MOS-GATED DEVICE HAVING A BURIED GATE AND PROCESS FOR FORMING SAME
An improved trench MOS-gated device comprises a monocrystalline semiconductor substrate on which is disposed a doped upper layer. The upper layer includes at an upper surface a plurality of heavily doped body regions having a first polarity and overlying a drain region. The upper layer further includes at its upper surface a plurality of heavily doped source regions having a second polarity opposite that of the body regions. A gate trench extends from the upper surface of the upper layer to the drain region and separates one source region from another. The trench has a floor and sidewalls comprising a layer of dielectric material and contains a conductive gate material filled to a selected level and an isolation layer of dielectric material that overlies the gate material and substantially fills the trench. The upper surface of the overlying layer of dielectric material in the trench is thus substantially coplanar with the upper surface of the upper layer. A process for forming an improved MOS-gate device provides a device whose gate trench is filled to a selected level with a conductive gate material, over which is formed an isolation dielectric layer whose upper surface is substantially coplanar with the upper surface of the upper layer of the device.
Latest Fairchild Semiconductor Corporation Patents:
This application is a continuation of co-pending U.S. Ser. No. 11/091,733 filed Apr. 8, 2005, which is a continuation of Ser. No. 10/039,319 filed Nov. 9, 2001, now U.S. Pat. No. 6,916,712, which is a divisional application of U.S. Ser. No. 09/260,410 filed Mar. 1, 1999 and now U.S. Pat. No. 6,351,009.
FIELD OF THE INVENTIONThe present invention relates to semiconductor devices and, more particularly, to an MOS-gated device and a process for forming same.
BACKGROUND OF THE INVENTIONAn MOS transistor that includes a trench gate structure offers important advantages over a planar transistor for high current, low voltage switching applications. In the latter configuration, constriction occurs at high current flows, an effect that places substantial constraints on the design of a transistor intended for operation under such conditions.
A trench gate of a DMOS device typically includes a trench extending from the source to the drain and having sidewalls and a floor that are each lined with a layer of thermally grown silicon dioxide. The lined trench is filled with doped polysilicon. The structure of the trench gate allows less constricted current flow and, consequently, provides lower values of specific on-resistance. Furthermore, the trench gate makes possible a decreased cell pitch in an MOS channel extending along the vertical sidewalls of the trench from the bottom of the source across the body of the transistor to the drain below. Channel density is thereby increased, which reduces the contribution of the channel to on-resistance. The structure and performance of trench DMOS transistors are discussed in Bulucea and Rossen, “Trench DMOS Transistor Technology for High-Current (100 A Range) Switching,” in Solid-State Electronics, 1991, Vol. 34, No. 5, pp 493-507, the disclosure of which is incorporated herein by reference. In addition to their utility in DMOS devices, trench gates are also advantageously employed in insulated gate bipolar transistors (IGBTs), MOS-controlled thyristors (MCTs), and other MOS-gated devices.
Device 100 includes a doped (depicted as N+) substrate 101 on which is grown a doped epitaxial layer 102. Epitaxial layer 102 includes drain region 103, heavily doped (P+) body regions 104, and P-wells 105. Abutting body regions in epitaxial layer 103 are heavily doped (N+) source regions 106, which are separated from each other by a gate trench 107 that has dielectric sidewalls 108 and floor 109. Gate trench 107 is substantially filled with gate semiconductor material 10. Because the source regions 106 and gate semiconductor material 110 have to be electrically isolated for device 100 to function, they are covered by a dielectric layer 111. Contact openings 112 enable metal 113 to contact body regions 104 and source regions 106.
