With Recessed Gate (epo) Patents (Class 257/E21.419)
  • Patent number: 9613957
    Abstract: A semiconductor device includes a first active region including at least one first recess; a second active region including at least one second recess; an isolation region including a diffusion barrier that laterally surrounds at least any one active region of the first active region and the second active region; a first recess gate filled in the first recess; and a second recess gate filled in the second recess, wherein the diffusion barrier contacts ends of at least any one of the first recess gate and the second recess gate.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: April 4, 2017
    Assignee: SK Hynix Inc.
    Inventor: Dong-Yean Oh
  • Patent number: 9368600
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming a plurality of trenches in a semiconductor substrate, on opposite sides of a gate electrode of a P-type metal-oxide-semiconductor (PMOS) disposed on the semiconductor substrate. The method further includes forming an embedded silicon germanium layer inside the trenches, and forming a capping layer on the embedded silicon germanium layer, wherein the embedded silicon germanium layer and the capping layer are doped with boron (B).
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: June 14, 2016
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventor: Ajin Tu
  • Patent number: 9252265
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of trenches using a first mask. The trenches include source pickup trenches located in outside a termination area and between two adjacent active areas. First and second conductive regions separated by an intermediate dielectric region are formed using a second mask. A first electrical contact to the first conductive region and a second electrical contact to the second conductive region are formed using a third mask and forming a source metal region. Contacts to a gate metal region are formed using a fourth mask. A semiconductor device includes a source pickup contact located outside a termination region and outside an active region of the device.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: February 2, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hong Chang, Yi Su, Wenjun Li, Limin Weng, Gary Chen, Jongoh Kim, John Chen
  • Patent number: 9012289
    Abstract: A semiconductor device and its manufacturing method are disclosed. The semiconductor device comprises a gate, and source and drain regions on opposite sides of the gate, wherein a portion of a gate dielectric layer located above the channel region is thinner than a portion of the gate dielectric layer located at the overlap region of the drain and the gate. The thicker first thickness portion may ensure that the device can endure a higher voltage at the drain to gate region, while the thinner second thickness portion may ensure excellent performance of the device.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Jinhua Liu
  • Patent number: 8994123
    Abstract: Variation resistant metal-oxide-semiconductor field effect transistors (MOSFETs) are manufactured using a high-K, metal-gate ‘channel-last’ process. A cavity is formed between spacers formed over a well area having separate drain and source areas, and then a recess into the well area is formed. The active region is formed in the recess, comprising an optional narrow highly doped layer, essentially a buried epitaxial layer, over which a second un-doped or lightly doped layer is formed which is a channel epitaxial layer. The high doping beneath the low doped epitaxial layer can be achieved utilizing low-temperature epitaxial growth with single or multiple delta doping, or slab doping. A high-K dielectric stack is formed over the channel epitaxial layer, over which a metal gate is formed within the cavity boundaries. In one embodiment of the invention a cap of poly-silicon or amorphous silicon is added on top of the metal gate.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: March 31, 2015
    Assignee: Gold Standard Simulations Ltd.
    Inventors: Asen Asenov, Gareth Roy
  • Patent number: 8933507
    Abstract: The present disclosure relates to a power MOSFET device having a relatively low resistance hybrid gate electrode that enables good switching performance. In some embodiments, the power MOSFET device has a semiconductor body. An epitaxial layer is disposed on the semiconductor body. A hybrid gate electrode, which controls the flow of electrons between a source electrode and a drain electrode, is located within a trench extending into the epitaxial layer. The hybrid gate electrode has an inner region having a low resistance metal, an outer region having a polysilicon material, and a barrier region disposed between the inner region and the outer region. The low resistance of the inner region provides for a low resistance to the hybrid gate electrode that enables good switching performance for the power MOSFET device.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: January 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Patent number: 8921899
    Abstract: A semiconductor device is provided that includes a fin having a first gate and a second gate formed on a first sidewall of the fin in a first trench, wherein the first gate is formed above the second gate. The device includes a third gate and a fourth gate formed on a second sidewall of the fin in a second trench, wherein the third gate is formed above the fourth gate. Methods of manufacturing and operating the device are also included. A method of operation may include biasing the first gate and the fourth gate to create a current path across the fin.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: December 30, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Werner Juengling, Howard C. Kirsch
  • Patent number: 8907395
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: December 9, 2014
    Assignee: Maxchip Electronics Corp.
    Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
  • Patent number: 8895394
    Abstract: A high voltage vertical field effect transistor device (101) is fabricated in a substrate (102, 104) using angled implantations (116, 120) into trench sidewalls formed above recessed gate poly layers (114) to form self-aligned N+ regions (123) adjacent to the trenches and along an upper region of an elevated substrate. With a trench fill insulator layer (124) formed over the recessed gate poly layers (114), self-aligned P+ body contact regions (128) are implanted into the elevated substrate without counter-doping the self-aligned N+ regions (123), and a subsequent recess etch removes the elevated substrate, leaving self-aligned N+ source regions (135-142) and P+ body contact regions (130-134).
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ganming Qin, Edouard D. de Frésart, Peilin Wang, Pon S. Ku
  • Patent number: 8871592
    Abstract: A method of manufacturing a semiconductor device including a transistor. The method includes forming a channel region by implanting impurity ions of a second conductive type into an element forming region that is formed on one side of a substrate and is partitioned by an element isolation insulating film, forming a trench in said channel region formed on said one side of said substrate, covering side faces and a bottom face of said trench with a gate insulating film by forming said gate insulating film on said one side of said substrate, forming a gate electrode so as to bury an inside of said trench, patterning said gate electrode in a predetermined shape; and forming a source region and a drain region by implanting impurity ions of a first conductive type on both sides of said channel region.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: October 28, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Takehiro Ueda, Hiroshi Kawaguchi
  • Patent number: 8859367
    Abstract: A method of forming a gate construction of a recessed access device includes forming a pair of sidewall spacers laterally over opposing sidewalls of a gate dielectric and elevationally over first conductive gate material. The gate dielectric, the first conductive gate material, and the sidewall spacers are received within a trench formed in semiconductive material. Second conductive gate material is deposited within the semiconductive material trench between the pair of sidewall spacers in electrical connection with the first conductive gate material. Other implementations are disclosed, including recessed access device gate constructions independent of method of manufacture.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jaydip Guha
  • Patent number: 8836024
    Abstract: An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate, wherein the patterned semiconductor layer defines first and second trenches. The electronic device can also include a first conductive structure within the first trench, a gate electrode within the first trench and overlying the first conductive structure, a first insulating member within the second trench, and a second conductive structure within the second trench. The second conductive structure can include a first portion and a second portion overlying the first portion, the first insulating member can be disposed between the patterned semiconductor layer and the first portion of the second conductive structure; and the second portion of the second conductive structure can contact the patterned semiconductor layer at a Schottky region. Processes of forming the electronic device can take advantage of integrating formation of the Schottky region into a contact process flow.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: September 16, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Balaji Padmanabhan, James Sellers
  • Patent number: 8809941
    Abstract: A semiconductor device includes a semiconductor substrate having an active region defined by a device isolation structure. A recessed channel is formed on the semiconductor substrate under the active region. A recessed junction region is formed between the recessed channel and the device isolation structure adjacent to the recessed channel.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 19, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Dong Hwa Shim
  • Patent number: 8802530
    Abstract: A semiconductor power device includes a thick bottom insulator formed in a lower portion of a trench in a semiconductor epitaxial region. An electrically conductive gate electrode is formed in the trench above the bottom insulator. The gate electrode is electrically insulated from the epitaxial region by the bottom insulator and a gate insulator. Charge is deliberately induced in the thick bottom insulator proximate an interface between the bottom insulator and the epitaxial semiconductor region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: August 12, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Xiaobin Wang, Anup Bhalla, Daniel Ng
  • Patent number: 8792060
