HEATSINK MODULE HAVING FIN ASSEMBLY STRUCTURE CORRESPONDING TO HEAT PIPE

- INVENTEC CORPORATION

A heatsink module includes a fan, a fin assembly and a heat pipe. The fan generates an airflow. The heat pipe has a heat absorbing section, a curved section, and a heat dissipating section. The curved section and the heat dissipating section are disposed at a side of the fan to accept the airflow. The fin assembly includes a plurality of heat sink fins, and the heat sink fins are stacked to form a plurality of air ducts to accept the airflow. The heat sink fins each have a penetrating opening corresponding to the curved section and the heat dissipating section. The penetrating openings are combined into a penetrating channel to contact with the curved section and the heat dissipating section.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of Invention

The present invention relates to a heatsink module having a fin assembly structure, and more particularly, to a heatsink module having a fin assembly structure corresponding to a heat pipe.

2. Related Art

Currently, with the changes of the times and increasing demand, common notebooks or relevant electronic products are definitely pursuing the improvement of performance. The result of the improved performance will lead to a high heat energy generated, and thus heat dissipation is an important issue for relevant products. Furthermore, more and more attention has been paid on light body currently, so the space inside the electronic products is getting more and more limited. A common conventional heatsink module includes a fan, a heat pipe, and a fin assembly. As shown in FIG. 1, a fin assembly 100 and a heat pipe 110 are disposed at a side of the fan 120. The fin assembly 100 includes a plurality of heat sink fins 101 with the same shape. As described above, in the conventional art, the heat pipe 110 is disposed outside the fin assembly 100, except the ends, thus occupying a large space. In the limited space inside the body, if the heat pipe occupies too much space, a waste of space occurs. Accordingly, for solving the problem of space, the heat pipe 110 can be disposed inside the fin assembly 100 to save the space occupied by the heat pipe 110 of the heatsink module. However, disposing the heat pipe 110 inside the fin assembly 100 will cause a problem that a part of curved section of the heat pipe 110 cannot cover and contact with the fin assembly 100. Accordingly, this problem will affect the heat transfer performance of the heatsink module and reduce heat dissipation effect.

SUMMARY OF THE INVENTION

For the purpose of solving the problems in the conventional art, the present invention is directed to provide a heatsink module having a fin assembly structure corresponding to a heat pipe, which is space-saving and has preferred heat dissipation effect.

The heatsink module of the present invention includes a fan, a fin assembly, and a heat pipe. The fan generates an airflow. The heat pipe has a heat absorbing section, a curved section, and a heat dissipating section. The curved section and the heat dissipating section are disposed at a side of the fan to accept the airflow. The fin assembly includes a plurality of heat sink fins, and the heat sink fins are stacked to form a plurality of air ducts to accept the airflow. The heat sink fins each have a penetrating openings corresponding to the curved section and the heat dissipating section. The penetrating openings are combined into a penetrating channel to contact with the curved section and the heat dissipating section.

According to the above structure, the fin assembly of the present invention has a penetrating channel simultaneously corresponding to the curved section and the heat dissipating section of the heat pipe, so as to contact with and cover the curved section and the heat dissipating section, such that the curved section and the heat dissipating section of the heat pipe not only can accept the heat dissipating airflow of the fan to dissipate the heat, but also can improve the overall heat transfer performance and enhance the heat dissipation effect by dissipating heat through heat conduction. Furthermore, the problem that the heat pipe occupies space is also solved.

Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description given herein below for illustration only, and thus are not limitative of the present invention, and wherein:

FIG. 1 is a schematic view of a heatsink module in conventional art;

FIG. 2 is a schematic view of a heatsink module of the present invention;

FIG. 3 is a cross-sectional top view of the heatsink module of the present invention; and

FIG. 4 is a schematic view of the fin assembly of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The embodiments of the present invention are illustrated in detail with reference to FIGS. 2 and 3.

As shown in FIG. 2, the heatsink module of the present invention includes a fan 220, a fin assembly 200, and a heat pipe 210. The fan 220 generates an airflow. The fin assembly 200 and the heat pipe 210 are disposed at a side of the fan 220 to accept the airflow. The fin assembly 200 includes a plurality of heat sink fins 201, and the heat sink fins 201 are stacked to form a plurality of air ducts 203 to accept the airflow. The shape and length of the heat sink fins 201 of the fin assembly 200 are corresponding to the shape of the fan 220, and one end of the heat pipe 210 is disposed inside the fin assembly 200.

