METHOD OF FABRICATING ULTRA THIN FLIP-CHIP PACKAGE
Provided is a method of fabricating an ultra thin flip-chip package. In the above method, an under barrier metal film is formed on a bond pad of a semiconductor chip. Three-dimensional structured solder bumps are formed on the under barrier metal film. each of the solder bumps including a bar portion and a ball portion disposed at an end of the bar portion. The semiconductor chip including the three-dimensional structured solder bumps is bonded to a solder layer on a printed circuit board to complete a flip-chip package. According to the present invention, by employing the three-dimensional structured solder bumps, it is possible to lower the height of the solder bumps, thereby improving the reliability of an ultra thin flip-chip package.
Latest Samsung Electronics Patents:
- RADIO FREQUENCY SWITCH AND METHOD FOR OPERATING THEREOF
- ROBOT USING ELEVATOR AND CONTROLLING METHOD THEREOF
- DECODING APPARATUS, DECODING METHOD, AND ELECTRONIC APPARATUS
- DISHWASHER
- NEURAL NETWORK DEVICE FOR SELECTING ACTION CORRESPONDING TO CURRENT STATE BASED ON GAUSSIAN VALUE DISTRIBUTION AND ACTION SELECTING METHOD USING THE NEURAL NETWORK DEVICE
This application is a divisional of U.S. patent application Ser. No. 10/973,528, filed Oct. 25, 2004, now pending, which is claims priority from Korean Patent Application No. 2003-74660, filed on Oct. 24, 2003, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
This disclosure relates to a method of fabricating a semiconductor package, and more particularly, to a method of fabricating an ultra thin flip-chip package.
2. Description of the Related Art
To mount a semiconductor chip on a printed circuit board (PCB), flip-chip packaging can be used. Flip-chip packaging is a method of directly bonding a bond pad of a semiconductor chip to a PCB, and has advantages of occupying a small area and a fast operating speed.
Referring to
A first under barrier metal film 21 is formed on the semiconductor chip 17 and the polyimide film pattern 19. Accordingly, a portion of the first under barrier metal film 21 is formed on the bond pad 13. The first under barrier metal film 21 is a composite film including a titanium film and a nickel film stacked sequentially.
Referring to
Next, referring to
Referring to
Referring to
Referring to
The method of fabricating the flip-chip package in
First, in the conventional method, the height of the solder bump 27 should be limited to a height of 100 μm so as to permit the packaging of the semiconductor chip. Due to this limitation, it is difficult to realize an ultra thin flip-chip package. Also, when the solder bump is made to the height of 100 μm, the height of the photoresist pattern used as the electroplating-preventing film should be at least 70 μm, which results in an increase in the fabrication costs.
Secondly, in the conventional method, since the increase in the integrity of a semiconductor chip requires the size of the bond pad and the height of the solder bump to be decreased, the structural reliability of the flip-chip package is lowered.
Thirdly, in the conventional method, since a joint crack generated in the solder layer is propagated after the bonding of the solder bump and the PCB, the structural reliability of the flip-chip package is lowered.
Fourthly, since the conventional method requires the complicated processes as illustrated in
Embodiments of the invention provide methods of fabricating an ultra thin flip-chip package, capable of reducing fabrication costs and enhancing the structural reliability by using a simplified process.
In one embodiment, a semiconductor package comprises a semiconductor chip including a bond pad formed on a semiconductor substrate and a passivation film pattern overlying the semiconductor substrate and exposing the bond pad. A first under barrier metal film is formed on the bond pad. A plurality of solder bumps are formed overlying the first under barrier metal film. The solder bumps each include a bar portion and a ball portion formed at an end of the bar portion. The package further includes a package substrate such as a printed circuit board. The ball portions of the solder bumps are contacted with the package substrate to form a semiconductor package.
BRIEF DESCRIPTION OF THE DRAWINGSThe above and other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings.
Embodiments of the invention will now be described more fully with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity.
Referring to
On the passivation film pattern 105, a buffer film pattern 109 is formed. The buffer film pattern 109 is a material film that can reduces physical stress applied to the semiconductor chip 107 during the bonding of the semiconductor chip 107 to a printed circuit board (PCB). The buffer film pattern may be formed of a polyimide film.
Referring to
Next, a photoresist film is coated on the first under barrier metal film 111 and is patterned to form a first photoresist pattern 113 having a hole 112 exposing a region of the first under barrier metal film 111 on the bond pad 103.
Referring to
Next, referring to
Referring to
Referring to
Referring to
Thus, although the three-dimensional structured solder bumps 119 are not as high as those of the prior art, a subsequent flip-chip bonding process can be easily performed, so that an ultra thin flip-chip package can be realized and the fabrication costs can be lowered.
The three-dimensional structured solder bumps are bonded to adjacent another solder bumps 119, particularly ball portions 119b, as shown in
Referring to
Referring to
As described above, the method of fabricating an ultra thin flip-chip package according to an embodiment of the invention enables the realization of an ultra thin flip-chip package having enhanced structural reliability by employing three-dimensional structured solder bumps to decrease the heights of the solder bumps.
Also, a joint crack can be prevented from being propagated in the horizontal and vertical directions inside the solder layer because each of the solder bumps includes a bar with a ball portion at on end.
Further, since a flip-chip package can be realized with a simplified process compared to the conventional processes, and can omit the reflow process of the solder bumps, a flip-chip package not having thermal stress can be obtained.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Claims
1. A flip-chip package comprising:
- a semiconductor chip including a bond pad formed on a semiconductor substrate and a passivation film pattern overlying the semiconductor substrate and exposing the bond pad;
- a first under barrier metal film disposed on the bond pad;
- a second under barrier metal film disposed on the first under barrier metal film;
- a plurality of solder bumps disposed on the second under barrier metal film, each of the solder bumps including a bar portion and a ball portion formed at an end of the bar portion; and
- a package substrate, wherein the bar portion of the solder bumps directly contacts the package substrate.
2. The package of claim 1, wherein the first under barrier metal film is formed of a composite film including a titanium film and a nickel film stacked sequentially.
3. The package of claim 1, wherein the solder bumps are formed of an alloy film including lead and tin.
4. The package of claim 1, wherein the second under barrier metal film is a nickel film.
Type: Application
Filed: Mar 26, 2007
Publication Date: Aug 30, 2007
Applicant: SAMSUNG ELECTRONICS CO., LTD. (Gyeonggi-do)
Inventors: Soon-Bum KIM (Gyeonggi-do), Se-Young JEONG (Seoul), Se-Yong OH (Gyeonggi-do), Nam-Seog KIM (Gyeonggi-do)
Application Number: 11/691,067
International Classification: H01L 23/48 (20060101);