Three Dimensional Six Surface Conformal Die Coating

- Vertical Circuits, Inc.

Semiconductor die are typically manufactured as a large group of integrated circuit die imaged through photolithographic means on a semiconductor wafer or slice made of silicon. After manufacture, the silicon wafer is thinned, usually by mechanical means, and the wafer is cut, usually with a diamond saw, to singulate the individual die. The resulting individual integrated circuit has six exposed surfaces. The top surface of the die includes the circuitry images and any passivation layers that have been added to the top layer during wafer fabrication. The present invention describes a method for protecting and insulating all six surfaces of the die to reduce breakage, provide electrical insulation for these layers, and to provide physical surfaces that can be used for bonding one semiconductor die to another for the purpose of stacking die in an interconnected module or component.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Divisional of U.S. application Ser. No. 11/016,558, filed Dec. 17, 2004, titled “Three dimensional six surface conformal die coating”, which claimed priority from U.S. Provisional Application No. 60/561,847, filed Apr. 13, 2004, titled “Three dimensional six surface conformal die coating”, and both of which are hereby incorporated by reference.

BACKGROUND AND SUMMARY

Semiconductor die are typically manufactured as a large group of integrated circuit die imaged through photolithographic means on a semiconductor wafer or slice made of silicon. After manufacture, the silicon wafer is thinned, usually by mechanical means, and the wafer is cut, usually with a diamond saw, to singulate the individual die. The resulting individual integrated circuit has six exposed surfaces. The top surface of the die includes the circuitry images and any passivation layers that have been added to the top layer during wafer fabrication. The present invention describes a method for protecting and insulating all six surfaces of the die to reduce breakage, provide electrical insulation for these layers, and to provide physical surfaces that can be used for bonding one semiconductor die to another for the purpose of stacking die in an interconnected module or component.

The present invention provides the advantages of reducing chipping, cracking, and physical damage to die during die handling and processing operations such as burn-in, test, and assembly. The present invention is useable for any semiconductor chips including, but not limited to memory chips.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a single semiconductor die with original connection pads running down the center of the die, and rerouting lines connecting the original connection pads at the center of the die with new connection pads located at the edges of the die.

FIG. 2 is a diagram illustrating a cross sectional side view of a semiconductor die showing the die coated with a conformal, insulating coating.

FIG. 3 is a diagram illustrating a cross section view of the semiconductor die showing the conformal coating and openings in the conformal coating above the original connection pads which run down the center of the semiconductor die.

FIG. 4 shows a semiconductor die with connection pads around the periphery of the die.

FIG. 5 shows a semiconductor die with peripheral pads, either original or relocated, coated with a conformal insulative coating, and with openings in the insulative coating located above the peripherally located electrical connection pads.

DETAILED DESCRIPTION

Referring to FIG. 1, semiconductor die 10, with original connection pads 60 have had an insulating layer applied to the top surface, 30 of all of the die while the die are still connected together in a wafer form. A metal layer is deposited and defined using photolithography, to reroute the electrical signals from the original connection pads 60 to new locations at the edge of the die. An additional layer of insulating material is optionally applied above the metal layer, and openings are made in the top layer of insulating material at the relocated pad locations at the edge of the semiconductor die, and optionally at the original pad locations down the center of the top surface of the die.

Referring to FIG. 2, the semiconductor die 10, has been thinned by grinding or lapping, and has been singulated from the semiconductor wafer, and said semiconductor die has been coated with a conformal insulating coating 20.

Referring to FIG. 3, openings have been made in the coating 20, above original connection pads 60, of semiconductor die 10. The electrical connection pads in this illustration run down the center of the top surface of the die.

Referring to FIG. 4, this shows a semiconductor die 70 with connection pads 80 located around the periphery of the die top surface.

FIG. 5 shows openings in the conformal coating material at locations 90 on a semiconductor die whose electrical connections are located at the edges of the surface of the die. The electrical connection points may be located anywhere on any of the surfaces of the die, but are typically located on the top surface of the die and are typically either at the peripheral edges of the top surface or down the center of the top surface.

Claims

1. A singulated integrated circuit die including six surfaces, the die being free of permanent attachment and having an electrically insulating material applied to all surfaces.

2. The die as in claim 1 wherein the electrically insulating material is a polymer.

3. The die as in claim 2 wherein the electrically insulating material is parylene.

4. The die as in claim 3, further comprising an opening in the insulating material exposing a feature in an underlying surface.

5. The die as in claim 4 wherein the opening exposes an electrical connection pad in a top surface of the die.

6. The die as in claim 4 wherein the opening exposes an optical emitter or sensor in a top surface of the die.

7. A method for preparing an electrically insulated semiconductor die for use in a component, comprising providing a die having six surfaces, and applying a conformal electrically insulating material onto the die surfaces.

8. The method of claim 7 further comprising, prior to applying the conformal coating, rerouting from original connection pads on the die as provided to new locations at the edge of the die.

9. The method of claim 7 wherein applying the conformal electrically insulating material onto the die surfaces comprises forming a polymer onto the die surfaces.

10. The method of claim 9 wherein applying the conformal electrically insulating material onto the die surfaces comprises forming parylene onto the die surfaces.

11. The method of claim 7, further comprising making openings through the insulating material exposing a feature on the underlying surface.

12. The method of claim 11 wherein exposing a feature on the underlying surface comprises exposing an electrical connection pad.

13. The method of claim 11 wherein exposing a feature on the underlying surface comprises exposing an optical emitter or sensor.

Patent History
Publication number: 20070290377
Type: Application
Filed: Aug 31, 2007
Publication Date: Dec 20, 2007
Applicant: Vertical Circuits, Inc. (Scotts Valley, CA)
Inventors: Al Vindasius (Saratoga, CA), Marc Robinson (San Jose, CA)
Application Number: 11/849,162
Classifications
Current U.S. Class: 257/788.000; 438/127.000; Characterized By Material, E.g., Carbon (epo) (257/E23.117); Encapsulation, E.g., Encapsulation Layer, Coating (epo) (257/E21.502)
International Classification: H01L 23/29 (20060101); H01L 21/56 (20060101);