As shown in FIGS. 3 and 4, the heat pipe 210 includes a heat dissipating section 211, a curved section 212, and a heat absorbing section 213. The heat sink fins 201 each include a penetrating opening 204. The penetrating openings 204 are simultaneously corresponding to the curved section 212 and the heat dissipating section 211 of the heat pipe 210 to be combined into a penetrating channel 202 corresponding to the heat pipe 210. That is to say, the penetrating openings 204 are corresponding to the curved section 212 and the heat dissipating section 211 of the heat pipe 210 to form the penetrating channel 202 corresponding to the heat pipe 210, and the heat dissipating section 211 and the curved section 212 of the heat pipe 210 contact with and cover the penetrating channel 202 inside the fin assembly 200, such that the curved section 212 and the heat dissipating section 211 not only can achieve the purpose of accepting the heat dissipating airflow of the fan to dissipate heat, but also can dissipate heat through heat conduction. Furthermore, in addition to the penetrating channel 202 of the fin assembly 200 covering and contacting with the curved section 212 and the heat dissipating section 211 of the heat pipe 210, the shape and length of the heat sink fins 201 of the fin assembly 200 are corresponding to the shape of the fan 220 to enhance the air guide effect of the air ducts 203.

Furthermore, a heat sink adhesive is disposed between the penetrating channel 202 of the fin assembly 200 and the heat pipe 210 to enhance the heat conduction. The contact relationship between the penetrating channel 202 of the fin assembly 200 and the curved section 212 and the heat dissipating section 211 of the heat pipe 210 includes point contact, line contact and surface contact.

The heat energy is transferred to the air ducts 203 through the airflow by the fan 220. Next, the heat energy is transferred to the penetrating channel 202 formed by the penetrating openings 204 through the heat sink fins 201. Then, the heat energy is transferred to the covered and contacted heat dissipating section 211 and curved section 212 by the penetrating channel 202. And finally, the heat energy is transferred to the heat absorbing section 213 through the curved section 212, thus completing heat dissipation operation.

The problem that the heat pipe in conventional art occupies too much space can be totally solved by the embodiments of the present invention, as well as the problems that the penetrating channel of the fin assembly cannot contact with a part of the curved section of the heat pipe and a part of the curved section cannot cover the penetrating channel. The present invention not only saves the space occupied by the heat pipe, but also enhances the heat conduction performance of the heatsink module to achieve preferred heat dissipation effect by designing the shapes of the curved section and the heat dissipating section of the heat pipe corresponding to the penetrating channel and designing the shape and length of the heat sink fins of the fin assembly corresponding to the shape of the fan.

The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims

1. A heatsink module having a fin assembly structure corresponding to a heat pipe, comprising:

a fan, for generating an airflow;
a heat pipe, having a heat absorbing section, a curved section, and a heat dissipating section, wherein the curved section and the heat dissipating section are disposed at a side of the fan and blow by the airflow; and
a fin assembly, comprising a plurality of heat sink fins, wherein the heat sink fins are stacked to form a plurality of air ducts to accept the airflow, the heat sink fins each have a penetrating opening, the penetrating openings are corresponding to the curved section and the heat dissipating section, the penetrating openings are combined into a penetrating channel, and the penetrating channel contacts with the curved section and the heat dissipating section.

2. The heatsink module as claimed in claim 1, further comprising a heat sink adhesive disposed between the heat sink fins and the heat pipe.

3. The heatsink module as claimed in claim 1, wherein the shape and length of the heat sink fins of the fin assembly are corresponding to the shape of the fan.

Patent History
Publication number: 20090211737
Type: Application
Filed: Feb 22, 2008
Publication Date: Aug 27, 2009
Applicant: INVENTEC CORPORATION (Taipei)
Inventors: Feng-Ku WANG (Taipei), Chih-Kai YANG (Taipei), Wei-Hsin WU (Taipei)
Application Number: 12/035,742
Classifications
Current U.S. Class: Including Means To Move Gaseous Heat Exchange Material (165/104.34)
International Classification: F28D 15/00 (20060101);