Slurry for chemical mechanical polishing process and method of manufacturing semiconductor device using the same
A slurry composition useful for chemical mechanical polishing of the surface of a material layer, e.g., a silicon oxide layer, is disclosed. A first material surface which is exposed to the slurry exhibits hydrophilicity, while a second material layer, e.g., a polysilicon layer, the surface of which is also exposed to the slurry, exhibits hydrophobicity, and accordingly acts as a polishing stopping layer. The slurry composition consists essentially of water, abrasive grains, and a polymer additive having both hydrophilic and hydrophobic functional groups.
Latest Samsung Electronics Patents:
This application is a divisional of copending U.S. application Ser. No. 10/639,541, filed Aug. 12, 2003, which is a divisional of U.S. application Ser. No. 09/861,697, filed on May 21, 2001, now U.S. Pat. No. 6,626,968, the contents of which are incorporated herein in their entirety by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a slurry composition for a chemical mechanical polishing process and a method of manufacturing a semiconductor device using the same, and, more particularly, to a slurry for a chemical mechanical polishing (hereinafter referred to as “CMP”) process that results in a high selectivity ratio to polysilicon and to a method of planarizing the surface of a semiconductor device using the same.
2. Description of the Related Art
The high performance and high integration requirements of modern semiconductor devices demand a multilayer interconnection structure. This multilayer interconnection structure is typically made by performing the sequential steps of film forming/layer deposition followed by an etch process of conductive layers and insulating layers, and repeating these steps several times. Predetermined patterns required for each layer are formed, and then a surface planarization step is performed so that a lithographic process may be easily performed before another pattern is formed.
This planarization step is classified into local planarization and global planarization. The ultimate object of planarization technology is to realize global planarization. Techniques for this global planarization typically include the steps of forming a coating of resin, such as polyimide, followed by an etch-back step, a reflow, and a CMP for the metallic and insulating layers.
A wafer on which a planarization process will be performed is mounted on a rotatory plate, and the surface of the wafer is made to contact a polishing pad. After this, CMP is carried out by rotating the rotatory plate and the polishing pad while providing a supply of slurry between the wafer surface and the polishing pad. In other words, a CMP process is a combination of a chemical action of a slurry, comprising a chemical solution and abrasive grains, and the mechanical action of a polisher. The slurry is supplied between the wafer surface and the polishing pad, and mechanical friction is generated due to the abrasive grains in the slurry and the surface of the pad. As a result of the mechanical effects, the wafer surface is polished. At the same time, part of the wafer surface is removed by the chemical reaction of the chemical components in the slurry with at least portions of the wafer surface.
In general, various kinds of CMP slurries are used depending on the characteristics of the wafer surface materials to be removed. In particular, in a case where a polysilicon layer and a silicon oxide layer are being polished by a CMP method employing a silica-based slurry using silica (SiO2) as an abrasive grain, over a given period about twice as much of the polysilicon layer will be removed than the amount of the silicon oxide layer removed. Thus, it can be said that the selectivity ratio of the polysilicon layer to the silicon oxide layer for this CMP process is about 0.5:1. It is therefore difficult or impossible to use a polysilicon layer as a polishing stopping layer when a CMP process is carried out in a specific step of a semiconductor device manufacturing process when using a conventional silica-based slurry. However, for some applications it may be inevitable to carry out such a CMP process despite the problem of the selectivity ratio between a polysilicon layer and a silicon oxide layer in a manufacturing process of a semiconductor device. Alternatively, it may be desirable to use a polysilicon layer as a polishing stopping layer in several steps, not only in a single specific step. Accordingly, it would be desirable to develop a new slurry composition which can be useful in carrying out these types of CMP processes.
OBJECTS OF THE INVENTIONTo solve the above problems, it is a general object of the present invention to provide a new slurry composition suitable for a chemical mechanical polishing (CMP) process in which an exposed surface of a material to be polished has the property of hydrophilicity with respect to the slurry.
It is another object of the present invention to provide a method of manufacturing a semiconductor device in which there is a material layer between patterns, and wherein the exposed surface of that material layer has the property of hydrophobicity with respect to the slurry, such that the exposed surface can be globally planarized by a CMP process.
It is still another object of the present invention to provide a method of manufacturing a semiconductor device where global planarization can be carried out with a CMP process using a material layer as a polishing stopping layer wherein the exposed surface of that layer has the property of hydrophobicity with respect to the slurry.