    Abstract: A liquid crystal display device with a built-in touch screen, which uses a common electrode as a touch-sensing electrode including an intersection of a gate line and a data line to define a pixel region, a bridge line disposed in a central portion of the pixel, an insulating layer formed on the bridge line, a first contact hole disposed through the insulating layer to expose a predetermined portion of an upper surface of the bridge line, a contact metal on the insulating layer and inside the first contact hole, the contact metal electrically connected with the bridge line, a first passivation layer on the contact metal, a second contact hole disposed through the first passivation layer to expose a predetermined portion of an upper surface of the contact metal, a common electrode on the first passivation layer and inside the second contact hole, a conductive line electrically connected with the common electrode, and a second passivation layer on the first passivation layer and the conductive line, wherein the
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: July 29, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Kum Mi Oh, Jae Hoon Park, Han Seok Lee, Hee Sun Shin, Won Keun Park
  • Patent number: 8785279
    Abstract: A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: July 22, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Hamza Yilmaz, Madhur Bobde, Lingpeng Guan, Jun Hu, Jongoh Kim, Yongping Ding
  • Patent number: 8748266
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: June 10, 2014
    Assignees: Renesas Electronics Corporation, Hitachi Ulsi Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Patent number: 8748267
    Abstract: The present invention belongs to the technical field of semiconductor device manufacturing and specifically relates to a method for manufacturing a tunneling field effect transistor with a U-shaped channel. The U-shaped channel can effectively extend the transistor channel length, restrain the generation of leakage current in the transistor, and decrease the chip power consumption. The method for manufacturing a tunneling field effect transistor with a U-shaped channel put forward in the present invention is capable of realizing an extremely narrow U-shaped channel, overcoming the alignment deviation introduced by photoetching, and improving the chip integration degree.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: June 10, 2014
    Assignee: FUDAN University
    Inventors: Pengfei Wang, Xi Lin, Wei Liu, Qingqing Sun, Wei Zhang
  • Patent number: 8709895
    Abstract: The present invention provides a termination structure of a power semiconductor device and a manufacturing method thereof. The power semiconductor device has an active region and a termination region. The termination region surrounds the active region, and the termination structure is disposed in the termination region. The termination structure includes a semiconductor substrate, an insulating layer and a metal layer. The semiconductor substrate has a trench disposed in the termination region. The insulating layer is partially filled into the trench and covers the semiconductor substrate, and a top surface of the insulating layer has a hole. The metal layer is disposed on the insulating layer, and is filled into the hole.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 29, 2014
    Assignee: Sinopower Semiconductor Inc.
    Inventors: Sung-Shan Tai, Hung-Sheng Tsai
  • Patent number: 8703563
    Abstract: A semiconductor device includes a gate electrode, a top source region disposed next to the gate electrode, a drain region disposed below the bottom of the gate electrode, a oxide disposed on top of the source region and the gate electrode, and a doped polysilicon spacer disposed along a sidewall of the source region and a sidewall of the oxide. Methods for manufacturing such device are also disclosed. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 22, 2014
    Assignee: Alpha & Omega Semiconductor Ltd
    Inventors: François Hébert, Anup Bhalla
  • Patent number: 8685822
    Abstract: A semiconductor component that includes gate electrodes and shield electrodes and a method of manufacturing the semiconductor component. A semiconductor material has a device region, a gate contact region, a termination region, and a drain contact region. One or more device trenches is formed in the device region and one or more termination trenches is formed in the edge termination region. Shielding electrodes are formed in portions of the device trenches that are adjacent their floors. A gate dielectric material is formed on the sidewalls of the trenches in the device region and gate electrodes are formed over and electrically isolated from the shielding electrodes. The gate electrodes in the trenches in the device region are connected to the gate electrodes in the trenches in the gate contact region. The shielding electrodes in the trenches in the device region are connected to the shielding electrodes in the termination region.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter A. Burke, Duane B. Barber, Brian Pratt
  • Patent number: 8643090
    Abstract: In various embodiments, a semiconductor device is provided. The semiconductor device may include a first source/drain region, a second source/drain region, an active region electrically coupled between the first source/drain region and the second source/drain region, a trench disposed between the second source/drain region and at least a portion of the active region, a first isolation layer disposed over the bottom and the sidewalls of the trench, electrically conductive material disposed over the isolation layer in the trench, a second isolation layer disposed over the active region, and a gate region disposed over the second isolation layer. The electrically conductive material may be coupled to an electrical contact.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: February 4, 2014
