR corresponding to amino acids 1-802 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-802 of HUMTEN_PEA1_P31 (SEQ ID NO: 951), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence EYHL (SEQ ID NO: 1107) corresponding to amino acids 803-806 of HUMTEN_PEA1_P31 (SEQ ID NO: 951), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMTEN_PEA1_P31 (SEQ ID NO: 951), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence EYHL (SEQ ID NO: 1107) in HUMTEN_PEA1_P31 (SEQ ID NO: 951).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMTEN_PEA1_P32 (SEQ ID NO: 952), comprising a first amino acid sequence being at least 90% homologous to MGAMTQLLAGVFLAFLALATEGGVLKKVIRHKRQSGVNATLPEENQPVVFNHVYNIK LPVGSQCSVDLESASGEKDLAPPSEPSESFQEHTVDGENQIVFTHRINIPRRACGCAAAP DVKELLSRLEELENLVSSLREQCTAGAGCCLQPATGRLDTRPFCSGRGNFSTEGCGCVC EPGWKGPNCSEPECPGNCHLRGRCIDGQCICDDGFTGEDCSQLACPSDCNDQGKCVNG VCICFEGYAGADCSREICPVPCSEEHGTCVDGLCVCHDGFAGDDCNKPLCLNNCYNRG RCVENECVCDEGFTGEDCSELICPNDCFDRGRCINGTCYCEEGFTGEDCGKPTCPHACH TQGRCEEGQCVCDEGFAGVDCSEKRCPADCHNRGRCVDGRCECDDGFTGADCGELKC PNGCSGHGRCVNGQCVCDEGYTGEDCSQLRCPNDCHSRGRCVEGKCVCEQGFKGYDC SDMSCPNDCHQHGRCVNGMCVCDDGYTGEDCRDRQCPRDCSNRGLCVDGQCVCEDG FTGPDCAELSCPNDCHGRGRCVNGQCVCHEGFMGKDCKEQRCPSDCHGQGRCVDGQ CICHEGFTGLDCGQHSCPSDCNNLGQCVSGRCICNEGYSGEDCSEVSPPKDLVVTEVTE ETVNLAWDNEMRVTEYLVVYTPTHEGGLEMQFRVPGDQTSTIIQELEPGVEYFIRVFAI LENKKSIPVSARVAT corresponding to amino acids 1-710 of TENA_HUMAN_V1 (SEQ ID NO: 1011), which also corresponds to amino acids 1-710 of HUMTEN_PEA1_P32 (SEQ ID NO: 952), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence CE corresponding to amino acids 711-712 of HUMTEN_PEA1_P32 (SEQ ID NO: 952), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMOSTRO_PEA1_PEA1_P21 (SEQ ID NO: 311), comprising a first amino acid sequence being at least 90% homologous to MRIAVICFCLLGITCAIPVKQADSGSSEEKQLYNKYPDAVATWLNPDPSQKQNLLAPQ corresponding to amino acids 1-58 of OSTP_HUMAN, which also corresponds to amino acids 1-58 of HUMOSTRO_PEA1_PEA1_P21 (SEQ ID NO: 311), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VFLNFS (SEQ ID NO: 1108) corresponding to amino acids 59-64 of HUMOSTRO_PEA1_PEA1_P21 (SEQ ID NO: 311), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMOSTRO_PEA1_PEA1_P21 (SEQ ID NO: 311), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VFLNFS (SEQ ID NO: 1108) in HUMOSTRO_PEA1_PEA1_P21 (SEQ ID NO: 311).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMOSTRO_PEA1_PEA1_P25 (SEQ ID NO: 312), comprising a first amino acid sequence being at least 90% homologous to MRIAVICFCLLGITCAIPVKQADSGSSEEKQ corresponding to amino acids 1-31 of OSTP_HUMAN, which also corresponds to amino acids 1-31 of HUMOSTRO_PEA1_PEA1_P25 (SEQ ID NO: 312), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence H corresponding to amino acids 32-32 of HUMOSTRO_PEA1_PEA1_P25 (SEQ ID NO: 312), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMOSTRO_PEA1_PEA1_P30 (SEQ ID NO: 313), comprising a first amino acid sequence being at least 90% homologous to MRIAVICFCLLGITCAIPVKQADSGSSEEKQ corresponding to amino acids 1-31 of OSTP_HUMAN, which also corresponds to amino acids 1-31 of HUMOSTRO_PEA1_PEA1_P30 (SEQ ID NO: 313), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VSIFYVFI (SEQ ID NO: 1109) corresponding to amino acids 32-39 of HUMOSTRO_PEA1_PEA1_P30 (SEQ ID NO: 313), wherein said first amino acid sequence and second amino acid sequence are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMOSTRO_PEA1_PEA1_P30 (SEQ ID NO: 313), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VSIFYVFI (SEQ ID NO: 1109) in HUMOSTRO_PEA1_PEA1_P30 (SEQ ID NO: 313).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for H61775_P16 (SEQ ID NO: 9), comprising a first amino acid sequence being at least 90% homologous to MVWCLGLAVLSLVISQGADGRGKPEVVSVVGRAGESVVLGCDLLPPAGRPPLHVIEWL RFGFLLPIFIQFGLYSPRIDPDYVG corresponding to amino acids 11-93 of Q9P2J2 (SEQ ID NO: 953), which also corresponds to amino acids 1-83 of H61775_P16 (SEQ ID NO: 9), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DCGFPAFRELKRAETVSPVFFTRRCIWEDLKSTGFSPAGGGRPPGGGPRTQEDSGLPCW RSSCSVTLQV (SEQ ID NO: 1110) corresponding to amino acids 84-152 of H61775_P16 (SEQ ID NO: 9), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of H61775_P16 (SEQ ID NO: 9), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DCGFPAFRELKRAETVSPVFFTRRCIWEDLKSTGFSPAGGGRPPGGGPRTQEDSGLPCW RSSCSVTLQV (SEQ ID NO: 1110) in H61775_P16 (SEQ ID NO: 9.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for H61775_P16 (SEQ ID NO: 9), comprising a first amino acid sequence being at least 90% homologous to MVWCLGLAVLSLVISQGADGRGKPEVVSVVGRAGESVVLGCDLLPPAGRPPLHVIEWL RFGFLLPIFIQFGLYSPRIDPDYVG corresponding to amino acids 1-83 of AAQ88495 (SEQ ID NO: 954), which also corresponds to amino acids 1-83 of H61775_P16 (SEQ ID NO: 9), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DCGFPAFRELKRAETVSPVFFTRRCIWEDLKSTGFSPAGGGRPPGGGPRTQEDSGLPCW RSSCSVTLQV (SEQ ID NO: 1110) corresponding to amino acids 84-152 of H61775_P16 (SEQ ID NO: 9), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of H61775_P16 (SEQ ID NO: 9), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DCGFPAFRELKRAETVSPVFFTRRCIWEDLKSTGFSPAGGGRPPGGGPRTQEDSGLPCW RSSCSVTLQV (SEQ ID NO: 1110) in H61775_P16 (SEQ ID NO: 9.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for H61775_P17 (SEQ ID NO: 10), comprising a first amino acid sequence being at least 90% homologous to MVWCLGLAVLSLVISQGADGRGKPEVVSVVGRAGESVVLGCDLLPPAGRPPLHVIEWL RFGFLLPIFIQFGLYSPRIDPDYVG corresponding to amino acids 11-93 of Q9P2J2 (SEQ ID NO: 953), which also corresponds to amino acids 1-83 of H61775_P17 (SEQ ID NO: 10).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for H61775_P17 (SEQ ID NO: 10), comprising a first amino acid sequence being at least 90% homologous to MVWCLGLAVLSLVISQGADGRGKPEVVSVVGRAGESVVLGCDLLPPAGRPPLHVIEWL RFGFLLPIFIQFGLYSPRIDPDYVG corresponding to amino acids 1-83 of AAQ88495 (SEQ ID NO: 954), which also corresponds to amino acids 1-83 of H61775_P17 (SEQ ID NO: 10).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P2 (SEQ ID NO: 37), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence PHSGPAAAFIRRRGWWPGPRCA (SEQ ID NO: 1111) corresponding to amino acids 1-22 of HSAPHOL_P2 (SEQ ID NO: 37), second amino acid sequence being at least 90% homologous to PATPRPLSWLRAPTRLCLDGPSPVLCA corresponding to amino acids 1-27 of AAH21289, which also corresponds to amino acids 23-49 of HSAPHOL_P2 (SEQ ID NO: 37), and a third amino acid sequence being at least 90% homologous to EKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFLGDGMGVSTVTAARILKGQL HHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTATAYLCGVKANEGTVGVSAAT ERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHATPSAAYAHSADRDWYSDNE MPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPKNKTDVEYESDEKARGTRLD GLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLLGLFEPGDMQYELNRNNVT DPSLSEMVVVAIQILRKNPKGFFLLVEGGRIDHGHHEGKAKQALHEAVEMDRAIGQAG SLTSSEDTLTVVTADHSHVFTFGGYTPRGNSIFGLAPMLSDTDKKPFTAILYGNGPGYK VVGGERENVSMVDYAHNNYQAQSAVPLRHETHGGEDVAVFSKGPMAHLLHGVHEQN YVPHVMAYAACIGANLGHCAPASSAGSLAAGPLLLALALYPLSVLF corresponding to amino acids 83-586 of AAH21289, which also corresponds to amino acids 50-553 of HSAPHOL_P2 (SEQ ID NO: 37), wherein said first, second and third amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of HSAPHOL_P2 (SEQ ID NO: 37), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence PHSGPAAAFIRRRGWWPGPRCA (SEQ ID NO: 1111) of HSAPHOL_P2 (SEQ ID NO: 37).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HSAPHOL_P2 (SEQ ID NO: 37), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise AE, having a structure as follows: a sequence starting from any of amino acid numbers 49−x to 50; and ending at any of amino acid numbers 50+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P2 (SEQ ID NO: 37), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence PHSGPAAAFIRRRGWWPGPRCAPATPRPLSWLRAPTRLCLDGPSPVLCA corresponding to amino acids 1-49 of HSAPHOL_P2 (SEQ ID NO: 37), second amino acid sequence being at least 90% homologous to EKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFLGDGMGVSTVTAARILKGQL HHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTATAYLCGVKANEGTVGVSAAT ERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHATPSAAYAHSADRDWYSDNE MPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPKNKTDVEYESDEKARGTRLD GLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLLGLFEPGDMQYELNRNNVT DPSLSEMVVVAIQILRKNPKGFFLLVEGGRIDHGHHEGKAKQALHEAVEMDRAIGQAG SLTSSEDTLTVVTADHSHVFTFGGYTPRGNSIFGLAPMLSDTDKKPFTAILYGNGPGYK VVGGERENVSMVDYAHNNYQAQSAVPLRHETHGGEDVAVFSKGPMAHLLHGVHEQN YVPHVMAYAACIGANLGHCAPASSAGSLAAGPLLLALALYPLSVLF corresponding to amino acids 21-524 of PPBT_HUMAN, which also corresponds to amino acids 50-553 of HSAPHOL_P2 (SEQ ID NO: 37), wherein said first, second and third amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of HSAPHOL_P2 (SEQ ID NO: 37), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence PHSGPAAAFIRRRGWWPGPRCAPATPRPLSWLRAPTRLCLDGPSPVLCA of HSAPHOL_P2 (SEQ ID NO: 37).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HSAPHOL_P2 (SEQ ID NO: 37), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise AE, having a structure as follows: a sequence starting from any of amino acid numbers 49−x to 50; and ending at any of amino acid numbers 50+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P3 (SEQ ID NO: 38), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVP corresponding to amino acids 63-82 of AAH21289, which also corresponds to amino acids 1-20 of HSAPHOL_P3 (SEQ ID NO: 38), and a second amino acid sequence being at least 90% homologous to GMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTATAYL CGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHATPSA AYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPKNKTD VEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLLGLFE PGDMQYELNRNNVTDPSLSEMVVVAIQILRKNPKGFFLLVEGGRIDHGHHEGKAKQAL HEAVEMDRAIGQAGSLTSSEDTLTVVTADHSHVFTFGGYTPRGNSIFGLAPMLSDTDKK PFTAILYGNGPGYKVVGGERENVSMVDYAHNNYQAQSAVPLRHETHGGEDVAVFSKG PMAHLLHGVHEQNYVPHVMAYAACIGANLGHCAPASSAGSLAAGPLLLALALYPLSV LF corresponding to amino acids 123-586 of AAH21289, which also corresponds to amino acids 21-484 of HSAPHOL_P3 (SEQ ID NO: 38), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HSAPHOL_P3 (SEQ ID NO: 38), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise PG, having a structure as follows: a sequence starting from any of amino acid numbers 20−x to 20; and ending at any of amino acid numbers 21+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P3 (SEQ ID NO: 38), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVP corresponding to amino acids 1-20 of PPBT_HUMAN, which also corresponds to amino acids 1-20 of HSAPHOL_P3 (SEQ ID NO: 38), and a second amino acid sequence being at least 90% homologous to GMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTATAYL CGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHATPSA AYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPKNKTD VEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLLGLFE PGDMQYELNRNNVTDPSLSEMVVVAIQILRKNPKGFFLLVEGGRIDHGHHEGKAKQAL HEAVEMDRAIGQAGSLTSSEDTLTVVTADHSHVFTFGGYTPRGNSIFGLAPMLSDTDKK PFTAILYGNGPGYKVVGGERENVSMVDYAHNNYQAQSAVPLRHETHGGEDVAVFSKG PMAHLLHGVHEQNYVPHVMAYAACIGANLGHCAPASSAGSLAAGPLLLALALYPLSV LF corresponding to amino acids 61-524 of PPBT_HUMAN, which also corresponds to amino acids 21-484 of HSAPHOL_P3 (SEQ ID NO: 38), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HSAPHOL_P3 (SEQ ID NO: 38), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise PG, having a structure as follows: a sequence starting from any of amino acid numbers 20−x to 20; and ending at any of amino acid numbers 21+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P4 (SEQ ID NO: 39), comprising a first amino acid sequence being at least 90% homologous to MGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTATAYLC GVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHATPSAA YAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPKNKTDV EYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLLGLFEP GDMQYELNRNNVTDPSLSEMVVVAIQILRKNPKGFFLLVEGGRIDHGHHEGKAKQALH EAVEMDRAIGQAGSLTSSEDTLTVVTADHSHVFTFGGYTPRGNSIFGLAPMLSDTDKKP FTAILYGNGPGYKVVGGERENVSMVDYAHNNYQAQSAVPLRHETHGGEDVAVFSKGP MAHLLHGVHEQNYVPHVMAYAACIGANLGHCAPASSAGSLAAGPLLLALALYPLSVL F corresponding to amino acids 124-586 of AAH21289, which also corresponds to amino acids 1-463 of HSAPHOL_P4 (SEQ ID NO: 39).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P4 (SEQ ID NO: 39), comprising a first amino acid sequence being at least 90% homologous to MGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTATAYLC GVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHATPSAA YAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPKNKTDV EYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLLGLFEP GDMQYELNRNNVTDPSLSEMVVVAIQILRKNPKGFFLLVEGGRIDHGHHEGKAKQALH EAVEMDRAIGQAGSLTSSEDTLTVVTADHSHVFTFGGYTPRGNSIFGLAPMLSDTDKKP FTAILYGNGPGYKVVGGERENVSMVDYAHNNYQAQSAVPLRHETHGGEDVAVFSKGP MAHLLHGVHEQNYVPHVMAYAACIGANLGHCAPASSAGSLAAGPLLLALALYPLSVL F corresponding to amino acids 62-524 of PPBT_HUMAN, which also corresponds to amino acids 1-463 of HSAPHOL_P4 (SEQ ID NO: 39).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P5 (SEQ ID NO: 40), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLL GLFEPGDMQYELNRNNVTDPSLSEMVVVAIQILRKNPKGFFLLVEGGRIDHGHHEGKA KQALHEAVEM corresponding to amino acids 63-417 of AAH21289, which also corresponds to amino acids 1-355 of HSAPHOL_P5 (SEQ ID NO: 40), and a second amino acid sequence being at least 90% homologous to DHSHVFTFGGYTPRGNSIFGLAPMLSDTDKKPFTAILYGNGPGYKVVGGERENVSMVD YAHNNYQAQSAVPLRHETHGGEDVAVFSKGPMAHLLHGVHEQNYVPHVMAYAACIG ANLGHCAPASSAGSLAAGPLLLALALYPLSVLF corresponding to amino acids 440-586 of AAH21289, which also corresponds to amino acids 356-502 of HSAPHOL_P5 (SEQ ID NO: 40), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HSAPHOL_P5 (SEQ ID NO: 40), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise MD, having a structure as follows: a sequence starting from any of amino acid numbers 355−x to 355; and ending at any of amino acid numbers 356+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P5 (SEQ ID NO: 40), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLL GLFEPGDMQYELNRNNVTDPSLSEMVVVAIQILRKNPKGFFLLVEGGRIDHGHHEGKA KQALHEAVEM corresponding to amino acids 1-355 of PPBT_HUMAN, which also corresponds to amino acids 1-355 of HSAPHOL_P5 (SEQ ID NO: 40), and a second amino acid sequence being at least 90% homologous to DHSHVFTFGGYTPRGNSIFGLAPMLSDTDKKPFTAILYGNGPGYKVVGGERENVSMVD YAHNNYQAQSAVPLRHETHGGEDVAVFSKGPMAHLLHGVHEQNYVPHVMAYAACIG ANLGHCAPASSAGSLAAGPLLLALALYPLSVLF corresponding to amino acids 377-524 of PPBT_HUMAN, which also corresponds to amino acids 356-502 of HSAPHOL_P5 (SEQ ID NO: 40), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HSAPHOL_P5 (SEQ ID NO: 40), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise MD, having a structure as follows: a sequence starting from any of amino acid numbers 355−x to 355; and ending at any of amino acid numbers 356+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P6 (SEQ ID NO: 41), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLL corresponding to amino acids 63-349 of AAH21289, which also corresponds to amino acids 1-287 of HSAPHOL_P6 (SEQ ID NO: 41), and a second amino acid sequence being at least 90% homologous to GGRIDHGHHEGKAKQALHEAVEMDRAIGQAGSLTSSEDTLTVVTADHSHVFTFGGYTP RGNSIFGLAPMLSDTDKKPFTAILYGNGPGYKVVGGERENVSMVDYAHNNYQAQSAV PLRHETHGGEDVAVFSKGPMAHLLHGVHEQNYVPHVMAYAACIGANLGHCAPASSAG SLAAGPLLLALALYPLSVLF corresponding to amino acids 395-586 of AAH21289, which also corresponds to amino acids 288-479 of HSAPHOL_P6 (SEQ ID NO: 41), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HSAPHOL_P6 (SEQ ID NO: 41), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise LG, having a structure as follows: a sequence starting from any of amino acid numbers 287−x to 287; and ending at any of amino acid numbers 288+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P6 (SEQ ID NO: 41), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLL corresponding to amino acids 1-287 of PPBT_HUMAN, which also corresponds to amino acids 1-287 of HSAPHOL_P6 (SEQ ID NO: 41), and a second amino acid sequence being at least 90% homologous to GGRIDHGHHEGKAKQALHEAVEMDRAIGQAGSLTSSEDTLTVVTADHSHVFTFGGYTP RGNSIFGLAPMLSDTDKKPFTAILYGNGPGYKVVGGERENVSMVDYAHNNYQAQSAV PLRHETHGGEDVAVFSKGPMAHLLHGVHEQNYVPHVMAYAACIGANLGHCAPASSAG SLAAGPLLLALALYPLSVLF corresponding to amino acids 333-524 of PPBT_HUMAN, which also corresponds to amino acids 288-479 of HSAPHOL_P6 (SEQ ID NO: 41), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HSAPHOL_P6 (SEQ ID NO: 41), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise LG, having a structure as follows: a sequence starting from any of amino acid numbers 287−x to 287; and ending at any of amino acid numbers 288+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P7 (SEQ ID NO: 42), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYK corresponding to amino acids 63-326 of AAH21289, which also corresponds to amino acids 1-264 of HSAPHOL_P7 (SEQ ID NO: 42), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence LPPRCPLANRVDFSWAGREYRLQTFSKPLIFLANVFLQTQRP (SEQ ID NO: 1112) corresponding to amino acids 265-306 of HSAPHOL_P7 (SEQ ID NO: 42), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSAPHOL_P7 (SEQ ID NO: 42), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence LPPRCPLANRVDFSWAGREYRLQTFSKPLIFLANVFLQTQRP (SEQ ID NO: 1112) in HSAPHOL_P7 (SEQ ID NO: 42).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P7 (SEQ ID NO: 42), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPR corresponding to amino acids 1-262 of PPBT_HUMAN, which also corresponds to amino acids 1-262 of HSAPHOL_P7 (SEQ ID NO: 42), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence YKLPPRCPLANRVDFSWAGREYRLQTFSKPLIFLANVFLQTQRP corresponding to amino acids 263-306 of HSAPHOL_P7 (SEQ ID NO: 42), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSAPHOL_P7 (SEQ ID NO: 42), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence YKLPPRCPLANRVDFSWAGREYRLQTFSKPLIFLANVFLQTQRP in HSAPHOL_P7 (SEQ ID NO: 42).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P7 (SEQ ID NO: 42), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYK corresponding to amino acids 1-264 of 075090 (SEQ ID NO: 958), which also corresponds to amino acids 1-264 of HSAPHOL_P7 (SEQ ID NO: 42), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence LPPRCPLANRVDFSWAGREYRLQTFSKPLIFLANVFLQTQRP (SEQ ID NO: 1112) corresponding to amino acids 265-306 of HSAPHOL_P7 (SEQ ID NO: 42), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSAPHOL_P7 (SEQ ID NO: 42), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence LPPRCPLANRVDFSWAGREYRLQTFSKPLIFLANVFLQTQRP (SEQ ID NO: 1112) in HSAPHOL_P7 (SEQ ID NO: 42).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P8 (SEQ ID NO: 43), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLL G corresponding to amino acids 63-350 of AAH21289, which also corresponds to amino acids 1-288 of HSAPHOL_P8 (SEQ ID NO: 43), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence KWRGWRGGCMARSLVAGAACGQHLGTRP (SEQ ID NO: 1113) corresponding to amino acids 289-316 of HSAPHOL_P8 (SEQ ID NO: 43), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSAPHOL_P8 (SEQ ID NO: 43), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence KWRGWRGGCMARSLVAGAACGQHLGTRP (SEQ ID NO: 1113) in HSAPHOL_P8 (SEQ ID NO: 43).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P8 (SEQ ID NO: 43), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLL G corresponding to amino acids 1-288 of PPBT_HUMAN, which also corresponds to amino acids 1-288 of HSAPHOL_P8 (SEQ ID NO: 43), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence KWRGWRGGCMARSLVAGAACGQHLGTRP (SEQ ID NO: 1113) corresponding to amino acids 289-316 of HSAPHOL_P8 (SEQ ID NO: 43), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSAPHOL_P8 (SEQ ID NO: 43), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence KWRGWRGGCMARSLVAGAACGQHLGTRP (SEQ ID NO: 1113) in HSAPHOL_P8 (SEQ ID NO: 43).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSAPHOL_P8 (SEQ ID NO: 43), comprising a first amino acid sequence being at least 90% homologous to MISPFLVLAIGTCLTNSLVPEKEKDPKYWRDQAQETLKYALELQKLNTNVAKNVIMFL GDGMGVSTVTAARILKGQLHHNPGEETRLEMDKFPFVALSKTYNTNAQVPDSAGTAT AYLCGVKANEGTVGVSAATERSRCNTTQGNEVTSILRWAKDAGKSVGIVTTTRVNHA TPSAAYAHSADRDWYSDNEMPPEALSQGCKDIAYQLMHNIRDIDVIMGGGRKYMYPK NKTDVEYESDEKARGTRLDGLDLVDTWKSFKPRYKHSHFIWNRTELLTLDPHNVDYLL G corresponding to amino acids 1-288 of 075090 (SEQ ID NO: 958), which also corresponds to amino acids 1-288 of HSAPHOL_P8 (SEQ ID NO: 43), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence KWRGWRGGCMARSLVAGAACGQHLGTRP (SEQ ID NO: 1113) corresponding to amino acids 289-316 of HSAPHOL_P8 (SEQ ID NO: 43), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSAPHOL_P8 (SEQ ID NO: 43), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence KWRGWRGGCMARSLVAGAACGQHLGTRP (SEQ ID NO: 1113) in HSAPHOL_P8 (SEQ ID NO: 43).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T10888_PEA1_P2 (SEQ ID NO: 57), comprising a first amino acid sequence being at least 90% homologous to MGPPSAPPCRLHVPWKEVLLTASLLTFWNPPTTAKLTIESTPFNVAEGKEVLLLAHNLP QNRIGYSWYKGERVDGNSLIVGYVIGTQQATPGPAYSGRETIYPNASLLIQNVTQNDTG FYTLQVIKSDLVNEEATGQFHVYPELPKPSISSNNSNPVEDKDAVAFTCEPEVQNTTYL WWVNGQSLPVSPRLQLSNGNMTLTLLSVKRNDAGSYECEIQNPASANRSDPVTLNVLY GPDVPTISPSKANYRPGENLNLSCHAASNPPAQYSWFINGTFQQSTQELFIPNITVNNSGS YMCQAHNSATGLNRTTVTMITVS corresponding to amino acids 1-319 of CEA6_HUMAN, which also corresponds to amino acids 1-319 of T10888_PEA1_P2 (SEQ ID NO: 57), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DWTRP (SEQ ID NO: 1114) corresponding to amino acids 320-324 of T10888_PEA1_P2 (SEQ ID NO: 57), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T10888_PEA1_P2 (SEQ ID NO: 57), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DWTRP (SEQ ID NO: 1114) in T10888_PEA1_P2 (SEQ ID NO: 57).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T10888_PEA1_P4 (SEQ ID NO: 58), comprising a first amino acid sequence being at least 90% homologous to MGPPSAPPCRLHVPWKEVLLTASLLTFWNPPTTAKLTIESTPFNVAEGKEVLLLAHNLP QNRIGYSWYKGERVDGNSLIVGYVIGTQQATPGPAYSGRETIYPNASLLIQNVTQNDTG FYTLQVIKSDLVNEEATGQFHVYPELPKPSISSNNSNPVEDKDAVAFTCEPEVQNTTYL WWVNGQSLPVSPRLQLSNGNMTLTLLSVKRNDAGSYECEIQNPASANRSDPVTLNVL corresponding to amino acids 1-234 of CEA6_HUMAN, which also corresponds to amino acids 1-234 of T10888_PEA1_P4 (SEQ ID NO: 58), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence LLLSSQLWPPSASRLECWPGWL (SEQ ID NO: 1115) corresponding to amino acids 235-256 of T10888_PEA1_P4 (SEQ ID NO: 58), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T10888_PEA_L_P4 (SEQ ID NO: 58), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence LLLSSQLWPPSASRLECWPGWL (SEQ ID NO: 1115) in T10888_PEA1_P4 (SEQ ID NO: 58).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T10888_PEA1_P4 (SEQ ID NO: 58), comprising a first amino acid sequence being at least 90% homologous to MGPPSAPPCRLHVPWKEVLLTASLLTFWNPPTTAKLTIESTPFNVAEGKEVLLLAHNLP QNRIGYSWYKGERVDGNSLIVGYVIGTQQATPGPAYSGRETIYPNASLLIQNVTQNDTG FYTLQVIKSDLVNEEATGQFHVYPELPKPSISSNNSNPVEDKDAVAFTCEPEVQNTTYL WWVNGQSLPVSPRLQLSNGNMTLTLLSVKRNDAGSYECEIQNPASANRSDPVTLNVL corresponding to amino acids 1-234 of Q13774 (SEQ ID NO: 959), which also corresponds to amino acids 1-234 of T10888_PEA1_P4 (SEQ ID NO: 58), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence LLLSSQLWPPSASRLECWPGWL (SEQ ID NO: 1115) corresponding to amino acids 235-256 of T10888_PEA1_P4 (SEQ ID NO: 58), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T10888_PEA1_P4 (SEQ ID NO: 58), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence LLLSSQLWPPSASRLECWPGWL (SEQ ID NO: 1115) in T10888_PEA1_P4 (SEQ ID NO: 58).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T10888_PEA1_P5 (SEQ ID NO: 59), comprising a first amino acid sequence being at least 90% homologous to MGPPSAPPCRLHVPWKEVLLTASLLTFWNPPTTAKLTIESTPFNVAEGKEVLLLAHNLP QNRIGYSWYKGERVDGNSLIVGYVIGTQQATPGPAYSGRETIYPNASLLIQNVTQNDTG FYTLQVIKSDLVNEEATGQFHVYPELPKPSISSNNSNPVEDKDAVAFTCEPEVQNTTYL WWVNGQSLPVSPRLQLSNGNMTLTLLSVKRNDAGSYECEIQNPASANRSDPVTLNVLY GPDVPTISPSKANYRPGENLNLSCHAASNPPAQYSWFINGTFQQSTQELFIPNITVNNSGS YMCQAHNSATGLNRTTVTMITVSG corresponding to amino acids 1-320 of CEA6_HUMAN, which also corresponds to amino acids 1-320 of T10888_PEA1_P5 (SEQ ID NO: 59), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence KWIHEALASHFQVESGSQRRARKKFSFPTCVQGAHANPKFSPEPSQFTSADSFPLVFLFF VVFCFLISHV (SEQ ID NO: 1116) corresponding to amino acids 321-390 of T10888_PEA1_P5 (SEQ ID NO: 59), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T10888_PEA1_P5 (SEQ ID NO: 59), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence KWIHEALASHFQVESGSQRRARKKFSFPTCVQGAHANPKFSPEPSQFTSADSFPLVFLFF VVFCFLISHV (SEQ ID NO: 1116) in T10888_PEA1_P5 (SEQ ID NO: 59).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T10888_PEA1_P6 (SEQ ID NO: 60), comprising a first amino acid sequence being at least 90% homologous to MGPPSAPPCRLHVPWKEVLLTASLLTFWNPPTTAKLTIESTPFNVAEGKEVLLLAHNLP QNRIGYSWYKGERVDGNSLIVGYVIGTQQATPGPAYSGRETIYPNASLLIQNVTQNDTG FYTLQVIKSDLVNEEATGQFHVY corresponding to amino acids 1-141 of CEA6_HUMAN, which also corresponds to amino acids 1-141 of T10888_PEA1_P6 (SEQ ID NO: 60), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence REYFHMTSGCWGSVLLPTYGIVRPGLCLWPSLHYILYQGLDI (SEQ ID NO: 1117) corresponding to amino acids 142-183 of T10888_PEA1_P6 (SEQ ID NO: 60), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T10888_PEA1_P6 (SEQ ID NO: 60), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence REYFHMTSGCWGSVLLPTYGIVRPGLCLWPSLHYILYQGLDI (SEQ ID NO: 1117) in T10888_PEA1_P6 (SEQ ID NO: 60).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P9 (SEQ ID NO: 96), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEG corresponding to amino acids 1-274 of Q9UII7 (SEQ ID NO: 963), which also corresponds to amino acids 1-274 of HSECADH_P9 (SEQ ID NO: 96), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence TACRSRIANSCHSGDSWRNSCFANSDSAALAVSSEESGGQRALTAPRG (SEQ ID NO: 1118) corresponding to amino acids 275-322 of HSECADH_P9 (SEQ ID NO: 96), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSECADH_P9 (SEQ ID NO: 96), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence TACRSRIANSCHSGDSWRNSCFANSDSAALAVSSEESGGQRALTAPRG (SEQ ID NO: 1118) in HSECADH_P9 (SEQ ID NO: 96).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P9 (SEQ ID NO: 96), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEG corresponding to amino acids 1-274 of Q9UII8 (SEQ ID NO: 964), which also corresponds to amino acids 1-274 of HSECADH_P9 (SEQ ID NO: 96), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence TACRSRIANSCHSGDSWRNSCFANSDSAALAVSSEESGGQRALTAPRG (SEQ ID NO: 1118) corresponding to amino acids 275-322 of HSECADH_P9 (SEQ ID NO: 96), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSECADH_P9 (SEQ ID NO: 96), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence TACRSRIANSCHSGDSWRNSCFANSDSAALAVSSEESGGQRALTAPRG (SEQ ID NO: 1118) in HSECADH_P9 (SEQ ID NO: 96).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P9 (SEQ ID NO: 96), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEG corresponding to amino acids 1-274 of CAD1_HUMAN, which also corresponds to amino acids 1-274 of HSECADH_P9 (SEQ ID NO: 96), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence TACRSRIANSCHSGDSWRNSCFANSDSAALAVSSEESGGQRALTAPRG (SEQ ID NO: 1118) corresponding to amino acids 275-322 of HSECADH_P9 (SEQ ID NO: 96), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSECADH_P9 (SEQ ID NO: 96), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence TACRSRIANSCHSGDSWRNSCFANSDSAALAVSSEESGGQRALTAPRG (SEQ ID NO: 1118) in HSECADH_P9 (SEQ ID NO: 96).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P13 (SEQ ID NO: 97), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEGALPGTSVMEVTATDADDDVNT YNAAIAYTILSQDPELPDKNMFTINRNTGVISVVTTGLDRESFPTYTLVVQAADLQGEGL STTATAVITVTDTNDNPPIFNPTT corresponding to amino acids 1-379 of Q9UII7 (SEQ ID NO: 963), which also corresponds to amino acids 1-379 of HSECADH_P13 (SEQ ID NO: 97), and a second amino acid sequence VIL corresponding to amino acids 380-382 of HSECADH_P13 (SEQ ID NO: 97), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P13 (SEQ ID NO: 97), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEGALPGTSVMEVTATDADDDVNT YNAAIAYTILSQDPELPDKNMFTINRNTGVISVVTTGLDRESFPTYTLVVQAADLQGEGL STTATAVITVTDTNDNPPIFNPTT corresponding to amino acids 1-379 of Q9UII8 (SEQ ID NO: 964), which also corresponds to amino acids 1-379 of HSECADH_P13 (SEQ ID NO: 97), and a second amino acid sequence VIL corresponding to amino acids 380-382 of HSECADH_P13 (SEQ ID NO: 97), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P13 (SEQ ID NO: 97), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEGALPGTSVMEVTATDADDDVNT YNAAIAYTILSQDPELPDKNMFTINRNTGVISVVTTGLDRESFPTYTLVVQAADLQGEGL STTATAVITVTDTNDNPPIFNPTT corresponding to amino acids 1-379 of CAD1_HUMAN, which also corresponds to amino acids 1-379 of HSECADH_P13 (SEQ ID NO: 97), and a second amino acid sequence VIL corresponding to amino acids 380-382 of HSECADH_P13 (SEQ ID NO: 97), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P14 (SEQ ID NO: 98), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEGALPGTSVMEVTATDADDDVNT YNAAIAYTILSQDPELPDKNMFTINRNTGVISVVTTGLDRE corresponding to amino acids 1-336 of Q9UII7 (SEQ ID NO: 963), which also corresponds to amino acids 1-336 of HSECADH_P14 (SEQ ID NO: 98), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRGQEDPEGVEDKCVLAQSRGQSKILLGQLSVNTVMV (SEQ ID NO: 1119) corresponding to amino acids 337-373 of HSECADH_P14 (SEQ ID NO: 98), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSECADH_P14 (SEQ ID NO: 98), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRGQEDPEGVEDKCVLAQSRGQSKILLGQLSVNTVMV (SEQ ID NO: 1119) in HSECADH_P14 (SEQ ID NO: 98).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P14 (SEQ ID NO: 98), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEGALPGTSVMEVTATDADDDVNT YNAAIAYTILSQDPELPDKNMFTINRNTGVISVVTTGLDRE corresponding to amino acids 1-336 of Q9UII18 (SEQ ID NO: 964), which also corresponds to amino acids 1-336 of HSECADH_P14 (SEQ ID NO: 98), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRGQEDPEGVEDKCVLAQSRGQSKILLGQLSVNTVMV (SEQ ID NO: 1119) corresponding to amino acids 337-373 of HSECADH_P14 (SEQ ID NO: 98), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSECADH_P14 (SEQ ID NO: 98), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRGQEDPEGVEDKCVLAQSRGQSKILLGQLSVNTVMV (SEQ ID NO: 1119) in HSECADH_P14 (SEQ ID NO: 98).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P14 (SEQ ID NO: 98), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYTLFSHAVSSN GNAVEDPMEILITVTDQNDNKPEFTQEVFKGSVMEGALPGTSVMEVTATDADDDVNT YNAAIAYTILSQDPELPDKNMFTINRNTGVISVVTTGLDRE corresponding to amino acids 1-336 of CAD1_HUMAN, which also corresponds to amino acids 1-336 of HSECADH_P14 (SEQ ID NO: 98), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRGQEDPEGVEDKCVLAQSRGQSKILLGQLSVNTVMV (SEQ ID NO: 1119) corresponding to amino acids 337-373 of HSECADH_P14 (SEQ ID NO: 98), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HSECADH_P14 (SEQ ID NO: 98), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRGQEDPEGVEDKCVLAQSRGQSKILLGQLSVNTVMV (SEQ ID NO: 1119) in HSECADH_P14 (SEQ ID NO: 98).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P15 (SEQ ID NO: 99), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYT corresponding to amino acids 1-229 of Q9UII7 (SEQ ID NO: 963), which also corresponds to amino acids 1-229 of HSECADH_P15 (SEQ ID NO: 99), and a second amino acid sequence VSIS corresponding to amino acids 230-233 of HSECADH_P15 (SEQ ID NO: 99), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P15 (SEQ ID NO: 99), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYT corresponding to amino acids 1-229 of Q9UII8 (SEQ ID NO: 964), which also corresponds to amino acids 1-229 of HSECADH_P15 (SEQ ID NO: 99), and a second amino acid sequence VSIS corresponding to amino acids 230-233 of HSECADH_P15 (SEQ ID NO: 99), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSECADH_P15 (SEQ ID NO: 99), comprising a first amino acid sequence being at least 90% homologous to MGPWSRSLSALLLLLQVSSWLCQEPEPCHPGFDAESYTFTVPRRHLERGRVLGRVNFED CTGRQRTAYFSLDTRFKVGTDGVITVKRPLRFHNPQIHFLVYAWDSTYRKFSTKVTLNT VGHHHRPPPHQASVSGIQAELLTFPNSSPGLRRQKRDWVIPPISCPENEKGPFPKNLVQI KSNKDKEGKVFYSITGQGADTPPVGVFIIERETGWLKVTEPLDRERIATYT corresponding to amino acids 1-229 of CAD1_HUMAN, which also corresponds to amino acids 1-229 of HSECADH_P15 (SEQ ID NO: 99), and a second amino acid sequence VSIS corresponding to amino acids 230-233 of HSECADH_P15 (SEQ ID NO: 99), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P5 (SEQ ID NO: 778), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYK corresponding to amino acids 12-55 of GILT_HUMAN, which also corresponds to amino acids 1-44 of T59832_P5 (SEQ ID NO: 778), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VGTATGRAGWREQAPCRGTRLLLSPQTSQGKTRAPRGRCPCRVPGKTLFSSRRCGHTP SVPFRFRIPHLRGAAASTRLVPPKGSMSAYCVLLGQELGSPFVAQGTSSAAGQGPPACIL AATLDAFIPARAGLACLWDLLGRCPRG (SEQ ID NO: 1120) corresponding to amino acids 45-189 of T59832_P5 (SEQ ID NO: 778), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P5 (SEQ ID NO: 778), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VGTATGRAGWREQAPCRGTRLLLSPQTSQGKTRAPRGRCPCRVPGKTLFSSRRCGHTP SVPFRFRIPHLRGAAASTRLVPPKGSMSAYCVLLGQELGSPFVAQGTSSAAGQGPPACIL AATLDAFIPARAGLACLWDLLGRCPRG (SEQ ID NO: 1120) in T59832_P5 (SEQ ID NO: 778).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P7 (SEQ ID NO: 779), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVEACVLDELDMELAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIM ECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNG corresponding to amino acids 12-223 of GILT_HUMAN, which also corresponds to amino acids 1-212 of T59832_P7 (SEQ ID NO: 779), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) corresponding to amino acids 213-238 of T59832_P7 (SEQ ID NO: 779), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P7 (SEQ ID NO: 779), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) in T59832_P7 (SEQ ID NO: 779).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P7 (SEQ ID NO: 779), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVEACVLDELDMELAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIM ECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNG corresponding to amino acids 1-212 of BAC98466, which also corresponds to amino acids 1-212 of T59832_P7 (SEQ ID NO: 779), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) corresponding to amino acids 213-238 of T59832_P7 (SEQ ID NO: 779), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P7 (SEQ ID NO: 779), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) in T59832_P7 (SEQ ID NO: 779).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P7 (SEQ ID NO: 779), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLV (SEQ ID NO: 1121) corresponding to amino acids 1-90 of T59832_P7 (SEQ ID NO: 779), and a second amino acid sequence being at least 90% homologous to MEILNVTLVPYGNAQEQNVSGRWEFKCQHGEEECKFNKVEACVLDELDMELAFLTIVC MEEFEDMERSLPLCLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYV PWVTVNGVRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) corresponding to amino acids 1-148 of BAC85622, which also corresponds to amino acids 91-238 of T59832_P7 (SEQ ID NO: 779), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of T59832_P7 (SEQ ID NO: 779), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLV (SEQ ID NO: 1121) of T59832_P7 (SEQ ID NO: 779).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P7 (SEQ ID NO: 779), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVEACVLDELDMELAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIM ECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNG corresponding to amino acids 1-212 of Q8WU77, which also corresponds to amino acids 1-212 of T59832_P7 (SEQ ID NO: 779), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) corresponding to amino acids 213-238 of T59832_P7 (SEQ ID NO: 779), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P7 (SEQ ID NO: 779), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VRIFLALSLTLIVPWSQGWTRQRDQR (SEQ ID NO: 1089) in T59832_P7 (SEQ ID NO: 779).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P9 (SEQ ID NO: 780), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVEACVLDELDMELAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIM ECAMGDRGMQLMHANAQRTDALQPPHE corresponding to amino acids 12-214 of GILT_HUMAN, which also corresponds to amino acids 1-203 of T59832_P9 (SEQ ID NO: 780), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) corresponding to amino acids 204-244 of T59832_P9 (SEQ ID NO: 780), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P9 (SEQ ID NO: 780), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) in T59832_P9 (SEQ ID NO: 780).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P9 (SEQ ID NO: 780), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVEACVLDELDMELAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIM ECAMGDRGMQLMHANAQRTDALQPPHE corresponding to amino acids 1-203 of BAC98466, which also corresponds to amino acids 1-203 of T59832_P9 (SEQ ID NO: 780), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) corresponding to amino acids 204-244 of T59832_P9 (SEQ ID NO: 780), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P9 (SEQ ID NO: 780), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) in T59832_P9 (SEQ ID NO: 780).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P9 (SEQ ID NO: 780), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLV (SEQ ID NO: 1121) corresponding to amino acids 1-90 of T59832_P9 (SEQ ID NO: 780), second amino acid sequence being at least 90% homologous to MEILNVTLVPYGNAQEQNVSGRWEFKCQHGEEECKFNKVEACVLDELDMELAFLTIVC MEEFEDMERSLPLCLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHE corresponding to amino acids 1-113 of BAC85622, which also corresponds to amino acids 91-203 of T59832_P9 (SEQ ID NO: 780), and a third amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) corresponding to amino acids 204-244 of T59832_P9 (SEQ ID NO: 780), wherein said first, second and third amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of T59832_P9 (SEQ ID NO: 780), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLV (SEQ ID NO: 1121) of T59832_P9 (SEQ ID NO: 780).