SUMMARY OF THE INVENTIONAccordingly, to achieve the above objects, there is provided a new slurry composition for a chemical mechanical polishing (CMP) process consisting essentially of water, abrasive grains, and a polymer additive having both hydrophilic and hydrophobic functional groups. The slurry is used for polishing a hydrophilic material, the surface of which is exposed to the slurry in a CMP process. The slurry may further comprise a surfactant and a pH control agent containing acid or base. The polymer additive is at least one member selected from the group consisting of poly vinyl methyl ether (PVME), poly ethylene glycol (PEG), poly oxyethylene 23 lauryl ether (POLE), poly propanoic acid (PPA), poly acrylic acid (PAA), and poly ether glycol bis ether (PEGBE).
To achieve the above-described objects, there is provided a method of manufacturing a semiconductor device according to a first embodiment of the present invention. In this first embodiment, a first material layer pattern is formed on a lower layer. The surface of the first material layer is then exposed to the slurry according to the present invention and exhibits hydrophobicity during the CMP process. A second material layer is thereafter formed on the entire resultant structure on which the first material layer pattern was formed. The surface of the second material layer is then exposed to the slurry according to the present invention and exhibits hydrophilicity during the CMP process. A CMP process is performed on the second material layer in order to expose at least a portion of the surface of the first material layer using a slurry comprising water, abrasive grains, and polymer additive having both hydrophilic and hydrophobic functional groups. Preferably, in this embodiment of the invention, the first material layer is formed of polysilicon and the second material layer is formed of silicon oxide.
To further achieve the above-described objects, there is provided a method of manufacturing a semiconductor device according to a second embodiment of the present invention. In this second embodiment, an etch mask pattern including a first material layer is formed on a semiconductor substrate. The surface of the etch mask pattern is then exposed to a slurry according to the present invention and exhibits hydrophobicity during the CMP process. A trench is formed to a predetermined depth in the semiconductor substrate using the etch mask pattern as a guide. A second material layer having insularity is thereafter formed on the entire resultant structure where the trench was formed. The surface of the second material layer is then exposed to the slurry according to the present invention and exhibits hydrophilicity during the CMP process. A CMP process is performed on the second material layer in order to expose at least a portion of the surface of the first material layer of the etch mask pattern using the slurry comprising water, abrasive grains, and polymer additive having both hydrophilic and hydrophobic functional groups. The remaining first material layer is then removed.
An anti-reflective layer is further formed on the first material layer of the etch mask pattern, and a first oxide layer is formed between the semiconductor substrate and the first material layer of the etch mask pattern. A thermal oxide layer is formed on the exposed surface of the trench after the formation of the trench. After the remaining first material layer is removed, a sacrificial oxide layer may be formed on the semiconductor substrate.
To further achieve the above-described objects, there is provided a method of manufacturing a semiconductor device according to a third embodiment of the present invention. In this third embodiment, an upper electrode of a capacitor, including a first material layer having conductivity, is formed on an interlayer insulating layer of a semiconductor substrate. The surface of the first material layer is then exposed to a slurry according to the present invention and exhibits hydrophobicity during the CMP process. A second material layer is thereafter formed on the entire resultant structure where the upper electrode was formed. The surface of the second material layer is then exposed to the slurry according to the present invention and exhibits hydrophilicity during the CMP process. A CMP process is performed on the second material layer in order to expose the first material layer using the slurry containing water, abrasive grains, and polymer additive having both hydrophilic and hydrophobic functional groups. A third material layer having insularity is thereafter formed on the entire resultant structure. The surface of the third material layer is exposed to the slurry according to the present invention and exhibits hydrophilicity during the CMP process. A CMP process is performed at least one time on the third material layer in order to expose the surface of the first material layer using the slurry comprising water, abrasive grains, and polymer additive having both hydrophilic and hydrophobic functional groups. The third material layer may be reflowed under heat after forming the third material layer.
According to the present invention, a CMP is performed on a hydrophobic material, a surface of which is exposed to a slurry according to the present invention during a CMP process causing the surface to be polished. The slurry contains a polymer additive having both a hydrophobic functional group and a hydrophilic functional group. A hydrophilic material layer which is deposited on the surface as a polishing stopping layer, is also exposed to the slurry during a CMP process. Polymer is selectively adsorbed only on the surface of the hydrophobic material layer. As a result, a passivation layer is formed to protect the surface of the hydrophobic material layer from being etched. Meanwhile, the hydrophilic material deposited on the surface to be polished does not react with polymer. Thus, it is easy to remove the hydrophilic material from the surface to be polished.