    Assignee: Infineon Technologies AG
    Inventors: Mayank Shrivastava, Harald Gossner, Ramgopal Rao, Maryam Shojaei Baghini
  • Publication number: 20140021534
    Abstract: A method of forming a device is disclosed. A substrate defined with a device region is provided. A gate having an upper and a lower portion is formed in a trench in the substrate in the device region. The upper portion forms a gate electrode and the lower portion forms a gate field plate. First and second surface doped regions are formed adjacent to the gate. The gate field plate introduces vertical reduced surface (RESURF) effect in a drift region of the device.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Purakh Raj VERMA, Liang YI, Yemin DONG
  • Patent number: 8629505
    Abstract: A semiconductor device includes: a drain layer; a drift layer provided on the drain layer; a base region provided on the drift layer; a source region selectively provided on a surface of the base region; a first gate; a field-plate; a second gate; a drain electrode; and a source electrode. The first gate electrode is provided in each of a plurality of first trenches via a first insulating film. The first trenches penetrate from a surface of the source region through the base region and contact the drift layer. The field-plate electrode is provided in the first trench under the first gate electrode via a second insulating film. The second gate electrode is provided in a second trench via a third insulating film. The second trench penetrates from the surface of the source region through the base region and contacts the drift layer between the first trenches.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tatsuya Nishiwaki
  • Patent number: 8629020
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The method includes: forming a trench in a semiconductor substrate of a first conductive type; forming a trench dopant containing layer including a dopant of a second conductive type on a sidewall and a bottom surface of the trench; forming a doping region by diffusing the dopant in the trench dopant containing layer into the semiconductor substrate; and removing the trench dopant containing layer.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: January 14, 2014
    Assignee: Electronics & Telecommunications Research Institute
    Inventors: Sang Gi Kim, Jin-Gun Koo, Seong Wook Yoo, Jong-Moon Park, Jin Ho Lee, Kyoung Il Na, Yil Suk Yang, Jongdae Kim
  • Patent number: 8618601
    Abstract: A semiconductor device formed on a semiconductor substrate having a substrate top surface, includes: a gate trench extending from the substrate top surface into the semiconductor substrate; a gate electrode in the gate trench; a dielectric material disposed over the gate electrode; a body region adjacent to the gate trench; a source region embedded in the body region, at least a portion of the source region extending above the dielectric material; a contact trench that allows contact such as electrical contact between the source region and the body region; and a metal layer disposed over at least a portion of a gate trench opening, at least a portion of the source region, and at least a portion of the contact trench.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 31, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: John Chen
  • Patent number: 8592893
    Abstract: According to one embodiment, a power semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of the first conductivity type and a third semiconductor layer of a second conductivity type, a fourth semiconductor layer, a fifth semiconductor layer, a first and second main electrode, a first and second insulating film and a control electrode. The second and third layers are provided periodically on the first layer. The fourth layer is provided on the third layer. The fifth layer is selectively provided on the fourth layer. The first film is provided on sidewalls of a trench that reaches from a surface of the fifth layer to the second layer. The second film is provided closer to a bottom side of the trench than the first film and has a higher permittivity than the first film. The control electrode is embedded in the trench.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Munehisa Yabuzaki, Shunji Taniuchi, Miho Watanabe
  • Patent number: 8551821
    Abstract: The present invention relates to an enhancement normally off nitride semiconductor device and a method of manufacturing the same. The method includes the steps of: forming a buffer layer on a substrate; forming a first nitride semiconductor layer on the buffer layer; forming a second nitride semiconductor layer on the first nitride semiconductor layer; etching a gate region above the second nitride semiconductor layer up to a predetermined depth of the first nitride semiconductor layer; forming an insulating film on the etched region and the second nitride semiconductor layer; patterning a source/drain region, etching the insulating film in the source/drain region, and forming electrodes in the source/drain region; and forming a gate electrode on the insulating film in the gate region. In this manner, the present invention provides a method of easily implementing a normally off enhancement semiconductor device by originally blocking 2DEG which is generated under a gate region.