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P9 (SEQ ID NO: 780), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) in T59832_P9 (SEQ ID NO: 780).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P9 (SEQ ID NO: 780), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVEACVLDELDMELAFLTIVCMEEFEDMERSLPLCLQLYAPGLSPDTIM ECAMGDRGMQLMHANAQRTDALQPPHE corresponding to amino acids 1-203 of Q8WU77, which also corresponds to amino acids 1-203 of T59832_P9 (SEQ ID NO: 780), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) corresponding to amino acids 204-244 of T59832_P9 (SEQ ID NO: 780), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P9 (SEQ ID NO: 780), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NPWKIRPSSLPLSASCTRARSRMSALPQPAPSGVFASSDGR (SEQ ID NO: 1090) in T59832_P9 (SEQ ID NO: 780).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P12 (SEQ ID NO: 781), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVE corresponding to amino acids 12-141 of GILT_HUMAN, which also corresponds to amino acids 1-130 of T59832_P12 (SEQ ID NO: 781), and a second amino acid sequence being at least 90% homologous to CLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNGKPLED QTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK corresponding to amino acids 173-261 of GILT_HUMAN, which also corresponds to amino acids 131-219 of T59832_P12 (SEQ ID NO: 781), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T59832_P12 (SEQ ID NO: 781), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise EC, having a structure as follows: a sequence starting from any of amino acid numbers 130−x to 130; and ending at any of amino acid numbers 131+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P12 (SEQ ID NO: 781), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLV (SEQ ID NO: 1121) corresponding to amino acids 1-90 of T59832_P12 (SEQ ID NO: 781), second amino acid sequence being at least 90% homologous to MEILNVTLVPYGNAQEQNVSGRWEFKCQHGEEECKFNKVE corresponding to amino acids 1-40 of BAC85622, which also corresponds to amino acids 91-130 of T59832_P12 (SEQ ID NO: 781), third amino acid sequence being at least 90% homologous to CLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNG corresponding to amino acids 72-122 of BAC85622, which also corresponds to amino acids 131-181 of T59832_P12 (SEQ ID NO: 781), and a fourth amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence KPLEDQTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK (SEQ ID NO: 1124) corresponding to amino acids 182-219 of T59832_P12 (SEQ ID NO: 781), wherein said first, second, third and fourth amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of T59832_P12 (SEQ ID NO: 781), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLV (SEQ ID NO: 1121) of T59832_P12 (SEQ ID NO: 781).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T59832_P12 (SEQ ID NO: 781), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise EC, having a structure as follows: a sequence starting from any of amino acid numbers 130−x to 130; and ending at any of amino acid numbers 131+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of T59832_P12 (SEQ ID NO: 781), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence KPLEDQTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK (SEQ ID NO: 1124) in T59832_P12 (SEQ ID NO: 781).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P12 (SEQ ID NO: 781), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNLYLRGPLKKSNA PLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNAQEQNVSGRWEFKC QHGEEECKFNKVE corresponding to amino acids 1-130 of Q8WU77, which also corresponds to amino acids 1-130 of T59832_P12 (SEQ ID NO: 781), and a second amino acid sequence being at least 90% homologous to CLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNGKPLED QTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK corresponding to amino acids 162-250 of Q8WU77, which also corresponds to amino acids 131-219 of T59832_P12 (SEQ ID NO: 781), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T59832_P12 (SEQ ID NO: 781), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise EC, having a structure as follows: a sequence starting from any of amino acid numbers 130−x to 130; and ending at any of amino acid numbers 131+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P18 (SEQ ID NO: 782), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYK corresponding to amino acids 12-55 of GILT_HUMAN, which also corresponds to amino acids 1-44 of T59832_P18 (SEQ ID NO: 782), and a second amino acid sequence being at least 90% homologous to CLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNGKPLED QTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK corresponding to amino acids 173-261 of GILT_HUMAN, which also corresponds to amino acids 45-133 of T59832_P18 (SEQ ID NO: 782), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T59832_P18 (SEQ ID NO: 782), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise KC, having a structure as follows: a sequence starting from any of amino acid numbers 44−x to 44; and ending at any of amino acid numbers 45+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P18 (SEQ ID NO: 782), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYK corresponding to amino acids 1-44 of Q8WU77, which also corresponds to amino acids 1-44 of T59832_P18 (SEQ ID NO: 782), and a second amino acid sequence being at least 90% homologous to CLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNGKPLED QTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK corresponding to amino acids 162-250 of Q8WU77, which also corresponds to amino acids 45-133 of T59832_P118 (SEQ ID NO: 782), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T59832_P18 (SEQ ID NO: 782), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise KC, having a structure as follows: a sequence starting from any of amino acid numbers 44−x to 44; and ending at any of amino acid numbers 45+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for T59832_P18 (SEQ ID NO: 782), comprising a first amino acid sequence being at least 90% homologous to MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYK corresponding to amino acids 1-44 of Q8NEI4, which also corresponds to amino acids 1-44 of T59832_P18 (SEQ ID NO: 782), and a second amino acid sequence being at least 90% homologous to CLQLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNGKPLED QTQLLTLVCQLYQGKKPDVCPSSTSSLRSVCFK corresponding to amino acids 162-250 of Q8NEI4, which also corresponds to amino acids 45-133 of T59832_P18 (SEQ ID NO: 782), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of T59832_P18 (SEQ ID NO: 782), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise KC, having a structure as follows: a sequence starting from any of amino acid numbers 44−x to 44; and ending at any of amino acid numbers 45+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMGRP5E_P4 (SEQ ID NO: 108), comprising a first amino acid sequence being at least 90% homologous to MRGSELPLVLLALVLCLAPRGRAVPLPAGGGTVLTKMYPRGNHWAVGHLMGKKSTG ESSSVSERGSLKQQLREYIRWEEAARNLLGLIEAKENRNHQPPQPKALGNQQPSWDSED SSNFKDVGSKGK corresponding to amino acids 1-127 of GRP_HUMAN, which also corresponds to amino acids 1-127 of HUMGRP5E_P4 (SEQ ID NO: 108), and a second amino acid sequence being at least 90% homologous to GSQREGRNPQLNQQ corresponding to amino acids 135-148 of GRP_HUMAN, which also corresponds to amino acids 128-141 of HUMGRP5E_P4 (SEQ ID NO: 108), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of HUMGRP5E_P4 (SEQ ID NO: 108), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise KG, having a structure as follows: a sequence starting from any of amino acid numbers 127−x to 127; and ending at any of amino acid numbers 128+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HUMGRP5E_P5 (SEQ ID NO: 109), comprising a first amino acid sequence being at least 90% homologous to MRGSELPLVLLALVLCLAPRGRAVPLPAGGGTVLTKMYPRGNHWAVGHLMGKKSTG ESSSVSERGSLKQQLREYIRWEEAARNLLGLIEAKENRNHQPPQPKALGNQQPSWDSED SSNFKDVGSKGK corresponding to amino acids 1-127 of GRP_HUMAN, which also corresponds to amino acids 1-127 of HUMGRP5E_P5 (SEQ ID NO: 109), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DSLLQVLNVKEGTPS (SEQ ID NO: 1125) corresponding to amino acids 128-142 of HUMGRP5E_P5 (SEQ ID NO: 109), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of HUMGRP5E_P5 (SEQ ID NO: 109), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DSLLQVLNVKEGTPS (SEQ ID NO: 1125) in HUMGRP5E_P5 (SEQ ID NO: 109).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P6 (SEQ ID NO: 143), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSAGIMYRKSCASSAACLIASAGSPCRGLAPGREEQRALHKAGAVGGGVR (SEQ ID NO: 1126) corresponding to amino acids 1-110 of R11723_PEA1_P6 (SEQ ID NO: 143), and a second amino acid sequence being at least 90% homologous to MYAQALLVVGVLQRQAAAQHLHEHPPKLLRGHRVQERVDDRAEVEKRLREGEEDHV RPEVGPRPVVLGFGRSHDPPNLVGHPAYGQCHNNQPWADTSRRERQRKEKHSMRTQ corresponding to amino acids 1-112 of Q8IXM0 (SEQ ID NO: 968), which also corresponds to amino acids 111-222 of R11723_PEA1_P6 (SEQ ID NO: 143), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of R11723_PEA1_P6 (SEQ ID NO: 143), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSAGIMYRKSCASSAACLIASAGSPCRGLAPGREEQRALHKAGAVGGGVR (SEQ ID NO: 1126) of R11723_PEA1_P6 (SEQ ID NO: 143).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P6 (SEQ ID NO: 143), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSAGIMYRKSCASSAACLIASAG corresponding to amino acids 1-83 of Q96AC2 (SEQ ID NO: 969), which also corresponds to amino acids 1-83 of R11723_PEA1_P6 (SEQ ID NO: 143), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence SPCRGLAPGREEQRALHKAGAVGGGVRMYAQALLVVGVLQRQAAAQHLHEHPPKLL RGHRVQERVDDRAEVEKRLREGEEDHVRPEVGPRPVVLGFGRSHDPPNLVGHPAYGQ CHNNQPWADTSRRERQRKEKHSMRTQ (SEQ ID NO: 1127) corresponding to amino acids 84-222 of R11723_PEA1_P6 (SEQ ID NO: 143), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P6 (SEQ ID NO: 143), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence SPCRGLAPGREEQRALHKAGAVGGGVRMYAQALLVVGVLQRQAAAQHLHEHPPKLL RGHRVQERVDDRAEVEKRLREGEEDHVRPEVGPRPVVLGFGRSHDPPNLVGHPAYGQ CHNNQPWADTSRRERQRKEKHSMRTQ (SEQ ID NO: 1127) in R11723_PEA1_P6 (SEQ ID NO: 143).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P6 (SEQ ID NO: 143), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSAGIMYRKSCASSAACLIASAG corresponding to amino acids 1-83 of Q8N2G4 (SEQ ID NO: 970), which also corresponds to amino acids 1-83 of R11723_PEA1_P6 (SEQ ID NO: 143), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence SPCRGLAPGREEQRALHKAGAVGGGVRMYAQALLVVGVLQRQAAAQHLHEHPPKLL RGHRVQERVDDRAEVEKRLREGEEDHVRPEVGPRPVVLGFGRSHDPPNLVGHPAYGQ CHNNQPWADTSRRERQRKEKHSMRTQ (SEQ ID NO: 1127) corresponding to amino acids 84-222 of R11723_PEA1_P6 (SEQ ID NO: 143), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P6 (SEQ ID NO: 143), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence SPCRGLAPGREEQRALHKAGAVGGGVRMYAQALLVVGVLQRQAAAQHLHEHPPKLL RGHRVQERVDDRAEVEKRLREGEEDHVRPEVGPRPVVLGFGRSHDPPNLVGHPAYGQ CHNNQPWADTSRRERQRKEKHSMRTQ (SEQ ID NO: 1127) in R11723_PEA1_P6 (SEQ ID NO: 143).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P6 (SEQ ID NO: 143), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSAGIMYRKSCASSAACLIASAG corresponding to amino acids 24-106 of BAC85518 (SEQ ID NO: 971), which also corresponds to amino acids 1-83 of R11723_PEA1_P6 (SEQ ID NO: 143), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence SPCRGLAPGREEQRALHKAGAVGGGVRMYAQALLVVGVLQRQAAAQHLHEHPPKLL RGHRVQERVDDRAEVEKRLREGEEDHVRPEVGPRPVVLGFGRSHDPPNLVGHPAYGQ CHNNQPWADTSRRERQRKEKHSMRTQ (SEQ ID NO: 1127) corresponding to amino acids 84-222 of R11723_PEA1_P6 (SEQ ID NO: 143), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P6 (SEQ ID NO: 143), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence SPCRGLAPGREEQRALHKAGAVGGGVRMYAQALLVVGVLQRQAAAQHLHEHPPKLL RGHRVQERVDDRAEVEKRLREGEEDHVRPEVGPRPVVLGFGRSHDPPNLVGHPAYGQ CHNNQPWADTSRRERQRKEKHSMRTQ (SEQ ID NO: 1127) in R11723_PEA1_P6 (SEQ ID NO: 143).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P7 (SEQ ID NO: 144), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSAG corresponding to amino acids 1-64 of Q96AC2 (SEQ ID NO: 969), which also corresponds to amino acids 1-64 of R11723_PEA1_P7 (SEQ ID NO: 144), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence SHCVTRLECSGTISAHCNLCLPGSNDHPT (SEQ ID NO: 1128) corresponding to amino acids 65-93 of R11723_PEA1_P7 (SEQ ID NO: 144), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P7 (SEQ ID NO: 144), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence SHCVTRLECSGTISAHCNLCLPGSNDHPT (SEQ ID NO: 1128) in R11723_PEA1_P7 (SEQ ID NO: 144).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P7 (SEQ ID NO: 144), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSAG corresponding to amino acids 1-64 of Q8N2G4 (SEQ ID NO: 970), which also corresponds to amino acids 1-64 of R11723_PEA1_P7 (SEQ ID NO: 144), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence SHCVTRLECSGTISAHCNLCLPGSNDHPT (SEQ ID NO: 1128) corresponding to amino acids 65-93 of R11723_PEA1_P7 (SEQ ID NO: 144), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P7 (SEQ ID NO: 144), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence SHCVTRLECSGTISAHCNLCLPGSNDHPT (SEQ ID NO: 1128) in R11723_PEA1_P7 (SEQ ID NO: 144).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P7 (SEQ ID NO: 144), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MWVLG (SEQ ID NO: 1129) corresponding to amino acids 1-5 of R11723_PEA1_P7 (SEQ ID NO: 144), second amino acid sequence being at least 90% homologous to IAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEVMEQSAG corresponding to amino acids 22-80 of BAC85273 (SEQ ID NO: 972), which also corresponds to amino acids 6-64 of R11723_PEA1_P7 (SEQ ID NO: 144), and a third amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence SHCVTRLECSGTISAHCNLCLPGSNDHPT (SEQ ID NO: 1128) corresponding to amino acids 65-93 of R11723_PEA1_P7 (SEQ ID NO: 144), wherein said first, second and third amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of R11723_PEA1_P7 (SEQ ID NO: 144), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MWVLG (SEQ ID NO: 1129) of R11723_PEA1_P7 (SEQ ID NO: 144).