Contact openings 112 are formed in dielectric layer 111, which typically is a deposited layer of oxide, by conventional mask/etch techniques. The size of device 100 depends on the minimum thickness of dielectric needed for isolation (the lateral distance between a source region 106 and gate trench 107) and on the tolerance capabilities of the mask/etch procedures. The thickness of dielectric layer 111 is determined not only by the minimum required voltage isolation but also on the need to minimize source-to-gate capacitance, which affects device switching speed and switching losses. Switching losses are directly proportional to the capacitance, which is in turn inversely proportional to the dielectric thickness. Therefore there is a typical minimum thickness of about 0.5-0.8 .mu.m for dielectric layer 111 in prior art device 100.
As just noted, the required minimum thickness of dielectric layer 111 imposes limitations on the minimum size of device 100. It would be desirable to be able to reduce the size and improve the efficiency of semiconductor devices. The present invention provides these benefits.
SUMMARY OF THE INVENTIONThe present invention is directed to an improved trench MOS-gated device formed on a monocrystalline semiconductor substrate comprising a doped upper layer. The doped upper layer, includes at an upper surface a plurality of heavily doped body regions having a first polarity and overlying a well region and a drain region. The upper layer further includes at its upper surface a plurality of heavily doped source regions that have a second polarity opposite that of the body regions and extend to a selected depth in the upper layer.
A gate trench extends from the upper surface of the upper layer through the well region to the drain region and separates one source region from a second source region. The trench has a floor and sidewalls comprising a layer of dielectric material and contains a conductive gate material filling the trench to a selected level and an isolation layer of dielectric material that overlies the gate material and substantially fills the trench. The upper surface of the overlying layer of dielectric material in the trench is thus substantially coplanar with the upper surface of the upper layer.
Also in accordance with the present invention is a process for forming an improved, high density, self-aligned trench MOS-gated device. A doped upper layer having an upper surface and an underlying drain region is formed on a substrate, and a well region having a first polarity is formed in the upper layer over the drain region. A gate trench mask is formed on the upper surface of the upper layer, and a plurality of gate trenches extending from the upper surface through the well region to the drain region are etched in the upper layer,
Sidewalls and a floor each comprising a dielectric material are formed in each of the gate trenches, which are filled to a selected level with a conductive gate material. The trench mask is removed, and an isolation layer of dielectric material is formed on the top surface of the upper layer and within the gate trench, where it overlies the gate material and substantially fills the trench. The dielectric layer is removed from the top surface of the upper layer; the dielectric layer remaining within the trench has an upper surface that is substantially coplanar with the upper surface of the upper layer.
A plurality of heavily doped body regions having a first polarity are formed at the upper surface of the upper layer. A source mask is formed on the upper surface, and a plurality of heavily doped source regions having a second polarity and extending to a selected depth into the upper layer are formed in the body regions. Following removal of the source mask, a metal contact to said body and source regions is formed over the upper surface of the upper layer.
The trench MOS-gated device of the present invention, by eliminating the surface area required for gate-source dielectric isolation, enables the size of the device to be substantially reduced. A masking procedure to form contact openings in the dielectric layer is also avoided; the gate trench of the invention is thus self-aligned.
Because gate material 210 is recessed within gate trench 207 to permit the inclusion of dielectric layer 212 of sufficient thickness to provide gate isolation, diffusions to form N+source regions 206 must be deep enough to ensure overlap with gate material 210. Although source regions 206 are shown as having N polarity and body regions 204 are depicted as having P polarity in device 200, it is understood that the polarities of these regions can be reversed from those shown in
Referring to
Also as shown in
Referring to
Gate trenches 207 included in a device of the present invention may have an open-cell stripe topology or a closed-cell cellular topology. Furthermore, in the closed-cell cellular topology, the trenches may have a square or, more preferably, a hexagonal configuration. Although device 200, as schematically depicted in
As shown in
In the formation of device 300, following the planarization of dielectric layer 312 to re-expose surface 314, P+body regions are formed in upper layer 302 by doping. A non-critical source mask (not shown), disposed transversely to trenches 307, is formed on surface 314, and source regions 306 are formed by ion implantation and diffusion. The arrangement of body regions 304 and source regions 306 in arrays 317 separated by gate trenches 307, as depicted for device 300 in
The invention has been described in detail for the purpose of illustration, but it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention, which is defined by the following claims.