    Type: Grant
    Filed: December 4, 2010
    Date of Patent: October 8, 2013
    Assignee: Kyungpook National University Industry-Academic Cooperation Foundation
    Inventors: Jung Hee Lee, Ki Sik Im, Jong Bong Ha
  • Patent number: 8541837
    Abstract: A semiconductor device having a semiconductor body, a source metallization arranged on a first surface of the semiconductor body and a trench including a first trench portion and a second trench portion and extending from the first surface into the semiconductor body is provided. The semiconductor body further includes a pn-junction formed between a first semiconductor region and a second semiconductor region. The first trench portion includes an insulated gate electrode which is connected to the source metallization, and the second trench portion includes a conductive plug which is connected to the source metallization and to the second semiconductor region.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: September 24, 2013
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Publication number: 20130224919
    Abstract: A method for making gate-oxide with step-graded thickness (S-G GOX) in a trenched DMOS device is proposed. First, a substrate is provided and a silicon oxide-silicon nitride-silicon oxide (ONO) protective composite layer is formed atop. Second, an upper interim trench (UIT), an upper trench protection wall (UTPW) and a lower interim trench (LIT) are created into the substrate. Third, the substrate material surrounding the LIT is shaped and oxidized into a desired thick-oxide-layer of thickness T1 and depth D1. Fourth, previously formed UTPW is stripped off from the device in progress, then a thin-gate-oxide of thickness T2 where T2<T1 is formed on the vertical surface of the UIT. Fifth, the UIT and LIT are filled with polysilicon then etched back into a polysilicon layer till its top surface defines a desired thin-gate-oxide depth D2.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Inventors: Yongping Ding, Sik Lui, Anup Bhalla
  • Patent number: 8507978
    Abstract: An integrated structure includes a plurality of split-gate trench MOSFETs. A plurality of trenches is formed within the silicon carbide substrate composition, each trench is lined with a passivation layer, each trench being substantially filled with a first conductive region a second conductive region and an insulating material having a dielectric constant similar to a dielectric constant of the silicon carbide substrate composition. The first conductive region is separated from the passivation layer by the insulating material. The first and second conductive regions form gate regions for each trench MOSFET. The first conductive region is separated from the second conductive region by the passivation layer. A doped body region of a first conductivity type formed at an upper portion of the substrate composition and a doped source region of a second conductivity type formed inside the doped body region.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: August 13, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Madhur Bobde, Lingpeng Guan
  • Patent number: 8502313
    Abstract: This document discusses, among other things, a semiconductor device including a first metal layer coupled to a source region and a second metal layer coupled to a gate structure, wherein at least a portion of the first and second metal layers overlap vertically.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: August 6, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Rohit Dikshit, Mark L. Rinehimer, Michael D. Gruenhagen, Joseph A. Yedinak, Tracie Petersen, Ritu Sodhi, Dan Kinzer, Christopher L. Rexer, Fred C. Session
  • Patent number: 8502305
    Abstract: According to an embodiment, a semiconductor device includes a semiconductor layer of a first conductive type, a base region of a second conductive type provided on the semiconductor layer and a first contact region of a second conductive type provided on the base region. The device includes a gate electrode provided in a trench piercing through the first contact region and the base region, and an interlayer insulating film provided on the gate electrode and containing a first conductive type impurity element. The device further includes a source region of a first conductive type provided between the interlayer insulating film and the first contact region, the source region being in contact with a side face of the interlayer insulating film and extending in the base region.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: August 6, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsuyoshi Ohta, Tatsuya Nishiwaki, Norio Yasuhara, Masatoshi Arai, Takahiro Kawano
  • Patent number: 8502314
    Abstract: This document discusses, among other things, a semiconductor device including first and second conductive layers, the first conductive layer including a gate runner and a drain contact and the second conductive layer including a drain conductor, at least a portion of the drain conductor overlying at least a portion of the gate runner. A first surface of the semiconductor device can include a gate pad coupled to the gate runner and a drain pad coupled to the drain contact and the drain conductor.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: August 6, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Thomas E. Grebs, Jayson S. Preece
  • Patent number: 8492226
    Abstract: A method of forming a device is disclosed. A substrate defined with a device region is provided. A buried doped region is formed in the substrate in the device region. A gate is formed in a trench in the substrate in the device region. A channel of the device is disposed on a sidewall of the trench. The buried doped region is disposed below the gate. A distance from the buried doped region to the channel is a drift length LD of the device. A surface doped region is formed adjacent to the gate.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: July 23, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Shajan Mathew, Purakh Raj Verma
  • Patent number: 8486784
    Abstract: A vertical semiconductor device with improved junction profile and a method of manufacturing the same are provided. The vertical semiconductor device includes a pillar vertically extended from a surface of a semiconductor substrate, a silicon layer formed in a bit line contact region of one sidewall of the pillar, and a junction region formed within a portion of the pillar contacting with the silicon layer.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: July 16, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyun Jung Kim
  • Publication number: 20130168764
    Abstract: A trench semiconductor power device having active cells under gate metal pad to increase total active area for lowering on-resistance is disclosed. The gate metal pad is not only for gate wire bonding but also for active cells disposition. Therefore, the device die can be shrunk so that the number of devices per wafer is increased for die cost reduction. Moreover, the device can be packaged into smaller type package for further cost reduction.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicant: FEEI CHERNG ENTERPRISE CO., LTD.