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P7 (SEQ ID NO: 144), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence SHCVTRLECSGTISAHCNLCLPGSNDHPT (SEQ ID NO: 1128) in R11723_PEA1_P7 (SEQ ID NO: 144).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P7 (SEQ ID NO: 144), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSAG corresponding to amino acids 24-87 of BAC85518 (SEQ ID NO: 971), which also corresponds to amino acids 1-64 of R11723_PEA1_P7 (SEQ ID NO: 144), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence SHCVTRLECSGTISAHCNLCLPGSNDHPT (SEQ ID NO: 1128) corresponding to amino acids 65-93 of R11723_PEA1_P7 (SEQ ID NO: 144), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P7 (SEQ ID NO: 144), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence SHCVTRLECSGTISAHCNLCLPGSNDHPT (SEQ ID NO: 1128) in R11723_PEA1_P7 (SEQ ID NO: 144).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P13 (SEQ ID NO: 145), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSA corresponding to amino acids 1-63 of Q96AC2 (SEQ ID NO: 969), which also corresponds to amino acids 1-63 of R11723_PEA1_P13 (SEQ ID NO: 145), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DTKRTNTLLFEMRHFAKQLTT (SEQ ID NO: 1130) corresponding to amino acids 64-84 of R11723_PEA1_P13 (SEQ ID NO: 145), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P13 (SEQ ID NO: 145), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DTKRTNTLLFEMRHFAKQLTT (SEQ ID NO: 1130) in R11723_PEA1_P13 (SEQ ID NO: 145).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P10 (SEQ ID NO: 146), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSA corresponding to amino acids 1-63 of Q96AC2 (SEQ ID NO: 969), which also corresponds to amino acids 1-63 of R11723_PEA1_P10 (SEQ ID NO: 146), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DRVSLCHEAGVQWNNFSTLQPLPPRLK (SEQ ID NO: 1131) corresponding to amino acids 64-90 of R11723_PEA1_P10 (SEQ ID NO: 146), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P10 (SEQ ID NO: 146), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DRVSLCHEAGVQWNNFSTLQPLPPRLK (SEQ ID NO: 1131) in R11723_PEA1_P10 (SEQ ID NO: 146).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P10 (SEQ ID NO: 146), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSA corresponding to amino acids 1-63 of Q8N2G4 (SEQ ID NO: 970), which also corresponds to amino acids 1-63 of R11723_PEA1_P10 (SEQ ID NO: 146), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DRVSLCHEAGVQWNNFSTLQPLPPRLK (SEQ ID NO: 1131) corresponding to amino acids 64-90 of R11723_PEA1_P10 (SEQ ID NO: 146), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P10 (SEQ ID NO: 146), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DRVSLCHEAGVQWNNFSTLQPLPPRLK (SEQ ID NO: 1131) in R11723_PEA1_P10 (SEQ ID NO: 146).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P10 (SEQ ID NO: 146), comprising a first amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence MWVLG (SEQ ID NO: 1129) corresponding to amino acids 1-5 of R11723_PEA1_P10 (SEQ ID NO: 146), second amino acid sequence being at least 90% homologous to IAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEVMEQSA corresponding to amino acids 22-79 of BAC85273 (SEQ ID NO: 972), which also corresponds to amino acids 6-63 of R11723_PEA1_P10 (SEQ ID NO: 146), and a third amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DRVSLCHEAGVQWNNFSTLQPLPPRLK (SEQ ID NO: 1131) corresponding to amino acids 64-90 of R11723_PEA1_P10 (SEQ ID NO: 146), wherein said first, second and third amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a head of R11723_PEA1_P10 (SEQ ID NO: 146), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence MWVLG (SEQ ID NO: 1129) of R11723_PEA1_P10 (SEQ ID NO: 146).

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P10 (SEQ ID NO: 146), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DRVSLCHEAGVQWNNFSTLQPLPPRLK (SEQ ID NO: 1131) in R11723_PEA1_P10 (SEQ ID NO: 146).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for R11723_PEA1_P10 (SEQ ID NO: 146), comprising a first amino acid sequence being at least 90% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEV MEQSA corresponding to amino acids 24-86 of BAC85518 (SEQ ID NO: 971), which also corresponds to amino acids 1-63 of R11723_PEA1_P10 (SEQ ID NO: 146), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence DRVSLCHEAGVQWNNFSTLQPLPPRLK (SEQ ID NO: 1131) corresponding to amino acids 64-90 of R11723_PEA1_P10 (SEQ ID NO: 146), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of R11723_PEA1_P10 (SEQ ID NO: 146), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence DRVSLCHEAGVQWNNFSTLQPLPPRLK (SEQ ID NO: 1131) in R11723_PEA1_P10 (SEQ ID NO: 146).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for D56406_PEA1_P2 (SEQ ID NO: 161), comprising a first amino acid sequence being at least 90% homologous to MMAGMKIQLVCMLLLAFSSWSLCSDSEEEMKALEADFLTNMHTSKISKAHVPSWKMT LLNVCSLVNNLNSPAEETGEVHEEELVARRKLPTALDGFSLEAMLTIYQLHKICHSRAF QHWE corresponding to amino acids 1-120 of NEUT_HUMAN, which also corresponds to amino acids 1-120 of D56406_PEA1_P2 (SEQ ID NO: 161), second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence ARWLTPVIPALWEAETGGSRGQEMETIPANT (SEQ ID NO: 1141) corresponding to amino acids 121-151 of D56406_PEA1_P2 (SEQ ID NO: 161), and a third amino acid sequence being at least 90% homologous to LIQEDILDTGNDKNGKEEVIKRKIPYILKRQLYENKPRRPYILKRDSYYY corresponding to amino acids 121-170 of NEUT_HUMAN, which also corresponds to amino acids 152-201 of D56406_PEA1_P2 (SEQ ID NO: 161), wherein said first, second and third amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for an edge portion of D56406_PEA1_P2 (SEQ ID NO: 161), comprising an amino acid sequence being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence encoding for ARWLTPVIPALWEAETGGSRGQEMETIPANT (SEQ ID NO: 1141), corresponding to D56406_PEA1_P2 (SEQ ID NO: 161).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for D56406_PEA1_P5 (SEQ ID NO: 162), comprising a first amino acid sequence being at least 90% homologous to MMAGMKIQLVCMLLLAFSSWSLC corresponding to amino acids 1-23 of NEUT_HUMAN, which also corresponds to amino acids 1-23 of D56406_PEA1_P5 (SEQ ID NO: 162), and a second amino acid sequence being at least 90% homologous to SEEEMKALEADFLTNMHTSKISKAHVPSWKMTLLNVCSLVNNLNSPAEETGEVHEEEL VARRKLPTALDGFSLEAMLTIYQLHKICHSRAFQHWELIQEDILDTGNDKNGKEEVIKR KIPYILKRQLYENKPRRPYILKRDSYYY corresponding to amino acids 26-170 of NEUT_HUMAN, which also corresponds to amino acids 24-168 of D56406_PEA1_P5 (SEQ ID NO: 162), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of D56406_PEA1_P5 (SEQ ID NO: 162), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise CS, having a structure as follows: a sequence starting from any of amino acid numbers 23−x to 24; and ending at any of amino acid numbers+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for D56406_PEA1_P6 (SEQ ID NO: 163), comprising a first amino acid sequence being at least 90% homologous to MMAGMKIQLVCMLLLAFSSWSLCSDSEEEMKALEADFLTNMHTSK corresponding to amino acids 1-45 of NEUT_HUMAN, which also corresponds to amino acids 1-45 of D56406_PEA1_P6 (SEQ ID NO: 163), and a second amino acid sequence being at least 90% homologous to LIQEDILDTGNDKNGKEEVIKRKIPYILKRQLYENKPRRPYILKRDSYYY corresponding to amino acids 121-170 of NEUT_HUMAN, which also corresponds to amino acids 46-95 of D56406_PEA1_P6 (SEQ ID NO: 163), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for an edge portion of D56406_PEA1_P6 (SEQ ID NO: 163), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise KL, having a structure as follows: a sequence starting from any of amino acid numbers 45−x to 46; and ending at any of amino acid numbers 46+((n−2)−x), in which x varies from 0 to n−2.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for H53393_PEA1_P2 (SEQ ID NO: 185), comprising a first amino acid sequence being at least 90% homologous to MRTYRYFLLLFWVGQPYPTLSTPLSKRTSGFPAKKRALELSGNSKNELNRSKRSWMWN QFFLLEEYTGSDYQYVGKLHSDQDRGDGSLKYILSGDGAGDLFIINENTGDIQATKRLD REEKPVYILRAQAINRRTGRPVEPESEFIIKIHDINDNEPIFTKEVYTATVPEMSDVGTFVV QVTATDADDPTYGNSAKVVYSILQGQPYFSVESETGIIKTALLNMDRENREQYQVVIQA KDMGGQMGGLSGTTTVNITLTDVNDNPPRFPQSTYQFKTPESSPPGTPIGRIKASDADV GENAEIEYSITDGEGLDMFDVITDQETQEGIITVKKLLDFEKKKVYTLKVEASNPYVEPR FLYLGPFKDSATVRIVVEDVDEPPVFSKLAYILQIREDAQINTTIGSVTAQDPDAARNPV KYSVDRHTDMDRIFNIDSGNGSIFTSKLLDRETLLWHNITVIATEINNPKQSSRVPLYIKV LDVNDNAPEFAEFYETFVCEKAKADQLIQTLHAVDKDDPYSGHQFSFSLAPEAASGSNF TIQDNK corresponding to amino acids 1-543 of CAD6_HUMAN, which also corresponds to amino acids 1-543 of H53393_PEA1_P2 (SEQ ID NO: 185), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GK corresponding to amino acids 544-545 of H53393_PEA1_P2 (SEQ ID NO: 185), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for H53393_PEA1_P3 (SEQ ID NO: 186), comprising a first amino acid sequence being at least 90% homologous to MRTYRYFLLLFWVGQPYPTLSTPLSKRTSGFPAKKRALELSGNSKNELNRSKRSWMWN QFFLLEEYTGSDYQYVGKLHSDQDRGDGSLKYILSGDGAGDLFIINENTGDIQATKRLD REEKPVYILRAQAINRRTGRPVEPESEFIIKIHDINDNEPIFTKEVYTATVPEMSDVGTFVV QVTATDADDPTYGNSAKVVYSILQGQPYFSVESETGIIKTALLNMDRENREQYQVVIQA KDMGGQMGGLSGTTTVNITLTDVNDNPPRFPQSTYQFKTPESSPPGTPIGRIKASDADV GENAEIEYSITDGEGLDMFDVITDQETQEGIITVKKLLDFEKKKVYTLKVEASNPYVEPR FLYLGPFKDSATVRIVVEDVDEPPVFSKLAYILQIREDAQINTTIGSVTAQDPDAARNPV KYSVDRHTDMDRIFNIDSGNGSIFTSKLLDRETLLWHNITVIATEINNPKQSSRVPLYIKV LDVNDNAPEFAEFYETFVCEKAKADQ corresponding to amino acids 1-504 of CAD6_HUMAN, which also corresponds to amino acids 1-504 of H53393_PEA1_P3 (SEQ ID NO: 186), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence RFGFSLS (SEQ ID NO: 1133) corresponding to amino acids 505-511 of H53393_PEA1_P3 (SEQ ID NO: 186), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of H53393_PEA1_P3 (SEQ ID NO: 186), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence RFGFSLS (SEQ ID NO: 1133) in H53393_PEA1_P3 (SEQ ID NO: 186).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for H53393_PEA1_P6 (SEQ ID NO: 187), comprising a first amino acid sequence being at least 90% homologous to MRTYRYFLLLFWVGQPYPTLSTPLSKRTSGFPAKKRALELSGNSKNELNRSKRSWMWN QFFLLEEYTGSDYQYVGKLHSDQDRGDGSLKYILSGDGAGDLFIINENTGDIQATKRLD REEKPVYILRAQAINRRTGRPVEPESEFIIKIHDINDNEPIFTKEVYTATVPEMSDVGTFVV QVTATDADDPTYGNSAKVVYSILQGQPYFSVESETGIIKTALLNMDRENREQYQVVIQA KDMGGQMGGLSGTTTVNITLTDVNDNPPRFPQSTYQFKTPESSPPGTPIGRIKASDADV GENAEIEYSITDGEGLDMFDVITDQETQEGIITVKK corresponding to amino acids 1-333 of CAD6_HUMAN, which also corresponds to amino acids 1-333 of H53393_PEA1_P6 (SEQ ID NO: 187), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence VMPLLKHHTE (SEQ ID NO: 1134) corresponding to amino acids 334-343 of H53393_PEA1_P6 (SEQ ID NO: 187), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of H53393_PEA1_P6 (SEQ ID NO: 187), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence VMPLLKHHTE (SEQ ID NO: 1134) in H53393_PEA1_P6 (SEQ ID NO: 187).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSU40434_PEA1_P12 (SEQ ID NO: 226), comprising a first amino acid sequence being at least 90% homologous to MALPTARPLLGSCGTPALGSLLFLLFSLGWVQPSRTLAGETGQEAAPLDGVLANPPNISS LSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPEDLDALP LDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLLPAALACWGVRGSLLS EADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQGGGPPYGP PSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERTILRPRFRRE VEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRVNAIPFTYEQLDVLKH KLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMSPQVA TLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIW corresponding to amino acids 1-458 of Q14859 (SEQ ID NO: 985), which also corresponds to amino acids 1-458 of HSU40434_PEA1_P12 (SEQ ID NO: 226).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for HSU40434_PEA1_P12 (SEQ ID NO: 226), comprising a first amino acid sequence being at least 90% homologous to MALPTARPLLGSCGTPALGSLLFLLFSLGWVQPSRTLAGETGQ corresponding to amino acids 1-43 of Q9BTR2 (SEQ ID NO: 986), which also corresponds to amino acids 1-43 of HSU40434_PEA1_P12 (SEQ ID NO: 226), second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence E corresponding to amino acids 44-44 of HSU40434_PEA1_P12 (SEQ ID NO: 226), and a third amino acid sequence being at least 90% homologous to AAPLDGVLANPPNISSLSPRQLLGFPCAEVSGLSTERVRELAVALAQKNVKLSTEQLRC LAHRLSEPPEDLDALPLDLLLFLNPDAFSGPQACTRFFSRITKANVDLLPRGAPERQRLL PAALACWGVRGSLLSEADVRALGGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQE AARAALQGGGPPYGPPSTWSVSTMDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPS WRQPERTILRPRFRREVEKTACPSGKKAREIDESLIFYKKWELEACVDAALLATQMDRV NAIPFTYEQLDVLKHKLDELYPQGYPESVIQHLGYLFLKMSPEDIRKWNVTSLETLKAL LEVNKGHEMSPQVATLIDRFVKGRGQLDKDTLDTLTAFYPGYLCSLSPEELSSVPPSSIW corresponding to amino acids 44-457 of Q9BTR2 (SEQ ID NO: 986), which also corresponds to amino acids 45-458 of HSU40434_PEA1_P12 (SEQ ID NO: 226), wherein said first, second and third amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for an edge portion of HSU40434_PEA1_P12 (SEQ ID NO: 226), comprising an amino acid sequence being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence encoding for E, corresponding to HSU40434_PEA1_P12 (SEQ ID NO: 226).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P2 (SEQ ID NO: 252), comprising a first amino acid sequence being at least 90% homologous to MLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNRTFIWD VKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSRIKMQ EGVKMALHLPWFHPRNVSGFSIANRSSIKRLCIIESVFEGEGSATLMSANYPEGFPEDEL MTWQFVVPAHLRASVSFLNFNLSNCERKEERVEYYIPGSTTNPEVFKLEDKQPGNMAG NFNLSLQGCDQDAQSPGILRLQFQVLVQHPQNES corresponding to amino acids 67-341 of Q8WU91 (SEQ ID NO: 987), which also corresponds to amino acids 1-275 of M77904_P2 (SEQ ID NO: 252), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NKIYVVDLSNERAMSLTIEPRPVKQSRKFVPGCFVCLESRTCSSNLTLTSGSKHKISFLCD DLTRLWMNVEKTISCTDHRYCQRKSYSLQVPSDILHLPVELHDFSWKLLVPKDRLSLVL VPAQKLQQHTHEKPCNTSFSYLVASAIPSQDLYFGSFCPGGSIKQIQVKQNISVTLRTFAP SFQQEASRQGLTVSFIPYFKEEGVFTVTPDTKSKVYLRTPNWDRGLPSLTSVSWNISVPR DQVACLTFFKERSGVVCQTGRAFMIIQEQRTRAEEIFSLDEDVLPKPSFHHHSFWVNISN CSPTSGKQLDLLFSVTLTPRTVDLTVILIAAVGGGVLLLSALGLIICCVKKKKKKTNKGP AVGIYNGNINTEMPRQPKKFQKGRKDNDSHVYAVIEDTMVYGHLLQDSSGSFLQPEVD TYRPFQGTMGVCPPSPPTICSRAPTAKLATEEPPPRSPPESESEPYTFSHPNNGDVSSKDT DIPLLNTQEPMEPAE (SEQ ID NO: 1135) corresponding to amino acids 276-770 of M77904_P2 (SEQ ID NO: 252), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M77904_P2 (SEQ ID NO: 252), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NKIYVVDLSNERAMSLTIEPRPVKQSRKFVPGCFVCLESRTCSSNLTLTSGSKHKISFLCD DLTRLWMNVEKTISCTDHRYCQRKSYSLQVPSDILHLPVELHDFSWKLLVPKDRLSLVL VPAQKLQQHTHEKPCNTSFSYLVASAIPSQDLYFGSFCPGGSIKQIQVKQNISVTLRTFAP SFQQEASRQGLTVSFIPYFKEEGVFTVTPDTKSKVYLRTPNWDRGLPSLTSVSWNISVPR DQVACLTFFKERSGVVCQTGRAFMIIQEQRTRAEEIFSLDEDVLPKPSFHHHSFWVNISN CSPTSGKQLDLLFSVTLTPRTVDLTVILIAAVGGGVLLLSALGLIICCVKKKKKKTNKGP AVGIYNGNINTEMPRQPKKFQKGRKDNDSHVYAVIEDTMVYGHLLQDSSGSFLQPEVD TYRPFQGTMGVCPPSPPTICSRAPTAKLATEEPPPRSPPESESEPYTFSHPNNGDVSSKDT DIPLLNTQEPMEPAE (SEQ ID NO: 1135) in M77904_P2 (SEQ ID NO: 252).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P2 (SEQ ID NO: 252), comprising a first amino acid sequence being at least 90% homologous to MLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNRTFIWD VKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSRIKMQ EGVKMALHLPWFHPRNVSGFSIANRSSIKRLCIIESVFEGEGSATLMSANYPEGFPEDEL MTWQFVVPAHLRASVSFLNFNLSNCERKEERVEYYIPGSTTNPEVFKLEDKQPGNMAG NFNLSLQGCDQDAQSPGILRLQFQVLVQHPQNESNKIYVVDLSNERAMSLTIEPRPVKQ SRKFVPGCFVCLESRTCSSNLTLTSGSKHKISFLCDDLTRLWMNVEKTISCTDHRYCQR KSYSLQVPSDILHLPVELHDFSWKLLVPKDRLSLVLVPAQKLQQHTHEKPCNTSFSYLV ASAIPSQDLYFGSFCPGGSIKQIQVKQNISVTLRTFAPSFQQEASRQGLTVSFIPYFKEEGV FTVTPDTKSKVYLRTPNWDRGLPSLTSVSWNISVPRDQVACLTFFKERSGVVCQTGRAF MIIQEQRTRAEEIFSLDEDVLPKPSFHHHSFWVNISNCSPTSGKQLDLLFSVTLTPRTVDL TVILIAAVGGGVLLLSALGLIICCVKKKKKKTNKGPAVGIYNGNINTEMPRQPKKFQKG RKDNDSHVYAVIEDTMVYGHLLQDSSGSFLQPEVDTYRPFQGTMGVCPPSPPTICSRAP TAKLATEEPPPRSPPESESEPYTFSHPNNGDVSSKDTDIPLLNTQEPMEPAE (SEQ ID NO: 1135) corresponding to amino acids 67-836 of Q96QU7 (SEQ ID NO: 988), which also corresponds to amino acids 1-770 of M77904_P2 (SEQ ID NO: 252).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P4 (SEQ ID NO: 253), comprising a first amino acid sequence being at least 90% homologous to MAGLNCGVSIALLGVLLLGAARLPRGAEAFEIALPRESNITVLIKLGTPTLLAKPCYIVIS KRHITMLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNR TFIWDVKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSR IKMQEGVKMALHLPWFHPRNVSGFSIANRSSIKRLCIIESVFEGEGSATLMSANYPEGFP EDELMTWQFVVPAHLRASVSFLNFNLSNCERKEERVEYYIPGSTTNPEVFKLEDKQPGN MAGNFNLSLQGCDQDAQSPGILRLQFQVLVQHPQNES corresponding to amino acids 1-341 of Q8WU91 (SEQ ID NO: 987), which also corresponds to amino acids 1-341 of M77904_P4 (SEQ ID NO: 253), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence NKIYVVDLSNERAMSLTIEPRPVKQSRKFVPGCFVCLESRTCSSNLTLTSGSKHKISFLCD DLTRLWMNVEKTISTPLNQCICPWPWIALLSPPCLSGVPWVGCKSYQKGPSGRARWLT PVIPALWEAKAGGSLEVRSSRPAWPTW (SEQ ID NO: 1136) corresponding to amino acids 342-487 of M77904_P4 (SEQ ID NO: 253), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M77904_P4 (SEQ ID NO: 253), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence NKIYVVDLSNERAMSLTIEPRPVKQSRKFVPGCFVCLESRTCSSNLTLTSGSKHKISFLCD DLTRLWMNVEKTISTPLNQCICPWPWIALLSPPCLSGVPWVGCKSYQKGPSGRARWLT PVIPALWEAKAGGSLEVRSSRPAWPTW (SEQ ID NO: 1136) in M77904_P4 (SEQ ID NO: 253).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P4 (SEQ ID NO: 253), comprising a first amino acid sequence being at least 90% homologous to MAGLNCGVSIALLGVLLLGAARLPRGAEAFEIALPRESNITVLIKLGTPTLLAKPCYIVIS KRHITMLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNR TFIWDVKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSR IKMQEGVKMALHLPWFHPRNVSGFSIANRSSIKRLCIIESVFEGEGSATLMSANYPEGFP EDELMTWQFVVPAHLRASVSFLNFNLSNCERKEERVEYYIPGSTTNPEVFKLEDKQPGN MAGNFNLSLQGCDQDAQSPGILRLQFQVLVQHPQNESNKIYVVDLSNERAMSLTIEPRP VKQSRKFVPGCFVCLESRTCSSNLTLTSGSKHKISFLCDDLTRLWMNVEKTIS corresponding to amino acids 1-416 of Q9H5V8 (SEQ ID NO: 989), which also corresponds to amino acids 1-416 of M77904_P4 (SEQ ID NO: 253), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence TPLNQCICPWPWIALLSPPCLSGVPWVGCKSYQKGPSGRARWLTPVIPALWEAKAGGS LEVRSSRPAWPTW corresponding to amino acids 417-487 of M77904_P4 (SEQ ID NO: 253), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M77904_P4 (SEQ ID NO: 253), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence TPLNQCICPWPWIALLSPPCLSGVPWVGCKSYQKGPSGRARWLTPVIPALWEAKAGGS LEVRSSRPAWPTW in M77904_P4 (SEQ ID NO: 253).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P4 (SEQ ID NO: 253), comprising a first amino acid sequence being at least 90% homologous to MAGLNCGVSIALLGVLLLGAARLPRGAEAFEIALPRESNITVLIKLGTPTLLAKPCYIVIS KRHITMLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNR TFIWDVKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSR IKMQEGVKMALHLPWFHPRNVSGFSIANRSSIKRLCIIESVFEGEGSATLMSANYPEGFP EDELMTWQFVVPAHLRASVSFLNFNLSNCERKEERVEYYIPGSTTNPEVFKLEDKQPGN MAGNFNLSLQGCDQDAQSPGILRLQFQVLVQHPQNESNKIYVVDLSNERAMSLTIEPRP VKQSRKFVPGCFVCLESRTCSSNLTLTSGSKHKISFLCDDLTRLWMNVEKTIS corresponding to amino acids 1-416 of Q96QU7 (SEQ ID NO: 988), which also corresponds to amino acids 1-416 of M77904_P4 (SEQ ID NO: 253), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence TPLNQCICPWPWIALLSPPCLSGVPWVGCKSYQKGPSGRARWLTPVIPALWEAKAGGS LEVRSSRPAWPTW corresponding to amino acids 417-487 of M77904_P4 (SEQ ID NO: 253), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M77904_P4 (SEQ ID NO: 253), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence TPLNQCICPWPWIALLSPPCLSGVPWVGCKSYQKGPSGRARWLTPVIPALWEAKAGGS LEVRSSRPAWPTW in M77904_P4 (SEQ ID NO: 253).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P5 (SEQ ID NO: 254), comprising a first amino acid sequence being at least 90% homologous to MIIQEQRTRAEEIFSLDEDVLPKPSFHHHSFWVNISNCSPTSGKQLDLLFSVTLTPRTVDL TVILIAAVGGGVLLLSALGLIICCVKKKKKKTNKGPAVGIYNGNINTEMPRQPKKFQKG RKDNDSHVYAVIEDTMVYGHLLQDSSGSFLQPEVDTYRPFQGTMGVCPPSPPTICSRAP TAKLATEEPPPRSPPESESEPYTFSHPNNGDVSSKDTDIPLLNTQEPMEPAE corresponding to amino acids 606-836 of Q96QU7 (SEQ ID NO: 988), which also corresponds to amino acids 1-231 of M77904_P5 (SEQ ID NO: 254).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P5 (SEQ ID NO: 254), comprising a first amino acid sequence being at least 90% homologous to MIIQEQRTRAEEIFSLDEDVLPKPSFHHHSFWVNISNCSPTSGKQLDLLFSVTLTPRTVDL TVILIAAVGGGVLLLSALGLIICCVKKKKKKTNKGPAVGIYNGNINTEMPRQPKKFQKG RKDNDSHVYAVIEDTMVYGHLLQDSSGSFLQPEVDTYRPFQGTMGVCPPSPPTICSRAP TAKLATEEPPPRSPPESESEPYTFSHPNNGDVSSKDTDIPLLNTQEPMEPAE corresponding to amino acids 419-649 of Q9H8C2 (SEQ ID NO: 990), which also corresponds to amino acids 1-231 of M77904_P5 (SEQ ID NO: 254).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P7 (SEQ ID NO: 255), comprising a first amino acid sequence being at least 90% homologous to MAGLNCGVSIALLGVLLLGAARLPRGAEAFEIALPRESNITVLIKLGTPTLLAKPCYIVIS KRHITMLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNR TFIWDVKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSR IKMQEGVKMALHLPWFHPRNVSGFSIANRSSIKR corresponding to amino acids 1-219 of Q8WU91 (SEQ ID NO: 987), which also corresponds to amino acids 1-219 of M77904_P7 (SEQ ID NO: 255), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence EKAPPCYLIRLKHTRSSLF (SEQ ID NO: 1137) corresponding to amino acids 220-238 of M77904_P7 (SEQ ID NO: 255), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M77904_P7 (SEQ ID NO: 255), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence EKAPPCYLIRLKHTRSSLF (SEQ ID NO: 1137) in M77904_P7 (SEQ ID NO: 255).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P7 (SEQ ID NO: 255), comprising a first amino acid sequence being at least 90% homologous to MAGLNCGVSIALLGVLLLGAARLPRGAEAFEIALPRESNITVLIKLGTPTLLAKPCYIVIS KRHITMLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNR TFIWDVKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSR IKMQEGVKMALHLPWFHPRNVSGFSIANRSSIKR corresponding to amino acids 1-219 of Q9H5V8 (SEQ ID NO: 989), which also corresponds to amino acids 1-219 of M77904_P7 (SEQ ID NO: 255), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence EKAPPCYLIRLKHTRSSLF (SEQ ID NO: 1137) corresponding to amino acids 220-238 of M77904_P7 (SEQ ID NO: 255), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M77904_P7 (SEQ ID NO: 255), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence EKAPPCYLIRLKHTRSSLF (SEQ ID NO: 1137) in M77904_P7 (SEQ ID NO: 255).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for M77904_P7 (SEQ ID NO: 255), comprising a first amino acid sequence being at least 90% homologous to MAGLNCGVSIALLGVLLLGAARLPRGAEAFEIALPRESNITVLIKLGTPTLLAKPCYIVIS KRHITMLSIKSGERIVFTFSCQSPENHFVIEIQKNIDCMSGPCPFGEVQLQPSTSLLPTLNR TFIWDVKAHKSIGLELQFSIPRLRQIGPGESCPDGVTHSISGRIDATVVRIGTFCSNGTVSR IKMQEGVKMALHLPWFHPRNVSGFSIANRSSIKR corresponding to amino acids 1-219 of Q96QU7 (SEQ ID NO: 988), which also corresponds to amino acids 1-219 of M77904_P7 (SEQ ID NO: 255), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence EKAPPCYLIRLKHTRSSLF (SEQ ID NO: 1137) corresponding to amino acids 220-238 of M77904_P7 (SEQ ID NO: 255), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of M77904_P7 (SEQ ID NO: 255), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence EKAPPCYLIRLKHTRSSLF (SEQ ID NO: 1137) in M77904_P7 (SEQ ID NO: 255).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z25299_PEA2_P2 (SEQ ID NO: 273), comprising a first amino acid sequence being at least 90% homologous to MKSSGLFPFLVLLALGTLAPWAVEGSGKSFKAGVCPPKKSAQCLRYKKPECQSDWQCP GKKRCCPDTCGIKCLDPVDTPNPTRRKPGKCPVTYGQCLMLNPPNFCEMDGQCKRDLK CCMGMCGKSCVSPVK corresponding to amino acids 1-131 of ALK1_HUMAN, which also corresponds to amino acids 1-131 of Z25299_PEA2_P2 (SEQ ID NO: 273), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GKQGMRAH (SEQ ID NO: 1138) corresponding to amino acids 132-139 of Z25299_PEA2_P2 (SEQ ID NO: 273), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of Z25299_PEA2_P2 (SEQ ID NO: 273), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GKQGMRAH (SEQ ID NO: 1138) in Z25299_PEA2_P2 (SEQ ID NO: 273).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z25299_PEA2_P3 (SEQ ID NO: 274), comprising a first amino acid sequence being at least 90% homologous to MKSSGLFPFLVLLALGTLAPWAVEGSGKSFKAGVCPPKKSAQCLRYKKPECQSDWQCP GKKRCCPDTCGIKCLDPVDTPNPTRRKPGKCPVTYGQCLMLNPPNFCEMDGQCKRDLK CCMGMCGKSCVSPVK corresponding to amino acids 1-131 of ALK1_HUMAN, which also corresponds to amino acids 1-131 of Z25299_PEA2_P3 (SEQ ID NO: 274), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence GEKRHHKQLRDQEVDPLEMRRHSAG (SEQ ID NO: 1139) corresponding to amino acids 132-156 of Z25299_PEA2_P3 (SEQ ID NO: 274), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of Z25299_PEA2_P3 (SEQ ID NO: 274), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence GEKRHHKQLRDQEVDPLEMRRHSAG (SEQ ID NO: 1139) in Z25299_PEA2_P3 (SEQ ID NO: 274).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z25299_PEA2_P7 (SEQ ID NO: 275), comprising a first amino acid sequence being at least 90% homologous to MKSSGLFPFLVLLALGTLAPWAVEGSGKSFKAGVCPPKKSAQCLRYKKPECQSDWQCP GKKRCCPDTCGIKCLDPVDTPNP corresponding to amino acids 1-81 of ALK1_HUMAN, which also corresponds to amino acids 1-81 of Z25299_PEA2_P7 (SEQ ID NO: 275), and a second amino acid sequence being at least 70%, optionally at least 80%, preferably at least 85%, more preferably at least 90% and most preferably at least 95% homologous to a polypeptide having the sequence RGSLGSAQ (SEQ ID NO: 1140) corresponding to amino acids 82-89 of Z25299_PEA2_P7 (SEQ ID NO: 275), wherein said first and second amino acid sequences are contiguous and in a sequential order.