BRIEF DESCRIPTION OF THE DRAWINGSThe above objectives and advantages of the present invention will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which:
Hereinafter embodiments of the present invention will be described in detail with reference to the attached drawings. However, it will be understood that the embodiments of the present invention can be modified into various other forms, and the scope of the present invention should not be interpreted as being restricted to the specifically described embodiments. The several specific embodiments described herein are provided to more completely explain the present invention to those skilled in the art. In the drawings, the thicknesses of layers or regions are exaggerated for clarity, and like reference numerals denote the same members in different drawings. Also, when it is written that a layer is formed “on” another layer or a substrate, it is meant that the layer can be formed directly on the other layer or the substrate, or alternatively other layers can intervene therebetween.
The semiconductor device manufacturing process of the present invention includes chemical mechanical polishing (CMP), which is a planarization technology. CMP is a technique for globally and uniformly planarizing a wafer surface containing heterogeneous substances. In planarizing the wafer surface by CMP, a uniformly flat surface can be achieved in the global planarization process. In this case, not only are material removal rates irregular, depending on substances, but also a multilayer structure of a semiconductor device is thin film and thus it is difficult or impossible to control the material removal rates accurately. In accordance with the present invention, improved global planarization can be accomplished by utilizing the exposed surface of a polishing stopping layer wherein the polishing layer has a lower material removal rate than the material to be polished during planarization.
Thus, the CMP process according to the present invention is performed using one material, the surface of which is exposed to a slurry in a CMP process and which exhibits hydrophilicity, as a material to be polished, and using another material, the surface of which is exposed to a slurry in a CMP process and which exhibits hydrophobicity, as a polishing stopping layer. Hereinafter, the slurry applied to the CMP process and the steps of manufacturing a semiconductor device using the same will be described in detail.
1. Improved Slurry Composition
A slurry useful for carrying out a CMP process is a liquid composition which generally contains water and abrasive grains. In this embodiment, a commonly used slurry (model name SS25 developed by American Cabot Corporation) for polishing an oxide layer is used. Here, the liquid is deionized water and the abrasive grains are silica-based abrasive grains. However, other common abrasive grains, such as alumina (Al2O3), ceria (CeO2), and magania (Mn2O3), may also be used. The size and amount of the abrasive grains dispersed in the slurry have a large effect on polishing efficiency. Thus, in this embodiment, the amount of the abrasive grains is preferably about 25% by weight or less, for example about 1 to 25% by weight. For example, silica (SiO2) is preferably used within the range of about 5 to 12.5% by weight, and ceria is preferably used within the range of about 1 to 10% by weight.
A surfactant for activating the interface between the slurry and the material to be polished, and/or an agent for controlling the pH of the slurry may also be added to the slurry. In other words, a base such as potassium hydroxide (KOH) or an acid such as sulfuric acid (H2SO4), nitric acid (HNO3), hydrochloric acid (HCl), or phosphoric acid (H3PO4) may be added in small, controlled amounts to the slurry sufficient to adjust the slurry pH to within the range of about 7 to 11.
Meanwhile, one or a mixture of polymers having both a hydrophilic functional group and a hydrophobic functional group is further added to the slurry composition of the present invention. Polar materials containing oxygen, nitrogen, and sulfur, such as an —OH group, a —COOH group, an —NH2 group, or an —SO3H group, are hydrophilic. On the other hand, hydrocarbons of an aliphatic group and an aromatic group not including these polar functional groups are hydrophobic. The added polymer having a hydrophilic functional group and a hydrophobic functional group may include poly vinyl methyl ether (PVME), poly ethylene glycol (PEG), poly oxyethylene 23 lauryl ether (POLE), poly propanoic acid (PPA), poly acrylic acid (PAA), and poly ether glycol bis ether (PEGBE), and mixtures thereof. Among these polymers, only one may added or two or more may be added. In this embodiment, about 0.001 to 5% by weight of polymer or polymer mixture is added to the slurry.
Referring to
In a case where a CMP process is performed using a slurry containing water, the newly-formed surface of the first material layer 10 combines with hydrogen ions from the water and then exhibits hydrophobicity. Correspondingly, the newly-formed surface of the second material layer 20 combines with hydroxyl groups from water and then exhibits hydrophilicity. For example; under these conditions, a polysilicon layer 10 would form a hydrophobic surface, whereas a silicon oxide layer 20 would form a hydrophilic surface.
With reference to
Table 1 below shows the results of a CMP process on a silicon oxide layer and a polysilicon layer using a slurry according to the present invention which includes poly vinyl methyl ether (PVME).