Claims
1. A trench MOS-gated device comprising: said trench extending from said upper surface of said upper layer to said drain region, said trench having a floor and sidewalls comprising a layer of dielectric material, and being partially filled with a conductive material to a selected level substantially below said upper surface of said upper layer with the remainder of said partially filled trench being filled with an isolation layer of dielectric material overlying and directly located on said gate material, said overlying layer of dielectric material in said trench having an upper surface that is substantially coplanar with said upper surface of said upper layer.
- a) a substrate comprising doped monocrystalline silicon semiconductor material of a first conductivity type;
- b) a doped upper layer of a second conductivity type opposite to said first conductivity type disposed on said substrate having a plurality of heavily doped source regions of said second conductivity type extending from an upper surface of said upper layer to a selected depth in said upper layer; and
- c) a gate trench separating one of said source regions from a second source region,
2. A trench MOS-gated device comprising: said trench extending from said upper surface of said upper layer to said drain region, said trench having a floor and sidewalls comprising a layer of dielectric material, and being partially filled with a conductive material to a selected level substantially below said upper surface of said upper layer with the remainder of said partially filled trench being filled with an isolation layer of dielectric material overlying and directly located on said gate material, said overlying layer of dielectric material in said trench having an upper surface that is substantially coplanar with said upper surface of said upper layer; and
- a) a substrate comprising doped monocrystalline silicon semiconductor material of a first conductivity type;
- b) a doped upper layer of a second conductivity type opposite to said first conductivity type disposed on said substrate;
- c) a plurality of heavily doped body regions in said upper layer of said second conductivity type;
- d) a plurality of heavily doped source regions extending from an upper surface of said upper layer to a selected depth in said upper layer;
- e) a gate trench separating one of said source regions from a second source region,
- f) said plurality of body regions and said plurality of source regions comprise a plurality of arrays of alternating body regions and source regions wherein one of said arrays is separated from a second of said arrays by said gate trench.
3. (canceled)
4. A process for forming a trench MOS-gated device, said process comprising:
- (a) forming a doped upper layer on a semiconductor substrate, said upper layer having an upper surface and an underlying drain region;
- (b) forming a well region having a first polarity in said upper layer, said well region overlying said drain region;
- (c) forming a gate trench mask on said upper surface of said upper layer;
- (d) forming a gate trench extending from the upper surface of said upper layer through said well region to said drain region, said gate trench having sidewalls and a floor;
- (e) covering said sidewalls and floors with a layer of dielectric material;
- (f) forming gate electrodes in the trenches to a selected level substantially below the upper surface of said upper level with a conductive gate material substantially coplanar with the level of the conductive gate material in the trenches;
- (g) removing said trench mask from the upper surface of said upper layer;
- (h) forming an isolation layer of dielectric material on the upper surface of said upper layer, said isolation layer overlying said gate material;
- (i) removing said isolation layer from the upper surface of said upper layer, a portion of said isolation layer remaining within and substantially filling said trench, and having an upper surface that is proximate to and slightly below the upper surface of said upper layer,
- (j) forming a plurality of heavily doped source regions that extend into the substrate along the sides of the trenches;
- (k) forming a plurality of heavily doped body regions having a first polarity, said body regions overlying the drain region in said upper layer; and
- (l) forming a metal contact to said body and source regions over the upper surface of said upper layer.
Type: Application
Filed: Oct 31, 2007
Publication Date: May 29, 2008
Applicant: Fairchild Semiconductor Corporation (South Portland, ME)
Inventors: Christopher B. Kocon (Plains, PA), Jun Zeng (Torrance, CA)
Application Number: 11/930,371
International Classification: H01L 21/336 (20060101); H01L 29/78 (20060101);