According to preferred embodiments of the present invention, there is provided an isolated polypeptide encoding for a tail of Z25299_PEA2_P7 (SEQ ID NO: 275), comprising a polypeptide being at least 70%, optionally at least about 80%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% homologous to the sequence RGSLGSAQ (SEQ ID NO: 1140) in Z25299_PEA2_P7 (SEQ ID NO: 275).

According to preferred embodiments of the present invention, there is provided an isolated chimeric polypeptide encoding for Z25299_PEA2_P10 (SEQ ID NO: 276), comprising a first amino acid sequence being at least 90% homologous to MKSSGLFPFLVLLALGTLAPWAVEGSGKSFKAGVCPPKKSAQCLRYKKPECQSDWQCP GKKRCCPDTCGIKCLDPVDTPNPT corresponding to amino acids 1-82 of ALK1_HUMAN, which also corresponds to amino acids 1-82 of Z25299_PEA2_P10 (SEQ ID NO: 276).

According to preferred embodiments of the present invention, there is provided an antibody capable of specifically binding to an epitope of an amino acid sequence as described herein.

Optionally the amino acid sequence corresponds to a bridge, edge portion, tail, head or insertion as described herein.

Optionally the antibody is capable of differentiating between a splice variant having said epitope and a corresponding known protein.

According to preferred embodiments of the present invention, there is provided a kit for detecting ovarian cancer, comprising a kit detecting overexpression of a splice variant as described herein.

Optionally the kit comprises a NAT-based technology.

Optionally the kit further comprises at least one primer pair capable of selectively hybridizing to a nucleic acid sequence as described herein.

Optionally the kit further comprises at least one oligonucleotide capable of selectively hybridizing to a nucleic acid sequence as described herein.

Optionally the kit comprises an antibody as described herein.

Optionally the kit further comprises at least one reagent for performing an ELISA or a Western blot.

According to preferred embodiments of the present invention, there is provided a method for detecting ovarian cancer, comprising detecting overexpression of a splice variant as described herein.

Optionally detecting overexpression is performed with a NAT-based technology.

Optionally detecting overexpression is performed with an immunoassay.

Optionally the immunoassay comprises an antibody as described herein.

According to preferred embodiments of the present invention, there is provided a biomarker capable of detecting ovarian cancer, comprising any of the above nucleic acid sequences or a fragment thereof, or any of the above amino acid sequences or a fragment thereof.

According to preferred embodiments of the present invention, there is provided a method for screening for ovarian cancer, comprising detecting ovarian cancer cells with a biomarker or an antibody or a method or assay as described herein.

According to preferred embodiments of the present invention, there is provided a method for diagnosing ovarian cancer, comprising detecting ovarian cancer cells with a biomarker or an antibody or a method or assay as described herein.

According to preferred embodiments of the present invention, there is provided a method for monitoring disease progression and/or treatment efficacy and/or relapse of ovarian cancer, comprising detecting ovarian cancer cells with a biomarker or an antibody or a method or assay as described herein.

According to preferred embodiments of the present invention, there is provided a method of selecting a therapy for ovarian cancer, comprising detecting ovarian cancer cells with a biomarker or an antibody or a method or assay as described herein and selecting a therapy according to said detection.

According to preferred embodiments of the present invention, preferably any of the above nucleic acid and/or amino acid sequences further comprises any sequence having at least about 70%, preferably at least about 80%, more preferably at least about 90%, most preferably at least about 95% homology thereto.

Unless otherwise noted, all experimental data relates to variants of the present invention, named according to the segment being tested (as expression was tested through RT-PCR as described).

All nucleic acid sequences and/or amino acid sequences shown herein as embodiments of the present invention relate to their isolated form, as isolated polynucleotides (including for all transcripts), oligonucleotides (including for all segments, amplicons and primers), peptides (including for all tails, bridges, insertions or heads, optionally including other antibody epitopes as described herein) and/or polypeptides (including for all proteins). It should be noted that oligonucleotide and polynucleotide, or peptide and polypeptide, may optionally be used interchangeably.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is schematic summary of cancer biomarkers selection engine and the wet validation stages.

FIG. 2. Schematic illustration, depicting grouping of transcripts of a given cluster based on presence or absence of unique sequence regions.

FIG. 3 is schematic summary of quantitative real-time PCR analysis.

FIG. 4 is schematic presentation of the oligonucleotide based microarray fabrication.

FIG. 5 is schematic summary of the oligonucleotide based microarray experimental flow.

FIG. 6 shows cancer and cell-line vs. normal tissue expression for.

FIG. 7 shows expression of segment8 in H61775 in cancerous vs. non-cancerous tissues.

FIG. 8 shows expression of segment8 in H61775 in normal tissues.

FIG. 9 shows cancer and cell-line vs. normal tissue expression.

FIG. 10 is a histogram showing over expression of T10888junc11-17 (SEQ ID NO:962) transcripts in cancerous ovary samples relative to the normal samples.

FIG. 11 is a histogram showing expression of T10888junc11-17 (SEQ ID NO:962) transcripts in normal tissues.

FIG. 12 shows cancer and cell-line vs. normal tissue expression.

FIG. 13 is a histogram showing over expression of HUMGRP5Ejunc3-7 (SEQ ID NO:967) transcripts in cancerous ovary samples relative to the normal samples.

FIG. 14 is a histogram showing expression of HUMGRP5Ejunc3-7 (SEQ ID NO:967) transcripts in normal tissues.

FIG. 15 shows cancer and cell-line vs. normal tissue expression.

FIG. 16 is a histogram showing over expression of R11723 seg13 (SEQ ID NO:975) transcripts in cancerous ovary samples relative to the normal PM samples.

FIG. 17 is a histogram showing expression of R11723 seg13 (SEQ ID NO:975) transcripts in normal tissue samples.

FIG. 18 is a histogram showing over expression of R11723 junc11-18 (SEQ ID NO:978) transcripts in cancerous ovary samples relative to the normal samples.

FIG. 19 is a histogram showing expression of R11723 junc11-18 (SEQ ID NO:978) transcripts in normal tissue samples.

FIG. 20 shows cancer and cell-line vs. normal tissue expression.

FIG. 21 is a histogram showing over expression of H53393 seg13 (SEQ ID NO:981) transcripts in cancerous ovary samples relative to the normal samples.

FIG. 22 is a histogram showing over expression of H53393 junc21-22 (SEQ ID NO:984) transcripts in cancerous ovary samples relative to the normal samples.

FIG. 23 shows cancer and cell-line vs. normal tissue expression.

FIG. 24 shows cancer and cell-line vs. normal tissue expression.

FIG. 25 shows cancer and cell-line vs. normal tissue expression.

FIG. 26 is a histogram showing over expression of Z25299 junc13-14-21 (SEQ ID NO:993) transcripts in cancerous ovary samples relative to the normal samples.

FIGS. 27A and 27B are histograms showing over expression of Z25299 seg20 (SEQ ID NO:996) transcripts in cancerous ovary samples relative to the normal samples (27A) or in normal tissues (27B).

FIGS. 28A and 28B are histograms showing over expression of Z25299 seg23 (SEQ ID NO:999) transcripts in cancerous ovary samples relative to the normal samples (28A) or in normal tissues (28B).

FIG. 29 shows cancer and cell-line vs. normal tissue expression.

FIG. 30 is a histogram showing down regulation of T39971 junc23-33R (SEQ ID NO: 1003) transcripts in cancerous ovary samples relative to the normal samples.

FIG. 31 is a histogram showing expression of T39971 junc23-33R (SEQ ID NO: 1003) transcripts in normal tissues.

FIG. 32 shows cancer and cell-line vs. normal tissue expression.

FIGS. 33A and 33B are histograms showing down regulation of Z44808 junc8-11 (SEQ ID NO: 1006) transcripts in cancerous ovary samples relative to the normal samples (33A) or expression in normal tissues (33B).

FIG. 34 shows cancer and cell-line vs. normal tissue expression.

FIG. 35 shows cancer and cell-line vs. normal tissue expression.

FIG. 36 shows cancer and cell-line vs. normal tissue expression.

FIG. 37 shows cancer and cell-line vs. normal tissue expression.

FIG. 38 shows cancer and cell-line vs. normal tissue expression.

FIG. 39 shows cancer and cell-line vs. normal tissue expression.

FIG. 40 shows cancer and cell-line vs. normal tissue expression.

FIG. 41 shows cancer and cell-line vs. normal tissue expression.

FIG. 42 shows cancer and cell-line vs. normal tissue expression.

FIG. 43 is a histogram showing differential expression of a variety of transcripts in cancerous ovary samples relative to the normal samples.

FIG. 44 shows cancer and cell-line vs. normal tissue expression.

DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is of novel markers for ovarian cancer that are both sensitive and accurate. Biomolecular sequences (amino acid and/or nucleic acid sequences) uncovered using the methodology of the present invention and described herein can be efficiently utilized as tissue or pathological markers and/or as drugs or drug targets for treating or preventing a disease.

Furthermore, at least certain of these markers are able to distinguish between various types of ovarian cancer, such as Ovarian epithelial tumors (serous, mucinous, endometroid, clear cell, and Brenner tumor), ovarian germ-cell tumors, (teratoma, dysgerminoma, endodermal sinus tumor, and embryonal carcinoma) and ovarian stromal tumors (originating from granulosa, theca, Sertoli, Leydig, and collagen-producing stromal cells), alone or in combination. These markers are differentially expressed, and preferably overexpressed in ovarian cancer specifically, as opposed to normal ovarian tissue. The measurement of these markers, alone or in combination, in patient samples provides information that the diagnostician can correlate with a probable diagnosis of ovarian cancer. The markers of the present invention, alone or in combination, show a high degree of differential detection between ovarian cancer and non-cancerous states.

The markers of the present invention, alone or in combination, can be used for prognosis, prediction, screening, early diagnosis, staging, therapy selection and treatment monitoring of ovarian cancer. For example, optionally and preferably, these markers may be used for staging ovarian cancer and/or monitoring the progression of the disease. Furthermore, the markers of the present invention, alone or in combination, can be used for detection of the source of metastasis found in anatomical places other thenovary. Also, one or more of the markers may optionally be used in combination with one or more other ovarian cancer markers (other than those described herein). According to an optional embodiment of the present invention, such a combination may be used to differentiate between various types of ovarian cancer, such as Ovarian epithelial tumors (serous, mucinous, endometroid, clear cell, and Brenner tumor), ovarian germ-cell tumors, (teratoma, dysgerminoma, endodermal sinus tumor, and embryonal carcinoma) and ovarian stromal tumors (originating from either granulosa, theca, Sertoli, Leydig, and collagen-producing stromal cells).

These markers are specifically released to the bloodstream under conditions of ovarian cancer (or one of the above indicative conditions), and/or are otherwise expressed at a much higher level and/or specifically expressed in ovarian cancer tissue or cells, and/or tissue or cells under one of the above indicative conditions. The measurement of these markers, alone or in combination, in patient samples provides information that the diagnostician can correlate with a probable diagnosis of ovarian cancer and/or a condition that it is indicative of a higher risk for ovarian cancer.

The present invention therefore also relates to diagnostic assays for ovarian cancer, and methods of use of such markers for detection of ovarian cancer, optionally and preferably in a sample taken from a subject (patient), which is more preferably some type of blood sample.

In another embodiment, the present invention relates to bridges, tails, heads and/or insertions, and/or analogs, homologs and derivatives of such peptides. Such bridges, tails, heads and/or insertions are described in greater detail below with regard to the Examples.

As used herein a “tail” refers to a peptide sequence at the end of an amino acid sequence that is unique to a splice variant according to the present invention. Therefore, a splice variant having such a tail may optionally be considered as a chimera, in that at least a first portion of the splice variant is typically highly homologous (often 100% identical) to a portion of the corresponding known protein, while at least a second portion of the variant comprises the tail.

As used herein a “head” refers to a peptide sequence at the beginning of an amino acid sequence that is unique to a splice variant according to the present invention. Therefore, a splice variant having such a head may optionally be considered as a chimera, in that at least a first portion of the splice variant comprises the head, while at least a second portion is typically highly homologous (often 100% identical) to a portion of the corresponding known protein.