As shown in Table 1, in a case where PVME is not added to the slurry, the removal rate of the polysilicon layer during a CMP process is much greater than that of the oxide layer, and thus the selectivity ratio is only 0.7, which is not acceptable. In a case where PVME is added to the slurry, however, the selectivity ratio of the oxide layer to the polysilicon layer is considerably increased to between 6.3 and 7.8 (depending on the amount of PVME added), which yields a highly acceptable result. Also, it is seen that the selectivity ratio increases somewhat with an increase in the addition of PVME from 0.01% by weight to 1% by weight.
Table 2 below shows the results of carrying out a CMP process on a surface comprising adjacent silicon oxide and polysilicon layers using a slurry to which poly ethylene glycol (PEG) has been added.
From Table 2, it is seen that the selectivity ratio of the polysilicon layer to the oxide layer increases with an increase in the amount of PEG added to the slurry.
Table 3 below shows the results of carrying out a CMP process on a surface comprising adjacent silicon oxide and polysilicon layers using a slurry to which poly ether glycol bis ether (PEGBE) has been added.
From Table 3, it is seen that the selectivity ratio of the polysilicon layer to the oxide layer increases with an increase in the amount of PEGBE added to the slurry.
Table 4 below shows the results of carrying out a CMP process on a surface comprising adjacent silicon oxide and polysilicon oxide layers using a slurry to which poly oxyethylene23 lauryl ether (POLE) (product name Brij35) has been added.
From Table 4, it is seen that even a small addition of 0.01% by weight of POLE to the slurry results in a significant increase to 4.0 of the selectivity ratio of the polysilicon layer to the oxide layer and to well above the 0.7 ratio seen with no polymer addition (see Table 1). Further increases in the amount of POLE added to the slurry, however, did not seem to further improve the selectivity ratio.
As described above, compared with a conventional slurry without any added polymer, using the slurry of the present invention (containing polymer having both hydrophobic and hydrophilic functional groups) results in substantially the same removal rate of an oxide layer at the same time that the removal rate of a polysilicon layer is substantially decreased. As a result, the selectivity ratio is greatly improved thereby making it possible to utilize CMP processes in semiconductor manufacturing operations where, in the past, CMP processes were greatly limited.
2. Manufacturing Processes of a Semiconductor Device Using a Slurry of the Present Invention
Embodiment 1
Meanwhile, a trench may be formed in the lower layer 30 by etching a portion of the lower layer 30 with the formation of the first material layer pattern 32. Also, an intermediate material layer (not shown) may be further formed between the lower layer 30 and the first material layer pattern 32, and then that intermediate material layer may be patterned similar to the first material layer pattern 32.
A second material layer 34 is then formed on the entire resultant structure such that a step difference is made due to the formation of the first material layer pattern 32 on a portion of layer 30. The second material layer 34, made, e.g., of silicon oxide, comprises a surface which is to be exposed to a slurry in a CMP process and which exhibits hydrophilicity. In general, an oxide layer denotes a silicon oxide layer and may include a variety of oxide layers, e.g., a borophosphorous silicate glass (BPSG) layer, an undoped silicate glass (USG) layer, a spin on glass (SOG) layer, a high density plasma (HDP) oxide layer, a plasma enhanced tera-ethyl ortho silicate glass (PETEOS) layer, and a thermal oxide layer. Also, the silicon oxide layer can be formed by a variety of known techniques, e.g., by a thermal oxidation method, by a chemical vapor deposition (CVD) method, or by a physical vapor deposition (PVD) method. It is preferable that the second material layer 34 be thicker than the first material layer pattern 32 in order to overcome the step difference due to the first material layer pattern 32 and to facilitate global planarization. However, in a case where the first material layer pattern 32 is very high, the second material layer 34 may get thicker by stacking the same upon itself several times.
With reference to
Referring now to
With reference to
Referring now to
In this embodiment, the slurry used in the CMP process contains liquid, abrasive grains, and polymer additive having both hydrophilic and hydrophobic functional groups. During the CMP process, polymer is adsorbed on the surface of the first material layer 44 which is exposed to the slurry because of the hydrophobic functional group of the polymer. As a result, the selectivity ratio of the first material layer 44 to the second material layer 54 (see
Referring to
The CMP process is preferably performed at a low pressure, e.g., at a pressure of about 2 to 5 psi to minimize possible damage to the edges of the upper electrode 66.