    Inventor: Fu-Yuan HSIEH
  • Patent number: 8476701
    Abstract: A semiconductor device includes a transistor that has a trench formed in an element forming region of a substrate, a gate insulating film formed on side faces and a bottom face of the trench, a gate electrode formed on the gate insulating film so as to bury the trench, a source region formed on one side in the gate longitude direction, which is formed on the surface of the substrate, and a drain region formed on the other side in the gate longitude direction. Here, the gate electrode is formed so as to be exposed also on the substrate outside the trench, and the gate electrode is disposed so as to cover upper portions of both ends of the trench and so as to form at least one concave portion having a depth reaching the substrate in a center portion.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 2, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takehiro Ueda, Hiroshi Kawaguchi
  • Patent number: 8441067
    Abstract: The power device with low parasitic transistor comprises a recessed transistor and a heavily doped region at a side of a source region of the recessed transistor. The conductive type of the heavily doped region is different from that of the source region. In addition, a contact plug contacts the heavily doped region and connects the heavily doped region electrically. A source wire covers and contacts the source region and the contact plug to make the source region and the heavily doped region have the same electrical potential.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 14, 2013
    Assignee: Sinopower Semiconductor Inc.
    Inventor: Wei-Chieh Lin
  • Patent number: 8426275
    Abstract: A fabrication method of a trenched power MOSFET is provided. A pattern layer having a first opening is formed on a substrate. A portion of the substrate is removed, using the pattern layer as a mask, to form a trench in the substrate. A width of the trench is expanded. A gate oxide layer is formed on a surface of the trench. A portion of the gate oxide layer on a bottom of the trench is removed, using the pattern layer as a mask, to form a second opening in the gate oxide layer. The width of the expanded trench is greater than that of the second opening. A thick oxide layer is formed in the second opening. Heavily doped regions are formed beside the thick oxide layer. A gate is formed in the trench. A body layer surrounding the trench is formed. Sources are formed beside the trench.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: April 23, 2013
    Assignee: Niko Semiconductor Co., Ltd.