As used herein “an edge portion” refers to a connection between two portions of a splice variant according to the present invention that were not joined in the wild type or known protein. An edge may optionally arise due to a join between the above “known protein” portion of a variant and the tail, for example, and/or may occur if an internal portion of the wild type sequence is no longer present, such that two portions of the sequence are now contiguous in the splice variant that were not contiguous in the known protein. A “bridge” may optionally be an edge portion as described above, but may also include a join between a head and a “known protein” portion of a variant, or a join between a tail and a “known protein” portion of a variant, or a join between an insertion and a “known protein” portion of a variant.

Optionally and preferably, a bridge between a tail or a head or a unique insertion, and a “known protein” portion of a variant, comprises at least about 10 amino acids, more preferably at least about 20 amino acids, most preferably at least about 30 amino acids, and even more preferably at least about 40 amino acids, in which at least one amino acid is from the tail/head/insertion and at least one amino acid is from the “known protein” portion of a variant. Also optionally, the bridge may comprise any number of amino acids from about 10 to about 40 amino acids (for example, 10, 11, 12, 13 . . . 37, 38, 39, 40 amino acids in length, or any number in between).

It should be noted that a bridge cannot be extended beyond the length of the sequence in either direction, and it should be assumed that every bridge description is to be read in such manner that the bridge length does not extend beyond the sequence itself.

Furthermore, bridges are described with regard to a sliding window in certain contexts below. For example, certain descriptions of the bridges feature the following format: a bridge between two edges (in which a portion of the known protein is not present in the variant) may optionally be described as follows: a bridge portion of CONTIG-NAME_P1 (representing the name of the protein), comprising a polypeptide having a length “n”, wherein n is at least about 10 amino acids in length, optionally at least about 20 amino acids in length, preferably at least about 30 amino acids in length, more preferably at least about 40 amino acids in length and most preferably at least about 50 amino acids in length, wherein at least two amino acids comprise XX (2 amino acids in the center of the bridge, one from each end of the edge), having a structure as follows (numbering according to the sequence of CONTIG-NAME_P1): a sequence starting from any of amino acid numbers 49−x to 49 (for example); and ending at any of amino acid numbers 50+((n−2)−x) (for example), in which x varies from 0 to n−2. In this example, it should also be read as including bridges in which n is any number of amino acids between 10-50 amino acids in length. Furthermore, the bridge polypeptide cannot extend beyond the sequence, so it should be read such that 49−x (for example) is not less than 1, nor 50+((n−2)−x) (for example) greater than the total sequence length.

In another embodiment, this invention provides antibodies specifically recognizing the splice variants and polypeptide fragments thereof of this invention. Preferably such antibodies differentially recognize splice variants of the present invention but do not recognize a corresponding known protein (such known proteins are discussed with regard to their splice variants in the Examples below).

In another embodiment, this invention provides an isolated nucleic acid molecule encoding for a splice variant according to the present invention, having a nucleotide sequence as set forth in any one of the sequences listed herein, or a sequence complementary thereto. In another embodiment, this invention provides an isolated nucleic acid molecule, having a nucleotide sequence as set forth in any one of the sequences listed herein, or a sequence complementary thereto. In another embodiment, this invention provides an oligonucleotide of at least about 12 nucleotides, specifically hybridizable with the nucleic acid molecules of this invention. In another embodiment, this invention provides vectors, cells, liposomes and compositions comprising the isolated nucleic acids of this invention.

In another embodiment, this invention provides a method for detecting a splice variant according to the present invention in a biological sample, comprising: contacting a biological sample with an antibody specifically recognizing a splice variant according to the present invention under conditions whereby the antibody specifically interacts with the splice variant in the biological sample but do not recognize known corresponding proteins (wherein the known protein is discussed with regard to its splice variant(s) in the Examples below), and detecting said interaction; wherein the presence of an interaction correlates with the presence of a splice variant in the biological sample.

In another embodiment, this invention provides a method for detecting a splice variant nucleic acid sequences in a biological sample, comprising: hybridizing the isolated nucleic acid molecules or oligonucleotide fragments of at least about a minimum length to a nucleic acid material of a biological sample and detecting a hybridization complex; wherein the presence of a hybridization complex correlates with the presence of a splice variant nucleic acid sequence in the biological sample.

According to the present invention, the splice variants described herein are non-limiting examples of markers for diagnosing ovarian cancer. Each splice variant marker of the present invention can be used alone or in combination, for various uses, including but not limited to, prognosis, prediction, screening, early diagnosis, determination of progression, therapy selection and treatment monitoring of ovarian cancer.

According to optional but preferred embodiments of the present invention, any marker according to the present invention may optionally be used alone or combination. Such a combination may optionally comprise a plurality of markers described herein, optionally including any subcombination of markers, and/or a combination featuring at least one other marker, for example a known marker. Furthermore, such a combination may optionally and preferably be used as described above with regard to determining a ratio between a quantitative or semi-quantitative measurement of any marker described herein to any other marker described herein, and/or any other known marker, and/or any other marker. With regard to such a ratio between any marker described herein (or a combination thereof) and a known marker, more preferably the known marker comprises the “known protein” as described in greater detail below with regard to each cluster or gene.

According to other preferred embodiments of the present invention, a splice variant protein or a fragment thereof, or a splice variant nucleic acid sequence or a fragment thereof, may be featured as a biomarker for detecting ovarian cancer and/or an indicative condition, such that a biomarker may optionally comprise any of the above.

According to still other preferred embodiments, the present invention optionally and preferably encompasses any amino acid sequence or fragment thereof encoded by a nucleic acid sequence corresponding to a splice variant protein as described herein. Any oligopeptide or peptide relating to such an amino acid sequence or fragment thereof may optionally also (additionally or alternatively) be used as a biomarker, including but not limited to the unique amino acid sequences of these proteins that are depicted as tails, heads, insertions, edges or bridges. The present invention also optionally encompasses antibodies capable of recognizing, and/or being elicited by, such oligopeptides or peptides.

The present invention also optionally and preferably encompasses any nucleic acid sequence or fragment thereof, or amino acid sequence or fragment thereof, corresponding to a splice variant of the present invention as described above, optionally for any application.

Non-limiting examples of methods or assays are described below.

The present invention also relates to kits based upon such diagnostic methods or assays.

Nucleic Acid Sequences and Oligonucleotides

Various embodiments of the present invention encompass nucleic acid sequences described hereinabove; fragments thereof, sequences hybridizable therewith, sequences homologous thereto, sequences encoding similar polypeptides with different codon usage, altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or artificially induced, either randomly or in a targeted fashion.

The present invention encompasses nucleic acid sequences described herein; fragments thereof, sequences hybridizable therewith, sequences homologous thereto [e.g., at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 95% or more say 100% identical to the nucleic acid sequences set forth below], sequences encoding similar polypeptides with different codon usage, altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion. The present invention also encompasses homologous nucleic acid sequences (i.e., which form a part of a polynucleotide sequence of the present invention) which include sequence regions unique to the polynucleotides of the present invention.

In cases where the polynucleotide sequences of the present invention encode previously unidentified polypeptides, the present invention also encompasses novel polypeptides or portions thereof, which are encoded by the isolated polynucleotide and respective nucleic acid fragments thereof described hereinabove.

A “nucleic acid fragment” or an “oligonucleotide” or a “polynucleotide” are used herein interchangeably to refer to a polymer of nucleic acids. A polynucleotide sequence of the present invention refers to a single or double stranded nucleic acid sequences which is isolated and provided in the form of an RNA sequence, a complementary polynucleotide sequence (cDNA), a genomic polynucleotide sequence and/or a composite polynucleotide sequences (e.g., a combination of the above).

As used herein the phrase “complementary polynucleotide sequence” refers to a sequence, which results from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such a sequence can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.

As used herein the phrase “genomic polynucleotide sequence” refers to a sequence derived (isolated) from a chromosome and thus it represents a contiguous portion of a chromosome.

As used herein the phrase “composite polynucleotide sequence” refers to a sequence, which is composed of genomic and cDNA sequences. A composite sequence can include some exonal sequences required to encode the polypeptide of the present invention, as well as some intronic sequences interposing therebetween. The intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.

Preferred embodiments of the present invention encompass oligonucleotide probes.

An example of an oligonucleotide probe which can be utilized by the present invention is a single stranded polynucleotide which includes a sequence complementary to the unique sequence region of any variant according to the present invention, including but not limited to a nucleotide sequence coding for an amino sequence of a bridge, tail, head and/or insertion according to the present invention, and/or the equivalent portions of any nucleotide sequence given herein (including but not limited to a nucleotide sequence of a node, segment or amplicon described herein).

Alternatively, an oligonucleotide probe of the present invention can be designed to hybridize with a nucleic acid sequence encompassed by any of the above nucleic acid sequences, particularly the portions specified above, including but not limited to a nucleotide sequence coding for an amino sequence of a bridge, tail, head and/or insertion according to the present invention, and/or the equivalent portions of any nucleotide sequence given herein (including but not limited to a nucleotide sequence of a node, segment or amplicon described herein).

Oligonucleotides designed according to the teachings of the present invention can be generated according to any oligonucleotide synthesis method known in the art such as enzymatic synthesis or solid phase synthesis. Equipment and reagents for executing solid-phase synthesis are commercially available from, for example, Applied Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the oligonucleotides is well within the capabilities of one skilled in the art and can be accomplished via established methodologies as detailed in, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., “Current Protocols in Molecular Biology”, John Wiley and Sons, Baltimore, Md. (1989); Perbal, “A Practical Guide to Molecular Cloning”, John Wiley & Sons, New York (1988) and “Oligonucleotide Synthesis” Gait, M. J., ed. (1984) utilizing solid phase chemistry, e.g. cyanoethyl phosphoramidite followed by deprotection, desalting and purification by for example, an automated trityl-on method or HPLC.

Oligonucleotides used according to this aspect of the present invention are those having a length selected from a range of about 10 to about 200 bases preferably about 15 to about 150 bases, more preferably about 20 to about 100 bases, most preferably about 20 to about 50 bases. Preferably, the oligonucleotide of the present invention features at least 17, at least 18, at least 19, at least 20, at least 22, at least 25, at least 30 or at least 40, bases specifically hybridizable with the biomarkers of the present invention.

The oligonucleotides of the present invention may comprise heterocylic nucleosides consisting of purines and the pyrimidines bases, bonded in a 3′ to 5′ phosphodiester linkage.

Preferably used oligonucleotides are those modified at one or more of the backbone, internucleoside linkages or bases, as is broadly described hereinunder.

Specific examples of preferred oligonucleotides useful according to this aspect of the present invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone, as disclosed in U.S. Pat. Nos. 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050.

Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkyl phosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms can also be used.

Alternatively, modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts, as disclosed in U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439.

Other oligonucleotides which can be used according to the present invention, are those modified in both sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for complementation with the appropriate polynucleotide target. An example for such an oligonucleotide mimetic, includes peptide nucleic acid (PNA). United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Other backbone modifications, which can be used in the present invention are disclosed in U.S. Pat. No. 6,303,374.

Oligonucleotides of the present invention may also include base modifications or substitutions. As used herein, “unmodified” or “natural” bases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified bases include but are not limited to other synthetic and natural bases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further bases particularly useful for increasing the binding affinity of the oligomeric compounds of the invention include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates, which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety, as disclosed in U.S. Pat. No. 6,303,374.

It is not necessary for all positions in a given oligonucleotide molecule to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide.

It will be appreciated that oligonucleotides of the present invention may include further modifications for more efficient use as diagnostic agents and/or to increase bioavailability, therapeutic efficacy and reduce cytotoxicity.

To enable cellular expression of the polynucleotides of the present invention, a nucleic acid construct according to the present invention may be used, which includes at least a coding region of one of the above nucleic acid sequences, and further includes at least one cis acting regulatory element. As used herein, the phrase “cis acting regulatory element” refers to a polynucleotide sequence, preferably a promoter, which binds a trans acting regulator and regulates the transcription of a coding sequence located downstream thereto.

Any suitable promoter sequence can be used by the nucleic acid construct of the present invention.

Preferably, the promoter utilized by the nucleic acid construct of the present invention is active in the specific cell population transformed. Examples of cell type-specific and/or tissue-specific promoters include promoters such as albumin that is liver specific, lymphoid specific promoters [Calame et al., (1988) Adv. Immunol. 43:235-275]; in particular promoters of T-cell receptors [Winoto et al., (1989) EMBO J. 8:729-733] and immunoglobulins; [Banerji et al. (1983) Cell 33729-740], neuron-specific promoters such as the neurofilament promoter [Byrne et al. (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477], pancreas-specific promoters [Edlunch et al. (1985) Science 230:912-916] or mammary gland-specific promoters such as the milk whey promoter (U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). The nucleic acid construct of the present invention can further include an enhancer, which can be adjacent or distant to the promoter sequence and can function in up regulating the transcription therefrom.

The nucleic acid construct of the present invention preferably further includes an appropriate selectable marker and/or an origin of replication. Preferably, the nucleic acid construct utilized is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible for propagation in cells, or integration in a gene and a tissue of choice. The construct according to the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.

Examples of suitable constructs include, but are not limited to, pcDNA3, pcDNA3.1 (+/−), pGL3, PzeoSV2 (+/−), pDisplay, pEF/myc/cyto, pCMV/myc/cyto each of which is commercially available from Invitrogen Co. (www.invitrogen.com). Examples of retroviral vector and packaging systems are those sold by Clontech, San Diego, Calif., including Retro-X vectors pLNCX and pLXSN, which permit cloning into multiple cloning sites and the trasgene is transcribed from CMV promoter. Vectors derived from Mo-MuLV are also included such as pBabe, where the transgene will be transcribed from the 5 LTR promoter.

Currently preferred in vivo nucleic acid transfer techniques include transfection with viral or non-viral constructs, such as adenovirus, lentivirus, Herpes simplex I virus, or adeno-associated virus (AAV) and lipid-based systems. Useful lipids for lipid-mediated transfer of the gene are, for example, DOTMA, DOPE, and DC-Chol [Tonkinson et al., Cancer Investigation, 14(1): 54-65 (1996)]. The most preferred constructs for use in gene therapy are viruses, most preferably adenoviruses, AAV, lentiviruses, or retroviruses. A viral construct such as a retroviral construct includes at least one transcriptional promoter/enhancer or locus-defining element(s), or other elements that control gene expression by other means such as alternate splicing, nuclear RNA export, or post-translational modification of messenger. Such vector constructs also include a packaging signal, long terminal repeats (LTRs) or portions thereof, and positive and negative strand primer binding sites appropriate to the virus used, unless it is already present in the viral construct. In addition, such a construct typically includes a signal sequence for secretion of the peptide from a host cell in which it is placed. Preferably the signal sequence for this purpose is a mammalian signal sequence or the signal sequence of the polypeptide variants of the present invention. Optionally, the construct may also include a signal that directs polyadenylation, as well as one or more restriction sites and a translation termination sequence. By way of example, such constructs will typically include a 5′ LTR, a tRNA binding site, a packaging signal, an origin of second-strand DNA synthesis, and a 3′ LTR or a portion thereof. Other vectors can be used that are non-viral, such as cationic lipids, polylysine, and dendrimers.

Hybridization Assays

Detection of a nucleic acid of interest in a biological sample may optionally be effected by hybridization-based assays using an oligonucleotide probe (non-limiting examples of probes according to the present invention were previously described).

Traditional hybridization assays include PCR, RT-PCR, Real-time PCR, RNase protection, in-situ hybridization, primer extension, Southern blots (DNA detection), dot or slot blots (DNA, RNA), and Northern blots (RNA detection) (NAT type assays are described in greater detail below). More recently, PNAs have been described (Nielsen et al. 1999, Current Opin. Biotechnol. 10:71-75). Other detection methods include kits containing probes on a dipstick setup and the like.

Hybridization based assays which allow the detection of a variant of interest (i.e., DNA or RNA) in a biological sample rely on the use of oligonucleotides which can be 10, 15, 20, or 30 to 100 nucleotides long preferably from 10 to 50, more preferably from 40 to 50 nucleotides long.

Thus, the isolated polynucleotides (oligonucleotides) of the present invention are preferably hybridizable with any of the herein described nucleic acid sequences under moderate to stringent hybridization conditions.

Moderate to stringent hybridization conditions are characterized by a hybridization solution such as containing 10% dextrane sulfate, 1 M NaCl, 1% SDS and 5×106 cpm 32P labeled probe, at 65° C., with a final wash solution of 0.2×SSC and 0.1% SDS and final wash at 65° C. and whereas moderate hybridization is effected using a hybridization solution containing 10% dextrane sulfate, 1 M NaCl, 1% SDS and 5×106 cpm 32P labeled probe, at 65° C., with a final wash solution of 1×SSC and 0.1% SDS and final wash at 50° C.

More generally, hybridization of short nucleic acids (below 200 bp in length, e.g. 17-40 bp in length) can be effected using the following exemplary hybridization protocols which can be modified according to the desired stringency; (i) hybridization solution of 6×SSC and 1% SDS or 3 M TMACI, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5% SDS, 100 μg/ml denatured salmon sperm DNA and 0.1% nonfat dried milk, hybridization temperature of 1-1.5° C. below the Tm, final wash solution of 3 M TMACI, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5% SDS at 1-1.5° C. below the Tm; (ii) hybridization solution of 6×SSC and 0.1% SDS or 3 M TMACI, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5% SDS, 100 μg/ml denatured salmon sperm DNA and 0.1% nonfat dried milk, hybridization temperature of 2-2.5° C. below the Tm, final wash solution of 3 M TMACI, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5% SDS at 1-1.5° C. below the Tm, final wash solution of 6×SSC, and final wash at 22° C.; (iii) hybridization solution of 6×SSC and 1% SDS or 3 M TMACI, 0.01 M sodium phosphate (pH 6.8), 1 mM EDTA (pH 7.6), 0.5% SDS, 100 μg/ml denatured salmon sperm DNA and 0.1% nonfat dried milk, hybridization temperature.

The detection of hybrid duplexes can be carried out by a number of methods. Typically, hybridization duplexes are separated from unhybridized nucleic acids and the labels bound to the duplexes are then detected. Such labels refer to radioactive, fluorescent, biological or enzymatic tags or labels of standard use in the art. A label can be conjugated to either the oligonucleotide probes or the nucleic acids derived from the biological sample.

Probes can be labeled according to numerous well known methods. Non-limiting examples of radioactive labels include 3H, 14C, 32P, and 35S. Non-limiting examples of detectable markers include ligands, fluorophores, chemiluminescent agents, enzymes, and antibodies. Other detectable markers for use with probes, which can enable an increase in sensitivity of the method of the invention, include biotin and radio-nucleotides. It will become evident to the person of ordinary skill that the choice of a particular label dictates the manner in which it is bound to the probe.

For example, oligonucleotides of the present invention can be labeled subsequent to synthesis, by incorporating biotinylated dNTPs or rNTP, or some similar means (e.g., photo-cross-linking a psoralen derivative of biotin to RNAs), followed by addition of labeled streptavidin (e.g., phycoerythrin-conjugated streptavidin) or the equivalent. Alternatively, when fluorescently-labeled oligonucleotide probes are used, fluorescein, lissamine, phycoerythrin, rhodamine (Perkin Elmer Cetus), Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, Fluor X (Amersham) and others [e.g., Kricka et al. (1992), Academic Press San Diego, Calif.] can be attached to the oligonucleotides.

Those skilled in the art will appreciate that wash steps may be employed to wash away excess target DNA or probe as well as unbound conjugate. Further, standard heterogeneous assay formats are suitable for detecting the hybrids using the labels present on the oligonucleotide primers and probes.

It will be appreciated that a variety of controls may be usefully employed to improve accuracy of hybridization assays. For instance, samples may be hybridized to an irrelevant probe and treated with RNAse A prior to hybridization, to assess false hybridization.

Although the present invention is not specifically dependent on the use of a label for the detection of a particular nucleic acid sequence, such a label might be beneficial, by increasing the sensitivity of the detection. Furthermore, it enables automation. Probes can be labeled according to numerous well known methods.

As commonly known, radioactive nucleotides can be incorporated into probes of the invention by several methods. Non-limiting examples of radioactive labels include 3H, 14C, 32P, and 35S.

Those skilled in the art will appreciate that wash steps may be employed to wash away excess target DNA or probe as well as unbound conjugate. Further, standard heterogeneous assay formats are suitable for detecting the hybrids using the labels present on the oligonucleotide primers and probes.

It will be appreciated that a variety of controls may be usefully employed to improve accuracy of hybridization assays.

Probes of the invention can be utilized with naturally occurring sugar-phosphate backbones as well as modified backbones including phosphorothioates, dithionates, alkyl phosphonates and a-nucleotides and the like. Probes of the invention can be constructed of either ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), and preferably of DNA.

NAT Assays

Detection of a nucleic acid of interest in a biological sample may also optionally be effected by NAT-based assays, which involve nucleic acid amplification technology, such as PCR for example (or variations thereof such as real-time PCR for example).

As used herein, a “primer” defines an oligonucleotide which is capable of annealing to (hybridizing with) a target sequence, thereby creating a double stranded region which can serve as an initiation point for DNA synthesis under suitable conditions.

Amplification of a selected, or target, nucleic acid sequence may be carried out by a number of suitable methods. See generally Kwoh et al., 1990, Am. Biotechnol. Lab. 8:14 Numerous amplification techniques have been described and can be readily adapted to suit particular needs of a person of ordinary skill. Non-limiting examples of amplification techniques include polymerase chain reaction (PCR), ligase chain reaction (LCR), strand displacement amplification (SDA), transcription-based amplification, the q3 replicase system and NASBA (Kwoh et al., 1989, Proc. NatI. Acad. Sci. USA 86, 1173-1177; Lizardi et al., 1988, BioTechnology 6:1197-1202; Malek et al., 1994, Methods Mol. Biol., 28:253-260; and Sambrook et al., 1989, supra).

The terminology “amplification pair” (or “primer pair”) refers herein to a pair of oligonucleotides (oligos) of the present invention, which are selected to be used together in amplifying a selected nucleic acid sequence by one of a number of types of amplification processes, preferably a polymerase chain reaction. Other types of amplification processes include ligase chain reaction, strand displacement amplification, or nucleic acid sequence-based amplification, as explained in greater detail below. As commonly known in the art, the oligos are designed to bind to a complementary sequence under selected conditions.

In one particular embodiment, amplification of a nucleic acid sample from a patient is amplified under conditions which favor the amplification of the most abundant differentially expressed nucleic acid. In one preferred embodiment, RT-PCR is carried out on an mRNA sample from a patient under conditions which favor the amplification of the most abundant mRNA. In another preferred embodiment, the amplification of the differentially expressed nucleic acids is carried out simultaneously. It will be realized by a person skilled in the art that such methods could be adapted for the detection of differentially expressed proteins instead of differentially expressed nucleic acid sequences.

The nucleic acid (i.e. DNA or RNA) for practicing the present invention may be obtained according to well known methods.

Oligonucleotide primers of the present invention may be of any suitable length, depending on the particular assay format and the particular needs and targeted genomes employed. Optionally, the oligonucleotide primers are at least 12 nucleotides in length, preferably between 15 and 24 molecules, and they may be adapted to be especially suited to a chosen nucleic acid amplification system. As commonly known in the art, the oligonucleotide primers can be designed by taking into consideration the melting point of hybridization thereof with its targeted sequence (Sambrook et al., 1989, Molecular Cloning—A Laboratory Manual, 2nd Edition, CSH Laboratories; Ausubel et al., 1989, in Current Protocols in Molecular Biology, John Wiley & Sons Inc., N.Y.).

It will be appreciated that antisense oligonucleotides may be employed to quantify expression of a splice isoform of interest. Such detection is effected at the pre-mRNA level. Essentially the ability to quantitate transcription from a splice site of interest can be effected based on splice site accessibility. Oligonucleotides may compete with splicing factors for the splice site sequences. Thus, low activity of the antisense oligonucleotide is indicative of splicing activity.

The polymerase chain reaction and other nucleic acid amplification reactions are well known in the art (various non-limiting examples of these reactions are described in greater detail below). The pair of oligonucleotides according to this aspect of the present invention are preferably selected to have compatible melting temperatures (Tm), e.g., melting temperatures which differ by less than that 7° C., preferably less than 5° C., more preferably less than 4° C., most preferably less than 3° C., ideally between 3° C. and 0° C.

Polymerase Chain Reaction (PCR): The polymerase chain reaction (PCR), as described in U.S. Pat. Nos. 4,683,195 and 4,683,202 to Mullis and Mullis et al., is a method of increasing the concentration of a segment of target sequence in a mixture of genomic DNA without cloning or purification. This technology provides one approach to the problems of low target sequence concentration. PCR can be used to directly increase the concentration of the target to an easily detectable level. This process for amplifying the target sequence involves the introduction of a molar excess of two oligonucleotide primers which are complementary to their respective strands of the double-stranded target sequence to the DNA mixture containing the desired target sequence. The mixture is denatured and then allowed to hybridize. Following hybridization, the primers are extended with polymerase so as to form complementary strands. The steps of denaturation, hybridization (annealing), and polymerase extension (elongation) can be repeated as often as needed, in order to obtain relatively high concentrations of a segment of the desired target sequence.

The length of the segment of the desired target sequence is determined by the relative positions of the primers with respect to each other, and, therefore, this length is a controllable parameter. Because the desired segments of the target sequence become the dominant sequences (in terms of concentration) in the mixture, they are said to be “PCR-amplified.”