With reference now to
The slurry used in this embodiment also contains polymer additive having both hydrophilic and hydrophobic functional groups in accordance with the present invention. Thus, during a CMP process, polymer is adsorbed on the surface of the upper electrode 66 which is to be exposed to the slurry and which exhibits hydrophobicity due to the hydrophobic functional group of the polymer. As a result, the selectivity ratio of the upper electrode 66 relative to the second material layer 68 is increased. Accordingly, the upper electrode 66 serves as a CMP stopping layer, which improves the surface uniformity following the CMP process and facilitates a subsequent photolithographic etch process margin.
As described above, according to the present invention, polymer having both hydrophilic and hydrophobic functional groups is added to a CMP slurry. Thus, the polymer is adsorbed on a material layer, the surface of which is to be exposed to the slurry and which exhibits hydrophobicity. Since the material layer serves as a CMP passivation layer, it is useful as a CMP stopping layer. Also, in a case where the slurry of the present invention is used for carrying out a CMP process on a material layer having a hydrophobic surface, the selectivity ratio is greatly improved and as a result, it is easier to planarize the surface.
It will be apparent to those skilled in the art that other changes and modifications may be made in the above-described CMP methods and slurry compositions without departing from the scope of the invention herein, and it is intended that all matter contained in the above description shall be interpreted in an illustrative and not a limiting sense.
Claims
1. A semiconductor device prepared by the sequential steps of:
- (a) forming on a semiconductor lower layer a first material layer pattern of a first material which exhibits the property of hydrophobicity with respect to the slurry composition along a surface of said first material;
- (b) forming on said surface of said first material and on adjacent surface of said semiconductor lower layer a second material layer of a second material which exhibits the property of hydrophilicity with respect to the slurry composition along a surface of said second material; and,
- (c) performing a chemical mechanical polishing (CMP) process on said surface of said second material using a slurry composition consisting essentially of water, abrasive grains selected from the group consisting of silica (SiO2), alumina (Al2O3), ceria (CeO2), magania (Mn2O3), and mixtures thereof, and about 0.001% to about 5% by weight of a polymer additive selected from the group consisting of poly vinyl methyl ether (PVME), poly ethylene glycol (PEG), poly oxyethylene 23 lauryl ether (POLE), poly propanoic acid (PPA), poly acrylic acid (PAA), poly ether glycol bis ether (PEGBE), and mixtures thereof, wherein the polymer additive improves the selectivity ratio for removal of the silicon oxide layer relative to removal of the polysilicon layer.
2. A semiconductor device prepared in accordance with claim 1 wherein said slurry composition further consists essentially of a surfactant and a pH control agent containing acid or base.
3. A semiconductor device prepared in accordance with claim 1 wherein the pH of the slurry composition is adjusted to within the range of about 7 to 11.
4. A semiconductor device prepared in accordance with claim 1 wherein the concentration of polymer additive ranges from 0.01 % to 1% by weight.
5. A semiconductor device prepared in accordance with claim 1 wherein the selectivity ratio of the slurry composition for removal of the silicon oxide layer relative to removal of the polysilicon layer is a minimum of 1.6.
6. A semiconductor device prepared by the sequential steps of:
- (a) forming on a semiconductor substrate an etch mask pattern by depositing on said substrate at least a first material layer of a first material which exhibits the property of hydrophobicity with respect to the slurry composition along a surface of said first material;
- (b) forming a trench in the semiconductor substrate to a predetermined depth using said etch mask pattern to guide the trench formation;
- (c) forming on the structure where said trench has been formed a second material layer of a second material having the properties of insularity and exhibiting hydrophilicity with respect to the slurry composition along a surface of said second material; and,
- (d) performing a chemical mechanical polishing (CMP) process on said surface of said second material so as to expose said surface of said first material by using a slurry composition consisting essentially of water, abrasive grains selected from the group consisting of silica (SiO2), alumina (Al2O3), ceria (CeO2), magania (Mn2O3), and mixtures thereof, and about 0.001% to about 5% by weight of a polymer additive selected from the group consisting of poly vinyl methyl ether (PVME), poly ethylene glycol (PEG), poly oxyethylene 23 lauryl ether (POLE), poly propanoic acid (PPA), poly acrylic acid (PAA), poly ether glycol bis ether (PEGBE), and mixtures thereof, wherein the polymer additive improves the selectivity ratio for removal of the silicon oxide layer relative to removal of the polysilicon layer.
7. A semiconductor device prepared in accordance with claim 6 wherein the etch mask pattern comprises a stack layer consisting of said first material layer and an anti-reflective layer.