    Inventors: Kou-Way Tu, Hsiu-Wen Hsu, Yi-Yun Tsai, Yuan-Shun Chang
  • Patent number: 8421147
    Abstract: A MOS transistor having an increased gate-drain capacitance is described. One embodiment provides a drift zone of a first conduction type. At least one transistor cell has a body zone, a source zone separated from the drift zone by the body zone, and a gate electrode, which is arranged adjacent to the body zone and which is dielectrically insulated from the body zone by a gate dielectric. At least one compensation zone of the first conduction type is arranged in the drift zone. At least one feedback electrode is arranged at a distance from the body zone, which is dielectrically insulated from the drift zone by a feedback dielectric and which is electrically conductively connected to the gate electrode.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 16, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Michael Treu
  • Patent number: 8399325
    Abstract: A method for producing a semiconductor device with an electrode structure includes providing a semiconductor body with a first surface, and with a first sacrificial layer extending in a vertical direction of the semiconductor body from the first surface, and forming a first trench extending from the first surface into the semiconductor body. The first trench is formed at least by removing the sacrificial layer in a section adjacent to the first surface. The method further includes forming a second trench by isotropically etching the semiconductor body in the first trench, forming a dielectric layer which covers sidewalls of the second trench, and forming an electrode on the dielectric layer in the second trench, the electrode and the dielectric layer in the second trench forming the electrode structure.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 19, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Stefan Gamerith, Roman Knoefler, Kurt Sorschag, Anton Mauder
  • Patent number: 8389363
    Abstract: The invention includes methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates. In one implementation, a method of forming a field effect transistor includes forming masking material over semiconductive material of a substrate. A trench is formed through the masking material and into the semiconductive material. Gate dielectric material is formed within the trench in the semiconductive material. Gate material is deposited within the trench in the masking material and within the trench in the semiconductive material over the gate dielectric material. Source/drain regions are formed. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 5, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Young Pil Kim, Kunal R. Parekh
  • Publication number: 20130049102
    Abstract: This invention discloses a semiconductor power device formed in a semiconductor substrate comprises a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region. The semiconductor power device further comprises a body region, a source region and a gate disposed near the top surface of the semiconductor substrate and a drain disposed at a bottom surface of the semiconductor substrate. The semiconductor power device further comprises source trenches opened into the highly doped region filled with a conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises a buried field ring regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Lingpeng Guan, Jun Hu
  • Patent number: 8383501
    Abstract: Vertical field effect transistor semiconductor structures and methods for fabrication of the vertical field effect transistor semiconductor structures provide an array of semiconductor pillars. Each vertical portion of each semiconductor pillar in the array of semiconductor pillars has a linewidth greater than a separation distance to an adjacent semiconductor pillar. Alternatively, the array may comprise semiconductor pillars with different linewidths, optionally within the context of the foregoing linewidth and separation distance limitations. A method for fabricating the array of semiconductor pillars uses a minimally photolithographically dimensioned pillar mask layer that is annularly augmented with at least one spacer layer prior to being used as an etch mask.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Chung H. Lam, Alejandro G. Schrott
  • Patent number: 8373223
    Abstract: The semiconductor device includes a device isolation structure formed in a semiconductor substrate to define an active region, a bridge type channel structure formed in the active region, and a coaxial type gate electrode surrounding the bridge type channel structure of a gate region. The bridge type channel structure is separated from the semiconductor substrate thereunder by a predetermined distance in a vertical direction.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: February 12, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kang Sik Choi
  • Patent number: 8361865
    Abstract: A method of manufacturing a semiconductor device, includes forming a first trench and a second trench in a semiconductor region of a first conductivity type simultaneously, forming a gate insulating film and a gate electrode in the first trench, forming a channel region of a second conductivity type in the semiconductor region, forming a source region of the first conductivity type in the channel region, forming a diffusion region of the first conductivity type which has a higher concentration than that of the semiconductor region in a part of the semiconductor region located immediately under the second trench by implanting impurity ions of the first conductivity type through the second trench, and forming a drain electrode in a part of the second trench.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: January 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Kenya Kobayashi
  • Publication number: 20130015494
    Abstract: A termination structure for a semiconductor device includes an array of termination cells formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches. In other embodiments, semiconductor devices are formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 17, 2013
    Applicant: ALPHA & OMEGA SEMICONDUCTOR, INC.
    Inventor: ALPHA & OMEGA SEMICONDUCTOR, INC.
  • Patent number: 8354713
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: January 15, 2013
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Publication number: 20130009240
    Abstract: A semiconductor device including a drain region of a first conductivity type formed on a semiconductor substrate; an element forming region that is provided on the drain region and that has a concave portion reaching the drain region; a gate electrode disposed in the concave portion; a superjunction structure portion that is disposed in the element forming region and that is formed by alternately arranging a drift layer of the first conductivity type penetrated by the concave portion and a resurf layer of a second conductivity type being in contact with the drift layer on the semiconductor substrate; and a base region of the second conductivity type that is disposed on the superjunction structure portion so as to be in contact with the drift layer in the element forming region, that is penetrated by the concave portion, and that faces the gate electrode with the gate insulating film therebetween.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: ROHM CO., LTD.
    Inventor: Masaru TAKAISHI