Ligase Chain Reaction (LCR or LAR): The ligase chain reaction [LCR; sometimes referred to as “Ligase Amplification Reaction” (LAR)] has developed into a well-recognized alternative method of amplifying nucleic acids. In LCR, four oligonucleotides, two adjacent oligonucleotides which uniquely hybridize to one strand of target DNA, and a complementary set of adjacent oligonucleotides, which hybridize to the opposite strand are mixed and DNA ligase is added to the mixture. Provided that there is complete complementarity at the junction, ligase will covalently link each set of hybridized molecules. Importantly, in LCR, two probes are ligated together only when they base-pair with sequences in the target sample, without gaps or mismatches. Repeated cycles of denaturation, and ligation amplify a short segment of DNA. LCR has also been used in combination with PCR to achieve enhanced detection of single-base changes: see for example Segev, PCT Publication No. W09001069 A1 (1990). However, because the four oligonucleotides used in this assay can pair to form two short ligatable fragments, there is the potential for the generation of target-independent background signal. The use of LCR for mutant screening is limited to the examination of specific nucleic acid positions.

Self-Sustained Synthetic Reaction (3SR/NASBA): The self-sustained sequence replication reaction (3SR) is a transcription-based in vitro amplification system that can exponentially amplify RNA sequences at a uniform temperature. The amplified RNA can then be utilized for mutation detection. In this method, an oligonucleotide primer is used to add a phage RNA polymerase promoter to the 5′ end of the sequence of interest. In a cocktail of enzymes and substrates that includes a second primer, reverse transcriptase, RNase H, RNA polymerase and ribo- and deoxyribonucleoside triphosphates, the target sequence undergoes repeated rounds of transcription, cDNA synthesis and second-strand synthesis to amplify the area of interest. The use of 3SR to detect mutations is kinetically limited to screening small segments of DNA (e.g., 200-300 base pairs).

Q-Beta (Qβ) Replicase: In this method, a probe which recognizes the sequence of interest is attached to the replicatable RNA template for Qβ replicase. A previously identified major problem with false positives resulting from the replication of unhybridized probes has been addressed through use of a sequence-specific ligation step. However, available thermostable DNA ligases are not effective on this RNA substrate, so the ligation must be performed by T4 DNA ligase at low temperatures (37 degrees C.). This prevents the use of high temperature as a means of achieving specificity as in the LCR, the ligation event can be used to detect a mutation at the junction site, but not elsewhere.

A successful diagnostic method must be very specific. A straight-forward method of controlling the specificity of nucleic acid hybridization is by controlling the temperature of the reaction. While the 3SR/NASBA, and Qβ systems are all able to generate a large quantity of signal, one or more of the enzymes involved in each cannot be used at high temperature (i.e., >55 degrees C.). Therefore the reaction temperatures cannot be raised to prevent non-specific hybridization of the probes. If probes are shortened in order to make them melt more easily at low temperatures, the likelihood of having more than one perfect match in a complex genome increases. For these reasons, PCR and LCR currently dominate the research field in detection technologies.

The basis of the amplification procedure in the PCR and LCR is the fact that the products of one cycle become usable templates in all subsequent cycles, consequently doubling the population with each cycle. The final yield of any such doubling system can be expressed as: (1+X)n=y, where “X” is the mean efficiency (percent copied in each cycle), “n” is the number of cycles, and “y” is the overall efficiency, or yield of the reaction. If every copy of a target DNA is utilized as a template in every cycle of a polymerase chain reaction, then the mean efficiency is 100%. If 20 cycles of PCR are performed, then the yield will be 220, or 1,048,576 copies of the starting material. If the reaction conditions reduce the mean efficiency to 85%, then the yield in those 20 cycles will be only 1.8520, or 220,513 copies of the starting material. In other words, a PCR running at 85% efficiency will yield only 21% as much final product, compared to a reaction running at 100% efficiency. A reaction that is reduced to 50% mean efficiency will yield less than 1% of the possible product.

In practice, routine polymerase chain reactions rarely achieve the theoretical maximum yield, and PCRs are usually run for more than 20 cycles to compensate for the lower yield. At 50% mean efficiency, it would take 34 cycles to achieve the million-fold amplification theoretically possible in 20, and at lower efficiencies, the number of cycles required becomes prohibitive. In addition, any background products that amplify with a better mean efficiency than the intended target will become the dominant products.

Also, many variables can influence the mean efficiency of PCR, including target DNA length and secondary structure, primer length and design, primer and dNTP concentrations, and buffer composition, to name but a few. Contamination of the reaction with exogenous DNA (e.g., DNA spilled onto lab surfaces) or cross-contamination is also a major consideration. Reaction conditions must be carefully optimized for each different primer pair and target sequence, and the process can take days, even for an experienced investigator. The laboriousness of this process, including numerous technical considerations and other factors, presents a significant drawback to using PCR in the clinical setting. Indeed, PCR has yet to penetrate the clinical market in a significant way. The same concerns arise with LCR, as LCR must also be optimized to use different oligonucleotide sequences for each target sequence. In addition, both methods require expensive equipment, capable of precise temperature cycling.

Many applications of nucleic acid detection technologies, such as in studies of allelic variation, involve not only detection of a specific sequence in a complex background, but also the discrimination between sequences with few, or single, nucleotide differences. One method of the detection of allele-specific variants by PCR is based upon the fact that it is difficult for Taq polymerase to synthesize a DNA strand when there is a mismatch between the template strand and the 3′ end of the primer. An allele-specific variant may be detected by the use of a primer that is perfectly matched with only one of the possible alleles; the mismatch to the other allele acts to prevent the extension of the primer, thereby preventing the amplification of that sequence. This method has a substantial limitation in that the base composition of the mismatch influences the ability to prevent extension across the mismatch, and certain mismatches do not prevent extension or have only a minimal effect.

A similar 3′-mismatch strategy is used with greater effect to prevent ligation in the LCR. Any mismatch effectively blocks the action of the thermostable ligase, but LCR still has the drawback of target-independent background ligation products initiating the amplification. Moreover, the combination of PCR with subsequent LCR to identify the nucleotides at individual positions is also a clearly cumbersome proposition for the clinical laboratory.

The direct detection method according to various preferred embodiments of the present invention may be, for example a cycling probe reaction (CPR) or a branched DNA analysis.

When a sufficient amount of a nucleic acid to be detected is available, there are advantages to detecting that sequence directly, instead of making more copies of that target, (e.g., as in PCR and LCR). Most notably, a method that does not amplify the signal exponentially is more amenable to quantitative analysis. Even if the signal is enhanced by attaching multiple dyes to a single oligonucleotide, the correlation between the final signal intensity and amount of target is direct. Such a system has an additional advantage that the products of the reaction will not themselves promote further reaction, so contamination of lab surfaces by the products is not as much of a concern. Recently devised techniques have sought to eliminate the use of radioactivity and/or improve the sensitivity in automatable formats. Two examples are the “Cycling Probe Reaction” (CPR), and “Branched DNA” (bDNA).

Cycling probe reaction (CPR): The cycling probe reaction (CPR), uses a long chimeric oligonucleotide in which a central portion is made of RNA while the two termini are made of DNA. Hybridization of the probe to a target DNA and exposure to a thermostable RNase H causes the RNA portion to be digested. This destabilizes the remaining DNA portions of the duplex, releasing the remainder of the probe from the target DNA and allowing another probe molecule to repeat the process. The signal, in the form of cleaved probe molecules, accumulates at a linear rate. While the repeating process increases the signal, the RNA portion of the oligonucleotide is vulnerable to RNases that may carried through sample preparation.

Branched DNA: Branched DNA (bDNA), involves oligonucleotides with branched structures that allow each individual oligonucleotide to carry 35 to 40 labels (e.g., alkaline phosphatase enzymes). While this enhances the signal from a hybridization event, signal from non-specific binding is similarly increased.

The detection of at least one sequence change according to various preferred embodiments of the present invention may be accomplished by, for example restriction fragment length polymorphism (RFLP analysis), allele specific oligonucleotide (ASO) analysis, Denaturing/Temperature Gradient Gel Electrophoresis (DGGE/TGGE), Single-Strand Conformation Polymorphism (SSCP) analysis or Dideoxy fingerprinting (ddF).

The demand for tests which allow the detection of specific nucleic acid sequences and sequence changes is growing rapidly in clinical diagnostics. As nucleic acid sequence data for genes from humans and pathogenic organisms accumulates, the demand for fast, cost-effective, and easy-to-use tests for as yet mutations within specific sequences is rapidly increasing.

A handful of methods have been devised to scan nucleic acid segments for mutations. One option is to determine the entire gene sequence of each test sample (e.g., a bacterial isolate). For sequences under approximately 600 nucleotides, this may be accomplished using amplified material (e.g., PCR reaction products). This avoids the time and expense associated with cloning the segment of interest. However, specialized equipment and highly trained personnel are required, and the method is too labor-intense and expensive to be practical and effective in the clinical setting.

In view of the difficulties associated with sequencing, a given segment of nucleic acid may be characterized on several other levels. At the lowest resolution, the size of the molecule can be determined by electrophoresis by comparison to a known standard run on the same gel. A more detailed picture of the molecule may be achieved by cleavage with combinations of restriction enzymes prior to electrophoresis, to allow construction of an ordered map. The presence of specific sequences within the fragment can be detected by hybridization of a labeled probe, or the precise nucleotide sequence can be determined by partial chemical degradation or by primer extension in the presence of chain-terminating nucleotide analogs.

Restriction fragment length polymorphism (RFLP): For detection of single-base differences between like sequences, the requirements of the analysis are often at the highest level of resolution. For cases in which the position of the nucleotide in question is known in advance, several methods have been developed for examining single base changes without direct sequencing. For example, if a mutation of interest happens to fall within a restriction recognition sequence, a change in the pattern of digestion can be used as a diagnostic tool (e.g., restriction fragment length polymorphism [RFLP] analysis).

Single point mutations have been also detected by the creation or destruction of RFLPs. Mutations are detected and localized by the presence and size of the RNA fragments generated by cleavage at the mismatches. Single nucleotide mismatches in DNA heteroduplexes are also recognized and cleaved by some chemicals, providing an alternative strategy to detect single base substitutions, generically named the “Mismatch Chemical Cleavage” (MCC). However, this method requires the use of osmium tetroxide and piperidine, two highly noxious chemicals which are not suited for use in a clinical laboratory.

RFLP analysis suffers from low sensitivity and requires a large amount of sample. When RFLP analysis is used for the detection of point mutations, it is, by its nature, limited to the detection of only those single base changes which fall within a restriction sequence of a known restriction endonuclease. Moreover, the majority of the available enzymes have 4 to 6 base-pair recognition sequences, and cleave too frequently for many large-scale DNA manipulations. Thus, it is applicable only in a small fraction of cases, as most mutations do not fall within such sites.

A handful of rare-cutting restriction enzymes with 8 base-pair specificities have been isolated and these are widely used in genetic mapping, but these enzymes are few in number, are limited to the recognition of G+C-rich sequences, and cleave at sites that tend to be highly clustered. Recently, endonucleases encoded by group I introns have been discovered that might have greater than 12 base-pair specificity, but again, these are few in number.

Allele specific oligonucleotide (ASO): If the change is not in a recognition sequence, then allele-specific oligonucleotides (ASOs), can be designed to hybridize in proximity to the mutated nucleotide, such that a primer extension or ligation event can bused as the indicator of a match or a mis-match. Hybridization with radioactively labeled allelic specific oligonucleotides (ASO) also has been applied to the detection of specific point mutations. The method is based on the differences in the melting temperature of short DNA fragments differing by a single nucleotide. Stringent hybridization and washing conditions can differentiate between mutant and wild-type alleles. The ASO approach applied to PCR products also has been extensively utilized by various researchers to detect and characterize point mutations in ras genes and gsp/gip oncogenes. Because of the presence of various nucleotide changes in multiple positions, the ASO method requires the use of many oligonucleotides to cover all possible oncogenic mutations.

With either of the techniques described above (i.e., RFLP and ASO), the precise location of the suspected mutation must be known in advance of the test. That is to say, they are inapplicable when one needs to detect the presence of a mutation within a gene or sequence of interest.

Denaturing/Temperature Gradient Gel Electrophoresis (DGGE/TGGE): Two other methods rely on detecting changes in electrophoretic mobility in response to minor sequence changes. One of these methods, termed “Denaturing Gradient Gel Electrophoresis” (DGGE) is based on the observation that slightly different sequences will display different patterns of local melting when electrophoretically resolved on a gradient gel. In this manner, variants can be distinguished, as differences in melting properties of homoduplexes versus heteroduplexes differing in a single nucleotide can detect the presence of mutations in the target sequences because of the corresponding changes in their electrophoretic mobilities. The fragments to be analyzed, usually PCR products, are “clamped” at one end by a long stretch of G-C base pairs (30-80) to allow complete denaturation of the sequence of interest without complete dissociation of the strands. The attachment of a GC “clamp” to the DNA fragments increases the fraction of mutations that can be recognized by DGGE. Attaching a GC clamp to one primer is critical to ensure that the amplified sequence has a low dissociation temperature. Modifications of the technique have been developed, using temperature gradients, and the method can be also applied to RNA:RNA duplexes.

Limitations on the utility of DGGE include the requirement that the denaturing conditions must be optimized for each type of DNA to be tested. Furthermore, the method requires specialized equipment to prepare the gels and maintain the needed high temperatures during electrophoresis. The expense associated with the synthesis of the clamping tail on one oligonucleotide for each sequence to be tested is also a major consideration. In addition, long running times are required for DGGE. The long running time of DGGE was shortened in a modification of DGGE called constant denaturant gel electrophoresis (CDGE). CDGE requires that gels be performed under different denaturant conditions in order to reach high efficiency for the detection of mutations.

A technique analogous to DGGE, termed temperature gradient gel electrophoresis (TGGE), uses a thermal gradient rather than a chemical denaturant gradient. TGGE requires the use of specialized equipment which can generate a temperature gradient perpendicularly oriented relative to the electrical field. TGGE can detect mutations in relatively small fragments of DNA therefore scanning of large gene segments requires the use of multiple PCR products prior to running the gel.

Single-Strand Conformation Polymorphism (SSCP): Another common method, called “Single-Strand Conformation Polymorphism” (SSCP) was developed by Hayashi, Sekya and colleagues and is based on the observation that single strands of nucleic acid can take on characteristic conformations in non-denaturing conditions, and these conformations influence electrophoretic mobility. The complementary strands assume sufficiently different structures that one strand may be resolved from the other. Changes in sequences within the fragment will also change the conformation, consequently altering the mobility and allowing this to be used as an assay for sequence variations.

The SSCP process involves denaturing a DNA segment (e.g., a PCR product) that is labeled on both strands, followed by slow electrophoretic separation on a non-denaturing polyacrylamide gel, so that intra-molecular interactions can form and not be disturbed during the run. This technique is extremely sensitive to variations in gel composition and temperature. A serious limitation of this method is the relative difficulty encountered in comparing data generated in different laboratories, under apparently similar conditions.

Dideoxy fingerprinting (ddF): The dideoxy fingerprinting (ddF) is another technique developed to scan genes for the presence of mutations. The ddF technique combines components of Sanger dideoxy sequencing with SSCP. A dideoxy sequencing reaction is performed using one dideoxy terminator and then the reaction products are electrophoresed on nondenaturing polyacrylamide gels to detect alterations in mobility of the termination segments as in SSCP analysis. While ddF is an improvement over SSCP in terms of increased sensitivity, ddF requires the use of expensive dideoxynucleotides and this technique is still limited to the analysis of fragments of the size suitable for SSCP (i.e., fragments of 200-300 bases for optimal detection of mutations).

In addition to the above limitations, all of these methods are limited as to the size of the nucleic acid fragment that can be analyzed. For the direct sequencing approach, sequences of greater than 600 base pairs require cloning, with the consequent delays and expense of either deletion sub-cloning or primer walking, in order to cover the entire fragment. SSCP and DGGE have even more severe size limitations. Because of reduced sensitivity to sequence changes, these methods are not considered suitable for larger fragments. Although SSCP is reportedly able to detect 90% of single-base substitutions within a 200 base-pair fragment, the detection drops to less than 50% for 400 base pair fragments. Similarly, the sensitivity of DGGE decreases as the length of the fragment reaches 500 base-pairs. The ddF technique, as a combination of direct sequencing and SSCP, is also limited by the relatively small size of the DNA that can be screened.

According to a presently preferred embodiment of the present invention the step of searching for any of the nucleic acid sequences described here, in tumor cells or in cells derived from a cancer patient is effected by any suitable technique, including, but not limited to, nucleic acid sequencing, polymerase chain reaction, ligase chain reaction, self-sustained synthetic reaction, Qβ-Replicase, cycling probe reaction, branched DNA, restriction fragment length polymorphism analysis, mismatch chemical cleavage, heteroduplex analysis, allele-specific oligonucleotides, denaturing gradient gel electrophoresis, constant denaturant gel electrophoresis, temperature gradient gel electrophoresis and dideoxy fingerprinting.

Detection may also optionally be performed with a chip or other such device. The nucleic acid sample which includes the candidate region to be analyzed is preferably isolated, amplified and labeled with a reporter group. This reporter group can be a fluorescent group such as phycoerythrin. The labeled nucleic acid is then incubated with the probes immobilized on the chip using a fluidics station. describe the fabrication of fluidics devices and particularly microcapillary devices, in silicon and glass substrates.

Once the reaction is completed, the chip is inserted into a scanner and patterns of hybridization are detected. The hybridization data is collected, as a signal emitted from the reporter groups already incorporated into the nucleic acid, which is now bound to the probes attached to the chip. Since the sequence and position of each probe immobilized on the chip is known, the identity of the nucleic acid hybridized to a given probe can be determined.

It will be appreciated that when utilized along with automated equipment, the above described detection methods can be used to screen multiple samples for a disease and/or pathological condition both rapidly and easily.

Amino Acid Sequences and Peptides

The terms “polypeptide,” “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an analog or mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. Polypeptides can be modified, e.g., by the addition of carbohydrate residues to form glycoproteins. The terms “polypeptide,” “peptide” and “protein” include glycoproteins, as well as non-glycoproteins.

Polypeptide products can be biochemically synthesized such as by employing standard solid phase techniques. Such methods include but are not limited to exclusive solid phase synthesis, partial solid phase synthesis methods, fragment condensation, classical solution synthesis. These methods are preferably used when the peptide is relatively short (i.e., 10 kDa) and/or when it cannot be produced by recombinant techniques (i.e., not encoded by a nucleic acid sequence) and therefore involves different chemistry.

Solid phase polypeptide synthesis procedures are well known in the art and further described by John Morrow Stewart and Janis Dillaha Young, Solid Phase Peptide Syntheses (2nd Ed., Pierce Chemical Company, 1984).

Synthetic polypeptides can optionally be purified by preparative high performance liquid chromatography [Creighton T. (1983) Proteins, structures and molecular principles. WH Freeman and Co. N.Y.], after which their composition can be confirmed via amino acid sequencing.

In cases where large amounts of a polypeptide are desired, it can be generated using recombinant techniques such as described by Bitter et al., (1987) Methods in Enzymol. 153:516-544, Studier et al. (1990) Methods in Enzymol. 185:60-89, Brisson et al. (1984) Nature 310:511-514, Takamatsu et al. (1987) EMBO J. 6:307-311, Coruzzi et al. (1984) EMBO J. 3:1671-1680 and Brogli et al., (1984) Science 224:838-843, Gurley et al. (1986) Mol. Cell. Biol. 6:559-565 and Weissbach & Weissbach, 1988, Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp 421-463.

The present invention also encompasses polypeptides encoded by the polynucleotide sequences of the present invention, as well as polypeptides according to the amino acid sequences described herein. The present invention also encompasses homologues of these polypeptides, such homologues can be at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 95% or more say 100% homologous to the amino acid sequences set forth below, as can be determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters, optionally and preferably including the following: filtering on (this option filters repetitive or low-complexity sequences from the query using the Seg (protein) program), scoring matrix is BLOSUM62 for proteins, word size is 3, E value is 10, gap costs are 11, 1 (initialization and extension), and number of alignments shown is 50. Nucleotide (nucleic acid) sequence homology/identity is preferably determined by using the BlastN software of the National Center of Biotechnology Information (NCBI) using default parameters, which preferably include using the DUST filter program, and also preferably include having an E value of 10, filtering low complexity sequences and a word size of 11. Finally, the present invention also encompasses fragments of the above described polypeptides and polypeptides having mutations, such as deletions, insertions or substitutions of one or more amino acids, either naturally occurring or artificially induced, either randomly or in a targeted fashion.

It will be appreciated that peptides identified according the present invention may be degradation products, synthetic peptides or recombinant peptides as well as peptidomimetics, typically, synthetic peptides and peptoids and semipeptoids which are peptide analogs, which may have, for example, modifications rendering the peptides more stable while in a body or more capable of penetrating into cells. Such modifications include, but are not limited to N terminus modification, C terminus modification, peptide bond modification, including, but not limited to, CH2-NH, CH2-S, CH2-S═O, O═C—NH, CH2-O, CH2-CH2, S═C—NH, CH═CH or CF═CH, backbone modifications, and residue modification. Methods for preparing peptidomimetic compounds are well known in the art and are specified. Further details in this respect are provided hereinunder.

Peptide bonds (—CO—NH—) within the peptide may be substituted, for example, by N-methylated bonds (—N(CH3)-CO—), ester bonds (—C(R)H—C—O—O—C(R)—N—), ketomethylen bonds (—CO—CH2-), α-aza bonds (—NH—N(R)—CO—), wherein R is any alkyl, e.g., methyl, carba bonds (—CH2-NH—), hydroxyethylene bonds (—CH(OH)—CH2-), thioamide bonds (—CS—NH—), olefinic double bonds (—CH═CH—), retro amide bonds (—NH—CO—), peptide derivatives (—N(R)—CH2-CO—), wherein R is the “normal” side chain, naturally presented on the carbon atom.

These modifications can occur at any of the bonds along the peptide chain and even at several (2-3) at the same time.

Natural aromatic amino acids, Trp, Tyr and Phe, may be substituted for synthetic non-natural acid such as Phenylglycine, TIC, naphthylelanine (Nol), ring-methylated derivatives of Phe, halogenated derivatives of Phe or o-methyl-Tyr.

In addition to the above, the peptides of the present invention may also include one or more modified amino acids or one or more non-amino acid monomers (e.g. fatty acids, complex carbohydrates etc).

As used herein in the specification and in the claims section below the term “amino acid” or “amino acids” is understood to include the 20 naturally occurring amino acids; those amino acids often modified post-translationally in vivo, including, for example, hydroxyproline, phosphoserine and phosphothreonine; and other unusual amino acids including, but not limited to, 2-aminoadipic acid, hydroxylysine, isodesmosine, nor-valine, nor-leucine and ornithine. Furthermore, the term “amino acid” includes both D- and L-amino acids.

Table 1 non-conventional or modified amino acids which can be used with the present invention.