8. A semiconductor device prepared in accordance with claim 6 wherein the method of preparation further comprises the step of forming a first oxide layer between the semiconductor substrate and the first material layer of the etch mask pattern before carrying out step (a).
9. A semiconductor device prepared in accordance with claim 6 wherein the method of preparation further comprises the step of forming a thermal oxide layer on the exposed surface of the trench after carrying out step (b) and before carrying our step (c).
10. A semiconductor device prepared in accordance with claim 6 wherein the method of preparation further comprises the step of removing the remaining first material layer after completing step (d).
11. A semiconductor device prepared in accordance with claim 6 wherein the method of preparation further comprises the step of forming a sacrificial oxide layer on the semiconductor substrate after the step of removing the first material layer.
12. A semiconductor device prepared in accordance with claim 7 wherein said anti-reflective layer is made of silicon oxynitride (SiON).
13. A semiconductor device prepared in accordance with claim 6 wherein the concentration of polymer additive ranges from 0.01% to 1% by weight.
14. A semiconductor device prepared in accordance with claim 6 wherein the selectivity ratio of the slurry composition for removal of the silicon oxide layer relative to removal of the polysilicon layer is a minimum of 1.6.
15. A semiconductor device prepared by the sequential steps of:
- (a) forming on an interlayer insulating layer of a semiconductor substrate an upper electrode of a capacitor by depositing on said substrate at least a first material layer of a first material having the properties of conductivity and exhibiting hydrophobicity with respect to the slurry composition along a surface of said first material;
- (b) forming on said surface of said first material and on adjacent surface of said semiconductor substrate a second material layer of a second material which exhibits the property of hydrophilicity with respect to the slurry composition along a surface of said second material;
- (c) performing a chemical mechanical polishing (CMP) process on said surface of said second material so as to expose said surface of said first material by using a slurry composition consisting essentially of water, abrasive grains selected from the group consisting of silica (SiO2), alumina (Al2O3), ceria (CeO2), magania (Mn2O3), and mixtures thereof, and about 0.001% to about 5% by weight of a polymer additive selected from the group consisting of poly vinyl methyl ether (PVME), poly ethylene glycol (PEG), poly oxyethylene 23 lauryl ether (POLE), poly propanoic acid (PPA), poly acrylic acid (PAA), poly ether glycol bis ether (PEGBE), and mixtures thereof, wherein the polymer additive improves the selectivity ratio for removal of the silicon oxide layer relative to removal of the polysilicon layer; and,
- (d) forming on the resultant structure a third material layer of a third material having the property of insularity.
16. A semiconductor device prepared in accordance with claim 15 wherein said third material exhibits the property of hydrophilicity with respect to the slurry composition along a surface of said third material.
17. A semiconductor device prepared in accordance with claim 15 wherein the method of preparation further comprises the step of performing a CMP process at least one time on said surface of said third material in order to expose said surface of said first material using said slurry composition.
18. A semiconductor device prepared in accordance with claim 15 wherein the method of preparation further comprises the step of reflowing the third material layer under heat after forming said third material layer.
19. A semiconductor device prepared in accordance with claim 15 wherein said first material layer is made of polysilicon and said second material layer is made of silicon oxide.
20. A semiconductor device prepared in accordance with claim 15 wherein a pH control agent containing acid or base is added to the slurry composition to adjust the pH of the slurry composition to within the range of about 7 to 11.
21. A semiconductor device prepared in accordance with claim 15 wherein the concentration of polymer additive ranges from 0.01% to 1% by weight.
22. A semiconductor device prepared in accordance with claim 15 wherein the selectivity ratio of the slurry composition for removal of the silicon oxide layer relative to removal of the polysilicon layer is a minimum of 1.6.
Type: Application
Filed: Mar 1, 2007
Publication Date: Jul 5, 2007
Applicant: Samsung Electronics Co., Ltd. (Suwon-si)
Inventors: Young-rae Park (Suwon-city), Jung-yup Kim (Seoul), Bo-un Yoon (Seoul), Kwang-bok Kim (Kyungki-do), Jae-phill Boo (Suwon-city), Jong-won Lee (Sungnam-city), Sang-rok Hah (Seoul), Kyung-hyun Kim (Seoul), Chang-ki Hong (Suwon-city)
Application Number: 11/712,931
International Classification: H01L 21/306 (20060101); H01L 21/461 (20060101); B44C 1/22 (20060101); C23F 1/00 (20060101); H01L 21/302 (20060101);