TABLE 1 Non-conventional amino acid Code Non-conventional amino acid Code α-aminobutyric acid Abu L-N-methylalanine Nmala α-amino-α-methylbutyrate Mgabu L-N-methylarginine Nmarg aminocyclopropane- Cpro L-N-methylasparagine Nmasn Carboxylate L-N-methylaspartic acid Nmasp aminoisobutyric acid Aib L-N-methylcysteine Nmcys aminonorbornyl- Norb L-N-methylglutamine Nmgin Carboxylate L-N-methylglutamic acid Nmglu Cyclohexylalanine Chexa L-N-methylhistidine Nmhis Cyclopentylalanine Cpen L-N-methylisolleucine Nmile D-alanine Dal L-N-methylleucine Nmleu D-arginine Darg L-N-methyllysine Nmlys D-aspartic acid Dasp L-N-methylmethionine Nmmet D-cysteine Dcys L-N-methylnorleucine Nmnle D-glutamine Dgln L-N-methylnorvaline Nmnva D-glutamic acid Dglu L-N-methylornithine Nmorn D-histidine Dhis L-N-methylphenylalanine Nmphe D-isoleucine Dile L-N-methylproline Nmpro D-leucine Dleu L-N-methylserine Nmser D-lysine Dlys L-N-methylthreonine Nmthr D-methionine Dmet L-N-methyltryptophan Nmtrp D-ornithine Dorn L-N-methyltyrosine Nmtyr D-phenylalanine Dphe L-N-methylvaline Nmval D-proline Dpro L-N-methylethylglycine Nmetg D-serine Dser L-N-methyl-t-butylglycine Nmtbug D-threonine Dthr L-norleucine Nle D-tryptophan Dtrp L-norvaline Nva D-tyrosine Dtyr α-methyl-aminoisobutyrate Maib D-valine Dval α-methyl-γ-aminobutyrate Mgabu D-α-methylalanine Dmala α-methylcyclohexylalanine Mchexa D-α-methylarginine Dmarg α-methylcyclopentylalanine Mcpen D-α-methylasparagine Dmasn α-methyl-α-napthylalanine Manap D-α-methylaspartate Dmasp α-methylpenicillamine Mpen D-α-methylcysteine Dmcys N-(4-aminobutyl)glycine Nglu D-α-methylglutamine Dmgln N-(2-aminoethyl)glycine Naeg D-α-methylhistidine Dmhis N-(3-aminopropyl)glycine Norn D-α-methylisoleucine Dmile N-amino-α-methylbutyrate Nmaabu D-α-methylleucine Dmleu α-napthylalanine Anap D-α-methyllysine Dmlys N-benzylglycine Nphe D-α-methylmethionine Dmmet N-(2-carbamylethyl)glycine Ngln D-α-methylornithine Dmorn N-(carbamylmethyl)glycine Nasn D-α-methylphenylalanine Dmphe N-(2-carboxyethyl)glycine Nglu D-α-methylproline Dmpro N-(carboxymethyl)glycine Nasp D-α-methylserine Dmser N-cyclobutylglycine Ncbut D-α-methylthreonine Dmthr N-cycloheptylglycine Nchep D-α-methyltryptophan Dmtrp N-cyclohexylglycine Nchex D-α-methyltyrosine Dmty N-cyclodecylglycine Ncdec D-α-methylvaline Dmval N-cyclododeclglycine Ncdod D-α-methylalnine Dnmala N-cyclooctylglycine Ncoct D-α-methylarginine Dnmarg N-cyclopropylglycine Ncpro D-α-methylasparagine Dnmasn N-cycloundecylglycine Ncund D-α-methylasparatate Dnmasp N-(2,2-diphenylethyl)glycine Nbhm D-α-methylcysteine Dnmcys N-(3,3-diphenylpropyl)glycine Nbhe D-N-methylleucine Dnmleu N-(3-indolylyethyl) glycine Nhtrp D-N-methyllysine Dnmlys N-methyl-γ-aminobutyrate Nmgabu N-methylcyclohexylalanine Nmchexa D-N-methylmethionine Dnmmet D-N-methylornithine Dnmorn N-methylcyclopentylalanine Nmcpen N-methylglycine Nala D-N-methylphenylalanine Dnmphe N-methylaminoisobutyrate Nmaib D-N-methylproline Dnmpro N-(1-methylpropyl)glycine Nile D-N-methylserine Dnmser N-(2-methylpropyl)glycine Nile D-N-methylserine Dnmser N-(2-methylpropyl)glycine Nleu D-N-methylthreonine Dnmthr D-N-methyltryptophan Dnmtrp N-(1-methylethyl)glycine Nva D-N-methyltyrosine Dnmtyr N-methyla-napthylalanine Nmanap D-N-methylvaline Dnmval N-methylpenicillamine Nmpen γ-aminobutyric acid Gabu N-(p-hydroxyphenyl)glycine Nhtyr L-t-butylglycine Tbug N-(thiomethyl)glycine Ncys L-ethylglycine Etg penicillamine Pen L-homophenylalanine Hphe L-α-methylalanine Mala L-α-methylarginine Marg L-α-methylasparagine Masn L-α-methylaspartate Masp L-α-methyl-t-butylglycine Mtbug L-α-methylcysteine Mcys L-methylethylglycine Metg L-α-methylglutamine Mgln L-α-methylglutamate Mglu L-α-methylhistidine Mhis L-α-methylhomo Mhphe phenylalanine L-α-methylisoleucine Mile N-(2-methylthioethyl)glycine Nmet D-N-methylglutamine Dnmgln N-(3-guanidinopropyl)glycine Narg D-N-methylglutamate Dnmglu N-(1-hydroxyethyl)glycine Nthr D-N-methylhistidine Dnmhis N-(hydroxyethyl)glycine Nser D-N-methylisoleucine Dnmile N-(imidazolylethyl)glycine Nhis D-N-methylleucine Dnmleu N-(3-indolylyethyl)glycine Nhtrp D-N-methyllysine Dnmlys N-methyl-γ-aminobutyrate Nmgabu N-methylcyclohexylalanine Nmchexa D-N-methylmethionine Dnmmet D-N-methylornithine Dnmorn N-methylcyclopentylalanine Nmcpen N-methylglycine Nala D-N-methylphenylalanine Dnmphe N-methylaminoisobutyrate Nmaib D-N-methylproline Dnmpro N-(1-methylpropyl)glycine Nile D-N-methylserine Dnmser N-(2-methylpropyl)glycine Nleu D-N-methylthreonine Dnmthr D-N-methyltryptophan Dnmtrp N-(1-methylethyl)glycine Nval D-N-methyltyrosine Dnmtyr N-methyla-napthylalanine Nmanap D-N-methylvaline Dnmval N-methylpenicillamine Nmpen γ-aminobutyric acid Gabu N-(p-hydroxyphenyl)glycine Nhtyr L-t-butylglycine Tbug N-(thiomethyl)glycine Ncys L-ethylglycine Etg penicillamine Pen L-homophenylalanine Hphe L-α-methylalanine Mala L-α-methylarginine Marg L-α-methylasparagine Masn L-α-methylaspartate Masp L-α-methyl-t-butylglycine Mtbug L-α-methylcysteine Mcys L-methylethylglycine Metg L-α-methylglutamine Mgln L-α-methylglutamate Mglu L-α-methylhistidine Mhis L-α-methylhomophenylalanine Mhphe L-α-methylisoleucine Mile N-(2-methylthioethyl)glycine Nmet L-α-methylleucine Mleu L-α-methyllysine Mlys L-α-methylmethionine Mmet L-α-methylnorleucine Mnle L-α-methylnorvaline Mnva L-α-methylornithine Morn L-α-methylphenylalanine Mphe L-α-methylproline Mpro L-α-methylserine mser L-α-methylthreonine Mthr L-α-methylvaline Mtrp L-α-methyltyrosine Mtyr L-α-methylleucine Mval L-N-methylhomophenylalanine Nmhphe Nnbhm N-(N-(2,2-diphenylethyl) N-(N-(3,3-diphenylpropyl) carbamylmethyl-glycine Nnbhm carbamylmethyl(1)glycine Nnbhe 1-carboxy-1-(2,2-diphenyl Nmbc ethylamino)cyclopropane

Since the peptides of the present invention are preferably utilized in diagnostics which require the peptides to be in soluble form, the peptides of the present invention preferably include one or more non-natural or natural polar amino acids, including but not limited to serine and threonine which are capable of increasing peptide solubility due to their hydroxyl-containing side chain.

The peptides of the present invention are preferably utilized in a linear form, although it will be appreciated that in cases where cyclicization does not severely interfere with peptide characteristics, cyclic forms of the peptide can also be utilized.

The peptides of present invention can be biochemically synthesized such as by using standard solid phase techniques. These methods include exclusive solid phase synthesis well known in the art, partial solid phase synthesis methods, fragment condensation, classical solution synthesis. These methods are preferably used when the peptide is relatively short (i.e., 10 kDa) and/or when it cannot be produced by recombinant techniques (i.e., not encoded by a nucleic acid sequence) and therefore involves different chemistry.

Synthetic peptides can be purified by preparative high performance liquid chromatography and the composition of which can be confirmed via amino acid sequencing.

In cases where large amounts of the peptides of the present invention are desired, the peptides of the present invention can be generated using recombinant techniques such as described by Bitter et al., (1987) Methods in Enzymol. 153:516-544, Studier et al. (1990) Methods in Enzymol. 185:60-89, Brisson et al. (1984) Nature 310:511-514, Takamatsu et al. (1987) EMBO J. 6:307-311, Coruzzi et al. (1984) EMBO J. 3:1671-1680 and Brogli et al., (1984) Science 224:838-843, Gurley et al. (1986) Mol. Cell. Biol. 6:559-565 and Weissbach & Weissbach, 1988, Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp 421-463 and also as described above.

Antibodies

“Antibody” refers to a polypeptide ligand that is preferably substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof, which specifically binds and recognizes an epitope (e.g., an antigen). The recognized immunoglobulin genes include the kappa and lambda light chain constant region genes, the alpha, gamma, delta, epsilon and mu heavy chain constant region genes, and the myriad-immunoglobulin variable region genes. Antibodies exist, e.g., as intact immunoglobulins or as a number of well characterized fragments produced by digestion with various peptidases. This includes, e.g., Fab′ and F(ab)′2 fragments. The term “antibody,” as used herein, also includes antibody fragments either produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA methodologies. It also includes polyclonal antibodies, monoclonal antibodies, chimeric antibodies, humanized antibodies, or single chain antibodies. “Fc” portion of an antibody refers to that portion of an immunoglobulin heavy chain that comprises one or more heavy chain constant region domains, CH1, CH2 and CH3, but does not include the heavy chain variable region.

The functional fragments of antibodies, such as Fab, F(ab′)2, and Fv that are capable of binding to macrophages, are described as follows: (1) Fab, the fragment which contains a monovalent antigen-binding fragment of an antibody molecule, can be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain; (2) Fab′, the fragment of an antibody molecule that can be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab′ fragments are obtained per antibody molecule; (3) (Fab′)2, the fragment of the antibody that can be obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; F(ab′)2 is a dimer of two Fab′ fragments held together by two disulfide bonds; (4) Fv, defined as a genetically engineered fragment containing the variable region of the light chain and the variable region of the heavy chain expressed as two chains; and (5) Single chain antibody (“SCA”), a genetically engineered molecule containing the variable region of the light chain and the variable region of the heavy chain, linked by a suitable polypeptide linker as a genetically fused single chain molecule.

Methods of producing polyclonal and monoclonal antibodies as well as fragments thereof are well known in the art (See for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1988, incorporated herein by reference).

Antibody fragments according to the present invention can be prepared by proteolytic hydrolysis of the antibody or by expression in E. coli or mammalian cells (e.g. Chinese hamster ovary cell culture or other protein expression systems) of DNA encoding the fragment. Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods. For example, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5S fragment denoted F(ab′)2. This fragment can be further cleaved using a thiol reducing agent, and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce 3.5S Fab′ monovalent fragments. Alternatively, an enzymatic cleavage using pepsin produces two monovalent Fab′ fragments and an Fc fragment directly. These methods are described, for example, by Goldenberg, U.S. Pat. Nos. 4,036,945 and 4,331,647, and references contained therein, which patents are hereby incorporated by reference in their entirety. See also Porter, R. R. [Biochem. J. 73: 119-126 (1959)]. Other methods of cleaving antibodies, such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical, or genetic techniques may also be used, so long as the fragments bind to the antigen that is recognized by the intact antibody.

Fv fragments comprise an association of VH and VL chains. This association may be noncovalent, as described in Inbar et al. [Proc. Nat'l Acad. Sci. USA 69:2659-62 (19720]. Alternatively, the variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde. Preferably, the Fv fragments comprise VH and VL chains connected by a peptide linker. These single-chain antigen binding proteins (sFv) are prepared by constructing a structural gene comprising DNA sequences encoding the VH and VL domains connected by an oligonucleotide. The structural gene is inserted into an expression vector, which is subsequently introduced into a host cell such as E. coli. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing sFvs are described, for example, by [Whitlow and Filpula, Methods 2: 97-105 (1991); Bird et al., Science 242:423-426 (1988); Pack et al., Bio/Technology 11:1271-77 (1993); and U.S. Pat. No. 4,946,778, which is hereby incorporated by reference in its entirety.

Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides (“minimal recognition units”) can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells. See, for example, Larrick and Fry [Methods, 2: 106-10 (1991)].

Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′) or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)]. Similarly, human antibodies can be made by introduction of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10: 779-783 (1992); Lonberg et al., Nature 368: 856-859 (1994); Morrison, Nature 368 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14: 826 (1996); and Lonberg and Huszar, Intern. Rev. Immunol. 13, 65-93 (1995).

Preferably, the antibody of this aspect of the present invention specifically binds at least one epitope of the polypeptide variants of the present invention. As used herein, the term “epitope” refers to any antigenic determinant on an antigen to which the paratope of an antibody binds.

Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or carbohydrate side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.

Optionally, a unique epitope may be created in a variant due to a change in one or more post-translational modifications, including but not limited to glycosylation and/or phosphorylation, as described below. Such a change may also cause a new epitope to be created, for example through removal of glycosylation at a particular site.

An epitope according to the present invention may also optionally comprise part or all of a unique sequence portion of a variant according to the present invention in combination with at least one other portion of the variant which is not contiguous to the unique sequence portion in the linear polypeptide itself, yet which are able to form an epitope in combination. One or more unique sequence portions may optionally combine with one or more other non-contiguous portions of the variant (including a portion which may have high homology to a portion of the known protein) to form an epitope.

Immunoassays

In another embodiment of the present invention, an immunoassay can be used to qualitatively or quantitatively detect and analyze markers in a sample. This method comprises: providing an antibody that specifically binds to a marker; contacting a sample with the antibody; and detecting the presence of a complex of the antibody bound to the marker in the sample.

To prepare an antibody that specifically binds to a marker, purified protein markers can be used. Antibodies that specifically bind to a protein marker can be prepared using any suitable methods known in the art.

After the antibody is provided, a marker can be detected and/or quantified using any of a number of well recognized immunological binding assays. Useful assays include, for example, an enzyme immune assay (EIA) such as enzyme-linked immunosorbent assay (ELISA), a radioimmune assay (RIA), a Western blot assay, or a slot blot assay see, e.g., U.S. Pat. Nos. 4,366,241; 4,376,110; 4,517,288; and 4,837,168). Generally, a sample obtained from a subject can be contacted with the antibody that specifically binds the marker.

Optionally, the antibody can be fixed to a solid support to facilitate washing and subsequent isolation of the complex, prior to contacting the antibody with a sample. Examples of solid supports include but are not limited to glass or plastic in the form of, e.g., a microtiter plate, a stick, a bead, or a microbead. Antibodies can also be attached to a solid support.

After incubating the sample with antibodies, the mixture is washed and the antibody-marker complex formed can be detected. This can be accomplished by incubating the washed mixture with a detection reagent. Alternatively, the marker in the sample can be detected using an indirect assay, wherein, for example, a second, labeled antibody is used to detect bound marker-specific antibody, and/or in a competition or inhibition assay wherein, for example, a monoclonal antibody which binds to a distinct epitope of the marker are incubated simultaneously with the mixture.

Throughout the assays, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, preferably from about 5 minutes to about 24 hours. However, the incubation time will depend upon the assay format, marker, volume of solution, concentrations and the like. Usually the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10° C. to 40° C.

The immunoassay can be used to determine a test amount of a marker in a sample from a subject. First, a test amount of a marker in a sample can be detected using the immunoassay methods described above. If a marker is present in the sample, it will form an antibody-marker complex with an antibody that specifically binds the marker under suitable incubation conditions described above. The amount of an antibody-marker complex can optionally be determined by comparing to a standard. As noted above, the test amount of marker need not be measured in absolute units, as long as the unit of measurement can be compared to a control amount and/or signal.

Preferably used are antibodies which specifically interact with the polypeptides of the present invention and not with wild type proteins or other isoforms thereof, for example. Such antibodies are directed, for example, to the unique sequence portions of the polypeptide variants of the present invention, including but not limited to bridges, heads, tails and insertions described in greater detail below. Preferred embodiments of antibodies according to the present invention are described in greater detail with regard to the section entitled “Antibodies”.

Radio-immunoassay (RIA): In one version, this method involves precipitation of the desired substrate and in the methods detailed hereinbelow, with a specific antibody and radiolabelled antibody binding protein (e.g., protein A labeled with I125) immobilized on a precipitable carrier such as agarose beads. The number of counts in the precipitated pellet is proportional to the amount of substrate.

In an alternate version of the RIA, a labeled substrate and an unlabelled antibody binding protein are employed. A sample containing an unknown amount of substrate is added in varying amounts. The decrease in precipitated counts from the labeled substrate is proportional to the amount of substrate in the added sample.

Enzyme linked immunosorbent assay (ELISA): This method involves fixation of a sample (e.g., fixed cells or a proteinaceous solution) containing a protein substrate to a surface such as a well of a microtiter plate. A substrate specific antibody coupled to an enzyme is applied and allowed to bind to the substrate. Presence of the antibody is then detected and quantitated by a calorimetric reaction employing the enzyme coupled to the antibody. Enzymes commonly employed in this method include horseradish peroxidase and alkaline phosphatase. If well calibrated and within the linear range of response, the amount of substrate present in the sample is proportional to the amount of color produced. A substrate standard is generally employed to improve quantitative accuracy.

Western blot: This method involves separation of a substrate from other protein by means of an acrylamide gel followed by transfer of the substrate to a membrane (e.g., nylon or PVDF). Presence of the substrate is then detected by antibodies specific to the substrate, which are in turn detected by antibody binding reagents. Antibody binding reagents may be, for example, protein A, or other antibodies. Antibody binding reagents may be radiolabelled or enzyme linked as described hereinabove. Detection may be by autoradiography, colorimetric reaction or chemiluminescence. This method allows both quantitation of an amount of substrate and determination of its identity by a relative position on the membrane which is indicative of a migration distance in the acrylamide gel during electrophoresis.

Immunohistochemical analysis: This method involves detection of a substrate in situ in fixed cells by substrate specific antibodies. The substrate specific antibodies may be enzyme linked or linked to fluorophores. Detection is by microscopy and subjective evaluation. If enzyme linked antibodies are employed, a calorimetric reaction may be required.

Fluorescence activated cell sorting (FACS): This method involves detection of a substrate in situ in cells by substrate specific antibodies. The substrate specific antibodies are linked to fluorophores. Detection is by means of a cell sorting machine which reads the wavelength of light emitted from each cell as it passes through a light beam. This method may employ two or more antibodies simultaneously.

Radio-Imaging Methods

These methods include but are not limited to, positron emission tomography (PET) single photon emission computed tomography (SPECT). Both of these techniques are non-invasive, and can be used to detect and/or measure a wide variety of tissue events and/or functions, such as detecting cancerous cells for example. Unlike PET, SPECT can optionally be used with two labels simultaneously. SPECT has some other advantages as well, for example with regard to cost and the types of labels that can be used. For example, U.S. Pat. No. 6,696,686 describes the use of SPECT for detection of breast cancer, and is hereby incorporated by reference as if fully set forth herein.

Display Libraries

According to still another aspect of the present invention there is provided a display library comprising a plurality of display vehicles (such as phages, viruses or bacteria) each displaying at least 6, at least 7, at least 8, at least 9, at least 10, 10-15, 12-17, 15-20, 15-30 or 20-50 consecutive amino acids derived from the polypeptide sequences of the present invention.

Methods of constructing such display libraries are well known in the art. Such methods are described in, for example, Young A C, et al., “The three-dimensional structures of a polysaccharide binding antibody to Cryptococcus neoformans and its complex with a peptide from a phage display library: implications for the identification of peptide mimotopes” J Mol Biol 1997 Dec. 12; 274(4):622-34; Giebel L B et al. “Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities” Biochemistry 1995 Nov. 28; 34(47): 15430-5; Davies E L et al., “Selection of specific phage-display antibodies using libraries derived from chicken immunoglobulin genes” J Immunol Methods 1995 Oct. 12; 186(1):125-35; Jones C R T al. “Current trends in molecular recognition and bioseparation” J Chromatogr A 1995 Jul. 14; 707(1):3-22; Deng S J et al. “Basis for selection of improved carbohydrate-binding single-chain antibodies from synthetic gene libraries” Proc Natl Acad Sci USA 1995 May 23; 92(11):4992-6; and Deng S J et al. “Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display” J Biol Chem 1994 Apr. 1; 269(13):9533-8, which are incorporated herein by reference.

The following sections relate to Candidate Marker Examples (first section) and to Experimental Data for these Marker Examples (second section). It should be noted that Table numbering is restarted within each section.

CANDIDATE MARKER EXAMPLES SECTION

This Section relates to Examples of sequences according to the present invention, including illustrative methods of selection thereof.

Description of the methodology undertaken to uncover the biomolecular sequences of the present invention

Human ESTs and cDNAs were obtained from GenBank versions 136 (Jun. 15, 2003 ftp.ncbi.nih.gov/genbank/release.notes/gb136.release.notes); NCBI genome assembly of April 2003; RefSeq sequences from June 2003; Genbank version 139 (December 2003); Human Genome from NCBI (Build 34) (from October 2003); and RefSeq sequences from December 2003; and from the LifeSeq library of Incyte Corporation (ESTs only; Wilmington, Del., USA). With regard to GenBank sequences, the human EST sequences from the EST (GBEST) section and the human mRNA sequences from the primate (GBPRI) section were used; also the human nucleotide RefSeq mRNA sequences were used (see for example www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html and for a reference to the EST section, see www.ncbi.nlm.nih.gov/dbEST/; a general reference to dbEST, the EST database in GenBank, may be found in Boguski et al, Nat Genet. 1993 August; 4(4):332-3; all of which are hereby incorporated by reference as if fully set forth herein).

Novel splice variants were predicted using the LEADS clustering and assembly system as described in Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced. Genome Res 12, 1060-7 (2002); U.S. Pat. No. 6,625,545; and U.S. patent application Ser. No. 10/426,002, published as U.S. 20040101876 on May 27, 2004; all of which are hereby incorporated by reference as if fully set forth herein. Briefly, the software cleans the expressed sequences from repeats, vectors and immunoglobulins. It then aligns the expressed sequences to the genome taking alternatively splicing into account and clusters overlapping expressed sequences into “clusters” that represent genes or partial genes.

These were annotated using the GeneCarta (Compugen, Tel-Aviv, Israel) platform. The GeneCarta platform includes a rich pool of annotations, sequence information (particularly of spliced sequences), chromosomal information, alignments, and additional information such as SNPs, gene ontology terms, expression profiles, functional analyses, detailed domain structures, known and predicted proteins and detailed homology reports.

A brief explanation is provided with regard to the method of selecting the candidates. However, it should noted that this explanation is provided for descriptive purposes only, and is not intended to be limiting in any way. The potential markers were identified by a computational process that was designed to find genes and/or their splice variants that are over-expressed in tumor tissues, by using databases of expressed sequences. Various parameters related to the information in the EST libraries, determined according to a manual classification process, were used to assist in locating genes and/or splice variants thereof that are over-expressed in cancerous tissues. The detailed description of the selection method is presented in Example 1 below. The cancer biomarkers selection engine and the following wet validation stages are schematically summarized in FIG. 1.

Example 1 Identification of Differentially Expressed Gene Products—Algorithm

In order to distinguish between differentially expressed gene products and constitutively expressed genes (i.e., house keeping genes) an algorithm based on an analysis of frequencies was configured. A specific algorithm for identification of transcripts over expressed in cancer is described hereinbelow.

Dry Analysis

Library annotation—EST libraries are manually classified according to:

    • (i) Tissue origin
    • (ii) Biological source—Examples of frequently used biological sources for construction of EST libraries include cancer cell-lines; normal tissues; cancer tissues; fetal tissues; and others such as normal cell lines and pools of normal cell-lines, cancer cell-lines and combinations thereof. A specific description of abbreviations used below with regard to these tissues/cell lines etc is given above.
    • (iii) Protocol of library construction—various methods are known in the art for library construction including normalized library construction; non-normalized library construction; subtracted libraries; ORESTES and others. It will be appreciated that at times the protocol of library construction is not indicated.

The following rules were followed:

EST libraries originating from identical biological samples are considered as a single library.

EST libraries which included above-average levels of contamination, such as DNA contamination for example, were eliminated. The presence of such contamination was determined as follows. For each library, the number of unspliced ESTs that are not fully contained within other spliced sequences was counted. If the percentage of such sequences (as compared to all other sequences) was at least 4 standard deviations above the average for all libraries being analyzed, this library was tagged as being contaminated and was eliminated from further consideration in the below analysis (see also Sorek, R. & Safer, H. M. A novel algorithm for computational identification of contaminated EST libraries. Nucleic Acids Res 31, 1067-74 (2003) for further details).

Clusters (genes) having at least five sequences including at least two sequences from the tissue of interest were analyzed. Splice variants were identified by using the LEADS software package as described above.

Example 2 Identification of Genes Over Expressed in Cancer

Two different scoring algorithms were developed.

Libraries score—candidate sequences which are supported by a number of cancer libraries, are more likely to serve as specific and effective diagnostic markers.

The basic algorithm—for each cluster the number of cancer and normal libraries contributing sequences to the cluster was counted. Fisher exact test was used to check if cancer libraries are significantly over-represented in the cluster as compared to the total number of cancer and normal libraries.

Library counting: Small libraries (e.g., less than 1000 sequences) were excluded from consideration unless they participate in the cluster. For this reason, the total number of libraries is actually adjusted for each cluster.

Clones no. score—Generally, when the number of ESTs is much higher in the cancer libraries relative to the normal libraries it might indicate actual over-expression.

The algorithm—

Clone counting: For counting EST clones each library protocol class was given a weight based on our belief of how much the protocol reflects actual expression levels:

    • (i) non-normalized: 1
    • (ii) normalized: 0.2
    • (iii) all other classes: 0.1

Clones number score—The total weighted number of EST clones from cancer libraries was compared to the EST clones from normal libraries. To avoid cases where one library contributes to the majority of the score, the contribution of the library that gives most clones for a given cluster was limited to 2 clones.

The score was computed as c + 1 C / n + 1 N

    • where:
    • c—weighted number of “cancer” clones in the cluster.
    • C—weighted number of clones in all “cancer” libraries.
    • n—weighted number of “normal” clones in the cluster.
    • N—weighted number of clones in all “normal” libraries.

Clones number score significance—Fisher exact test was used to check if EST clones from cancer libraries are significantly over-represented in the cluster as compared to the total number of EST clones from cancer and normal libraries.

Two search approaches were used to find either general cancer-specific candidates or tumor specific candidates.

    • Libraries/sequences originating from tumor tissues are counted as well as libraries originating from cancer cell-lines (“normal” cell-lines were ignored).
    • Only libraries/sequences originating from tumor tissues are counted

Example 3 Identification of Tissue Specific Genes

For detection of tissue specific clusters, tissue libraries/sequences were compared to the total number of libraries/sequences in cluster. Similar statistical tools to those described in above were employed to identify tissue specific genes. Tissue abbreviations are the same as for cancerous tissues, but are indicated with the header “normal tissue”.

The algorithm—for each tested tissue T and for each tested cluster the following were examined:

    • 1. Each cluster includes at least 2 libraries from the tissue T. At least 3 clones (weighed—as described above) from tissue T in the cluster; and
    • 2. Clones from the tissue T are at least 40% from all the clones participating in the tested cluster

Fisher exact test P-values were computed both for library and weighted clone counts to check that the counts are statistically significant.

Example 4 Identification of Splice Variants Over Expressed in Cancer of Clusters which are not Over Expressed in Cancer

Cancer-Specific Splice Variants Containing a Unique Region were Identified.

Identification of Unique Sequence Regions in Splice Variants

A Region is defined as a group of adjacent exons that always appear or do not appear together in each splice variant.

A “segment” (sometimes referred also as “seg” or “node”) is defined as the shortest contiguous transcribed region without known splicing inside.

Only reliable ESTs were considered for region and segment analysis. An EST was defined as unreliable if:

    • (i) Unspliced;
    • (ii) Not covered by RNA;
    • (iii) Not covered by spliced ESTs; and
    • (iv) Alignment to the genome ends in proximity of long poly-A stretch or starts in proximity of long poly-T stretch.

Only reliable regions were selected for further scoring. Unique sequence regions were considered reliable if:

    • (i) Aligned to the genome; and
    • (ii) Regions supported by more than 2 ESTs.

The algorithm

Each unique sequence region divides the set of transcripts into 2 groups:

    • (i) Transcripts containing this region (group TA).
    • (ii) Transcripts not containing this region (group TB).

The set of EST clones of every cluster is divided into 3 groups:

    • (i) Supporting (originating from) transcripts of group TA (S1).
    • (ii) Supporting transcripts of group TB (S2).
    • (iii) Supporting transcripts from both groups (S3).

Library and clones number scores described above were given to S1 group.

Fisher Exact Test P-values were used to check if:

    • S1 is significantly enriched by cancer EST clones compared to S2; and
    • S1 is significantly enriched by cancer EST clones compared to cluster background (S1+S2+S3).

Identification of unique sequence regions and division of the group of transcripts accordingly is illustrated in FIG. 2. Each of these unique sequence regions corresponds to a segment, also termed herein a “node”.

Region 1: common to all transcripts, thus it is preferably not considered for determining differential expression between variants; Region 2: specific to Transcript 1; Region 3: specific to Transcripts 2+3; Region 4: specific to Transcript 3; Region 5: specific to Transcripts 1 and 2; Region 6: specific to Transcript 1.

Example 5 Identification of Cancer Specific Splice Variants of Genes Over Expressed in Cancer

A search for EST supported (no mRNA) regions for genes of:

    • (i) known cancer markers
    • (ii) Genes shown to be over-expressed in cancer in published micro-array experiments.

Reliable EST supported-regions were defined as supported by minimum of one of the following:

    • (i) 3 spliced ESTs; or
    • (ii) 2 spliced ESTs from 2 libraries;
    • (iii) 10 unspliced ESTs from 2 libraries, or
    • (iv) 3 libraries.
      Actual Marker Examples

The following examples relate to specific actual marker examples. It should be noted that Table numbering is restarted within each example related to a particular Cluster, as indicated by the titles below.

EXPERIMENTAL EXAMPLES SECTION

This Section relates to Examples describing experiments involving these sequences, and illustrative, non-limiting examples of methods, assays and uses thereof. The materials and experimental procedures are explained first, as all experiments used them as a basis for the work that was performed.

The markers of the present invention were tested with regard to their expression in various cancerous and non-cancerous tissue samples. A description of the samples used in the panel is provided in Table 1 below. A description of the samples used in the normal tissue panel is provided in Table 2 below. Tests were then performed as described in the “Materials and Experimental Procedures” section below.

TABLE 1 Tissue samples in testing panel Sample Lot name number Source Tissue Pathology Grade gender/age 2-A-Pap ILS- ABS ovary Papillary 2 53/F Adeno G2 1408 adenocarcinoma 3-A-Pap ILS- ABS ovary Papillary 2 52/F Adeno G2 1431 adenocarcinoma 4-A-Pap ILS- ABS ovary Papillary 2 50/F CystAdeno 7286 cystadenocarcinoma G2 1-A-Pap ILS- ABS ovary Papillary 3 73/F Adeno G3 1406 adenocarcinoma 14-B-Adeno A501111 BioChain ovary Adenocarcinoma 2 41/F G2 5-G-Adeno 99-12- GOG ovary Adenocarcinoma 3 46/F G3 G432 (Stage3C) 6-A-Adeno G3 A0106 ABS ovary adenocarcinoma 3 51/F 7-A-Adeno G3 IND- ABS ovary adenocarcinoma 3 59/F 00375 8-B-Adeno G3 A501113 BioChain ovary adenocarcinoma 3 60/F 9-G-Adeno 99-06- GOG ovary Adenocarcinoma 3 84/F G3 G901 (maybe serous) 10-B-Adeno A407069 Biochain ovary Adenocarcinoma 3 60/F G3 11-B-Adeno A407068 Biochain ovary Adenocarcinoma 3 49/F G3 12-B-Adeno A406023 Biochain ovary Adenocarcinoma 3 45/F G3 13-G-Adeno 94-05- GOG right Metastasis 3 67/F G3 7603 ovary adenocarcinoma 15-B-Adeno A407065 BioChain ovary Carcinoma 3 27/F G3 16-Ct-Adeno 1090387 Clontech ovary Carcinoma NOS F 22-A-Muc A0139 ABS ovary Mucinous 2 72/F CystAde G2 cystadenocarcinoma (Stage1C) 21-G-Muc 95-10- GOG ovary Mucinous 2-3 44/F CystAde G2-3 G020 cystadenocarcinoma (Stage2) 23-A-Muc VNM- ABS ovary Mucinous 3 45/F CystAde G3 00187 cystadenocarcinoma with low malignant 17-B-Muc A504084 BioChain ovary Mucinous 3 51/F Adeno G3 adenocarcinoma 18-B-Muc A504083 BioChain ovary Mucinous 3 45/F Adeno G3 adenocarcinoma 19-B-Muc A504085 BioChain ovary Mucinous 34/F Adeno G3 adenocarcinoma 20-A-Pap USA- ABS ovary Papillary mucinous 45/F Muc CystAde 00273 cystadenocarcinoma 33-B-Pap A503175 BioChain ovary Serous papillary 1 41/F Sero CystAde cystadenocarcinoma G1 25-A-Pap N0021 ABS ovary Papillary serous 3 55/F Sero Adeno adenocarcinoma G3 (StageT3CN1MX) 24-G-Pap 2001- GOG ovary Papillary serous 3 68/F Sero Adeno 07- adenocarcinoma G3 G801 30-G-Pap 2001- GOG ovary Papillary serous 3 72/F Sero Adeno 08- carcinoma (Stage1C) G3 G011 70-G-Pap 95-08- GOG ovary Papillary serous 3 F Sero Adeno G069 adenocarcinoma G3 31-B-Pap A503176 BioChain ovary Serous papillary 3 52/F Sero CystAde cystadenocarcinoma G3 32-G-Pap 93-09- GOG ovary Serous papillary 3 F Sero CystAde 4901 cystadenocarcinoma G3 66-G-Pap 2000- GOG ovary Papillary serous F Sero Adeno 01- carcinoma (metastais G3 SIV G413 of primary peritoneum) (Stage4) 29-G-Sero 2001- GOG right Serous 3 50/F Adeno G3 12- ovary adenocarcinoma G035 (Stage3A) 41-G-Mix 98-03- GOG ovary Mixed epithelial 2 38 Sero/Muc/Endo G803 cystadenocarcinoma G2 with mucinous, endometrioid, squamous and papillary serous (Stage2) 40-G-Mix 95-11- GOG ovary, endometrium Papillary serous and 2 49/F Sero/Endo G2 G006 endometrioid cystadenocarcinoma (Stage3C) 37-G-Mix 2002- GOG ovary Mixed serous and 3 56/F Sero/Endo G3 05- endometrioid G513 adenocarcinoma 38-G-Mix 2002- GOG ovary Mixed serous and 3 64/F Sero/Endo G3 05- endometrioid G509 adenocarcinoma of mullerian (Stage3C) 39—G-Mix 2001- GOG ovary Mixed serous and 3 F Sero/Endo G3 12- endometrioid G037 adenocarcinoma 36-G-Endo 2000- GOG ovary Endometrial 1-2 69/F Adeno G1-2 09- adenocarcinoma G621 35-G-Endo 94-08- GOG right Endometrioid 2 39/F Adeno G2 7604 ovary adenocarcinoma 34-G-Pap 95-04- GOG ovary Papillary 3 68/F Endo Adeno 2002 endometrioid G3 adenocarcinoma (Stage3C) 43-G-Clear 2001- GOG ovary Clear cell 3 74/F cell Adeno G3 10- adenocarcinoma G002 44-G-Clear 2001- GOG ovary Clear cell 73/F cell Adeno 07- adenocarcinoma G084 (Stage3A) 42-G-Adeno 98-08- GOG ovary Epithelial 46/F borderline G001 adenocarcinoma of borderline malignancy 59-G-Sero 98-12- GOG ovary Serous 77/F CysAdenoFibroma G401 CysAdenoFibroma 63-G-Sero 2000- GOG ovary Serous 71/F CysAdenoFibroma 10- CysAdenoFibroma of G620 borderline malignancy 64-G-Ben 99-06- GOG ovary Bengin Serous 57/F Sero G039 CysAdenoma CysAdenoma 56-G-Ben 99-01- GOG left ovary Bengin mucinus 46/F Muc G407 cysadenoma CysAdeno 62-G-Ben 99-10- GOG ovary Bengin mucinus 32/F Muc G442 cysadenoma CysAdenoma 60-G-Muc 99-01- GOG ovary Mucinous 40/F CysAdenoma G043 Cysadenoma 61-G-Muc 99-07- GOG ovary Mucinous 63/F CysAdenoma G011 Cysadenoma 65-G- 97-11- GOG right Endometrioma 41/F Endometrioma G320 ovary 57-B- A407066 BioChain ovary Thecoma 56/F Thecoma 58-CG-Struteratoma CG-177 Ichilov ovary Struma 58/F ovary/monodermal teratoma 50-B-N M8 A501114 BioChain ovary Normal (matched 60/F tumor A501113) 49-B-N M14 A501112 BioChain ovary Normal (matched 41/F tumor A501111) 69-G-N M24 2001- GOG ovary Normal (matched 68/F 07- tumor 2001-07-G801) G801N 67-G-N M38 2002- GOG ovary Normal (matched 64/F 05- tumor 2002-05-G509) 509N 51-G-N M41 98-03- GOG ovary Normal (matched 38/F G803N tumor 98-03-G803) 52-G-N M42 98-08- GOG ovary Normal (matched 46/F G001N tumor 98-08-G001) 68-G-N M56 99-01- GOG ovary Normal (matched 46/F G407N bengin 99-01-G407) 72-G-N M66 2000- GOG ovary Normal (matched F 01- tumor 2000-01-G413) G413N 73-G-N M59 98-12- GOG ovary Normal (matched 77/F G401N tumor 98-12-G401) 74-G-N M65 97-11- GOG ovary Normal (matched 41/F G320N tumor 97-11G320) 75-G-N M60 99-01- GOG ovary Normal (matched 40/F G043N tumor 99-01-G043) 45-B-N A503274 BioChain ovary Normal PM 41/F 46-B-N A504086 BioChain ovary Normal PM 41/F 48-B-N A504087 BioChain ovary Normal PM 51/F 47-Am-N 061P43A Ambion ovary Normal (CLOSED 16/F HEAD) 71-CG-N CG- Ichilov ovary Normal PM 49/F 188-7

TABLE 2 Tissue samples in normal panel: Lot no. Source Tissue Pathology Sex/Age  1-Am-Colon (C71) 071P10B Ambion Colon PM F/43  2-B-Colon (C69) A411078 Biochain Colon PM-Pool of 10 M&F  3-Cl-Colon (C70) 1110101 Clontech Colon PM-Pool of 3 M&F  4-Am-Small Intestine 091P0201A Ambion Small Intestine PM M/75  5-B-Small Intestine A501158 Biochain Small Intestine PM M/63  6-B-Rectum A605138 Biochain Rectum PM M/25  7-B-Rectum A610297 Biochain Rectum PM M/24  8-B-Rectum A610298 Biochain Rectum PM M/27  9-Am-Stomach 110P04A Ambion Stomach PM M/16 10-B-Stomach A501159 Biochain Stomach PM M/24 11-B-Esophagus A603814 Biochain Esophagus PM M/26 12-B-Esophagus A603813 Biochain Esophagus PM M/41 13-Am-Pancreas 071P25C Ambion Pancreas PM M/25 14-CG-Pancreas CG-255-2 Ichilov Pancreas PM M/75 15-B-Lung A409363 Biochain Lung PM F/26 16-Am-Lung (L93) 111P0103A Ambion Lung PM F/61 17-B-Lung (L92) A503204 Biochain Lung PM M/28 18-Am-Ovary (O47) 061P43A Ambion Ovary PM F/16 19-B-Ovary (O48) A504087 Biochain Ovary PM F/51 20-B-Ovary (O46) A504086 Biochain Ovary PM F/41 21-Am-Cervix 101P0101A Ambion Cervix PM F/40 22-B-Cervix A408211 Biochain Cervix PM F/36 23-B-Cervix A504089 Biochain Cervix PM-Pool of 5 M&F 24-B-Uterus A411074 Biochain Uterus PM-Pool of 10 M&F 25-B-Uterus A409248 Biochain Uterus PM F/43 26-B-Uterus A504090 Biochain Uterus PM-Pool of 5 M&F 27-B-Bladder A501157 Biochain Bladder PM M/29 28-Am-Bladder 071P02C Ambion Bladder PM M/20 29-B-Bladder A504088 Biochain Bladder PM-Pool of 5 M&F 30-Am-Placenta 021P33A Ambion Placenta PB F/33 31-B-Placenta A410165 Biochain Placenta PB F/26 32-B-Placenta A411073 Biochain Placenta PB-Pool of 5 M&F 33-B-Breast (B59) A607155 Biochain Breast PM F/36 34-Am-Breast (B63) 26486 Ambion Breast PM F/43 35-Am-Breast (B64) 23036 Ambion Breast PM F/57 36-Cl-Prostate (P53) 1070317 Clontech Prostate PB-Pool of 47 M&F 37-Am-Prostate (P42) 061P04A Ambion Prostate PM M/47 38-Am-Prostate (P59) 25955 Ambion Prostate PM M/62 39-Am-Testis 111P0104A Ambion Testis PM M/25 40-B-Testis A411147 Biochain Testis PM M/74 41-Cl-Testis 1110320 Clontech Testis PB-Pool of 45 M&F 42-CG-Adrenal CG-184-10 Ichilov Adrenal PM F/81 43-B-Adrenal A610374 Biochain Adrenal PM F/83 44-B-Heart A411077 Biochain Heart PB-Pool of 5 M&F 45-CG-Heart CG-255-9 Ichilov Heart PM M/75 46-CG-Heart CG-227-1 Ichilov Heart PM F/36 47-Am-Liver 081P0101A Ambion Liver PM M/64 48-CG-Liver CG-93-3 Ichilov Liver PM F/19 49-CG-Liver CG-124-4 Ichilov Liver PM F/34 50-Cl-BM 1110932 Clontech Bone Marrow PM-Pool of 8 M&F 51-CGEN-Blood WBC#5 CGEN Blood M 52-CGEN-Blood WBC#4 CGEN Blood M 53-CGEN-Blood WBC#3 CGEN Blood M 54-CG-Spleen CG-267 Ichilov Spleen PM F/25 55-CG-Spleen 111P0106B Ambion Spleen PM M/25 56-CG-Spleen A409246 Biochain Spleen PM F/12 56-CG-Thymus CG-98-7 Ichilov Thymus PM F/28 58-Am-Thymus 101P0101A Ambion Thymus PM M/14 59-B-Thymus A409278 Biochain Thymus PM M/28 60-B-Thyroid A610287 Biochain Thyroid PM M/27 61-B-Thyroid A610286 Biochain Thyroid PM M/24 62-CG-Thyroid CG-119-2 Ichilov Thyroid PM F/66 63-Cl-Salivary Gland 1070319 Clontech Salivary Gland PM-Pool of 24 M&F 64-Am-Kidney 111P0101B Ambion Kidney PM-Pool of 14 M&F 65-Cl-Kidney 1110970 Clontech Kidney PM-Pool of 14 M&F 66-B-Kidney A411080 Biochain Kidney PM-Pool of 5 M&F 67-CG-Cerebellum CG-183-5 Ichilov Cerebellum PM M/74 68-CG-Cerebellum CG-212-5 Ichilov Cerebellum PM M/54 69-B-Brain A411322 Biochain Brain PM M/28 70-Cl-Brain 1120022 Clontech Brain PM-Pool of 2 M&F 71-B-Brain A411079 Biochain Brain PM-Pool of 2 M&F 72-CG-Brain CG-151-1 Ichilov Brain PM F/86 73-Am-Skeletal Muscle 101P013A Ambion Skeletal Muscle PM F/28 74-Cl-Skeletal Muscle 1061038 Clontech Skeletal Muscle PM-Pool of 2 M&F

Materials and Experimental Procedures

RNA preparation—RNA was obtained from Clontech (Franklin Lakes, N.J. USA 07417, www.clontech.com), BioChain Inst. Inc. (Hayward, Calif. 94545 USA www.biochain.com), ABS (Wilmington, Del. 19801, USA, http://www.absbioreagents.com) or Ambion (Austin, Tex. 78744 USA, http://www.ambion.com). Alternatively, RNA was generated from tissue samples using TRI-Reagent (Molecular Research Center), according to Manufacturer's instructions. Tissue and RNA samples were obtained from patients or from postmortem. Total RNA samples were treated with DNaseI (Ambion) and purified using RNeasy columns (Qiagen).

RT PCR—Purified RNA (1 μg) was mixed with 150 ng Random Hexamer primers (Invitrogen) and 500 μM dNTP in a total volume of 15.6 μl. The mixture was incubated for 5 min at 65° C. and then quickly chilled on ice. Thereafter, 5 μl of 5× SuperscriptII first strand buffer (Invitrogen), 2.4 μl 0.1M DTT and 40 units RNasin (Promega) were added, and the mixture was incubated for 10 min at 25° C., followed by further incubation at 42° C. for 2 min. Then, 1 μl (200 units) of SuperscriptII (Invitrogen) was added and the reaction (final volume of 25 μl) was incubated for 50 min at 42° C. and then inactivated at 70° C. for 15 min. The resulting cDNA was diluted 1:20 in TE buffer (10 mM Tris pH=8, 1 mM EDTA pH=8).

Real-Time RT-PCR analysis—cDNA (5 μl), prepared as described above, was used as a template in Real-Time PCR reactions using the SYBR Green I assay (PE Applied Biosystem) with specific primers and UNG Enzyme (Eurogentech or ABI or Roche). The amplification was effected as follows: 50° C. for 2 min, 95° C. for 10 min, and then 40 cycles of 95° C. for 15 sec, followed by 60° C. for 1 min. Detection was performed by using the PE Applied Biosystem SDS 7000. The cycle in which the reactions achieved a threshold level (Ct) of fluorescence was registered and was used to calculate the relative transcript quantity in the RT reactions. The relative quantity was calculated using the equation Q=efficiencyˆ−Ct. The efficiency of the PCR reaction was calculated from a standard curve, created by using serial dilutions of several reverse transcription (RT) reactions. To minimize inherent differences in the RT reaction, the resulting relative quantities were normalized to the geometric mean of the relative quantities of several housekeeping (HSKP) genes. Schematic summary of quantitative real-time PCR analysis is presented in FIG. 3. As shown, the x-axis shows the cycle number. The CT=Threshold Cycle point, which is the cycle that the amplification curve crosses the fluorescence threshold that was set in the experiment. This point is a calculated cycle number in which PCR products signal is above the background level (passive dye ROX) and still in the Geometric/Exponential phase (as shown, once the level of fluorescence crosses the measurement threshold, it has a geometrically increasing phase, during which measurements are most accurate, followed by a linear phase and a plateau phase; for quantitative measurements, the latter two phases do not provide accurate measurements). The y-axis shows the normalized reporter fluorescence. It should be noted that this type of analysis provides relative quantification.

The sequences of the housekeeping genes measured in all the examples on ovarian cancer panel were as follows:

Claims

1. An isolated polynucleotide comprising a polynucleotide having a sequence of R11723_PEA—1_T5 (SEQ ID NO. 114).

2. The isolated polynucleotide of claim 1, comprising a node having a sequence of: R11723_PEA—1_node—13 (SEQ ID NO. 116).

3. An isolated polypeptide comprising a polypeptide having a sequence of: R11723_PEA—1_P13 (SEQ ID NO. 145).

4. The isolated polypeptide of claim 3, comprising a chimeric polypeptide encoding for R11723_PEA—1_P13 (SEQ ID NO. 145), comprising a first amino acid sequence being at least 95% homologous to MWVLGIAATFCGLFLLPGFALQIQCYQCEEFQLNNDCSSPEFIVNCTVNVQDMCQKEVMEQSA corresponding to amino acids 1-63 of Q96AC2 (SEQ ID NO. 969), which also corresponds to amino acids 1-63 of R11723_PEA—1_P13 (SEQ ID NO. 145), and a second amino acid sequence being at least about 95% homologous to a polypeptide having the sequence DTKRTNTLLFEMRHFAKQLTT (SEQ ID NO: 1130) corresponding to amino acids 64-84 of R11723_PEA—1_P13 (SEQ ID NO. 145), wherein said first and second amino acid sequences are contiguous and in a sequential order.

5. The isolated polypeptide of claim 4, comprising a tail of R11723_PEA—1_P13 (SEQ ID NO. 145), comprising a polypeptide being at least about 95% homologous to the sequence DTKRTNTLLFEMRHFAKQLTT (SEQ ID NO: 1130) in R11723_PEA—1_P13 (SEQ ID NO. 145).

6. The isolated polynucleotide of claim 1, comprising an amplicon according to SEQ ID NO: 975.

7. A primer pair, comprising a pair of isolated oligonucleotides capable of amplifying said amplicon of claim 6.

8. The primer pair of claim 7, comprising a pair of isolated oligonucleotides: SEQ NOs 973 and 974.

9. An antibody capable of specifically binding to an epitope of an amino acid sequence of claim 3.

10. The antibody of claim 9, wherein said amino acid sequence comprises said tail of claim 4.

11. The antibody of claim 9, wherein said antibody is capable of differentiating between a splice variant having said epitope and a corresponding known protein PSEC.

12. A kit for detecting ovarian cancer, comprising a kit detecting overexpression of a splice variant according to claim 1.

13. The kit of claim 12, wherein said kit comprises a NAT-based technology.

14. The kit of claim 12, wherein said kit further comprises at least one primer pair capable of selectively hybridizing to a nucleic acid sequence according to claim 1.

15. The kit of claim 12, wherein said kit further comprises at least one oligonucleotide capable of selectively hybridizing to a nucleic acid sequence according to claim 1.

16. A kit for detecting ovarian cancer, comprising a kit detecting overexpression of a splice variant according to claim 3, said kit comprising an antibody according claim 9.

17. The kit of claim 16, wherein said kit further comprises at least one reagent for performing an ELISA or a Western blot.

18. A method for detecting ovarian cancer, comprising detecting overexpression of a splice variant according to claim 1.

19. The method of claim 18, wherein said detecting overexpression is performed with a NAT-based technology.

20. A method for detecting ovarian cancer, comprising detecting overexpression of a splice variant according to claim 3, wherein said detecting overexpression is performed with an immunoassay.

21. The method of claim 20, wherein said immunoassay comprises an antibody according to claim 9.

22. A biomarker capable of detecting ovarian cancer, comprising a nucleic acid sequence according to claim 1 or a fragment thereof, or an amino acid sequence according to claim 3 or a fragment thereof.

23. A method for screening for ovarian cancer, comprising detecting ovarian cancer cells with a biomarker according to claim 22.

24. A method for diagnosing ovarian cancer, comprising detecting ovarian cancer cells with a biomarker according to claim 22.

25. A method for monitoring disease progression and/or treatment efficacy and/or relapse of ovarian cancer, comprising detecting ovarian cancer cells with a biomarker according to claim 22.

26. A method of selecting a therapy for ovarian cancer, comprising detecting ovarian cancer cells with a biomarker according to claim 22 and selecting a therapy according to said detection.

Patent History
Publication number: 20060040278
Type: Application
Filed: Jan 27, 2005
Publication Date: Feb 23, 2006
Inventors: Gad Cojocaru (Ramat-HaSharon), Sarah Pollock (Tel-Aviv), Zurit Levine (Horzlia), Alexander Diber (Rishon-LeZion), Guy Kol (Givat Shmuel), Amir Toporik (Azur), Rotem Sorek (Rechovot), Dvir Dahary (Tel-Aviv), Michal Ayalon-Soffer (Ramat-HaSharon), Pinchas Akiva (Ramat-Gan), Amit Novik (Beit-HaSharon), Yossi Cohen (Banstead), Osnat Sella-Tavor (Kfar Kish), Shira Walach (Hod-HaSharon), Shirley Sameah-Greenwald (Kfar Saba), Ronen Shemesh (Modiln), Maxim Shklar (Tel-Aviv)
Application Number: 11/050,857
Classifications
Current U.S. Class: 435/6.000; 536/23.500; 530/350.000; 435/69.100; 435/320.100; 435/325.000; 530/388.800; 435/7.230
International Classification: C12Q 1/68 (20060101); G01N 33/574 (20060101); C07H 21/04 (20060101); C12N 15/09 (20060101); C07K 14/82 (20060101); C07K 16/30 (20060101);