HEATSINK MODULE HAVING FIN ASSEMBLY STRUCTURE CORRESPONDING TO HEAT PIPE
A heatsink module includes a fan, a fin assembly and a heat pipe. The fan generates an airflow. The heat pipe has a heat absorbing section, a curved section, and a heat dissipating section. The curved section and the heat dissipating section are disposed at a side of the fan to accept the airflow. The fin assembly includes a plurality of heat sink fins, and the heat sink fins are stacked to form a plurality of air ducts to accept the airflow. The heat sink fins each have a penetrating opening corresponding to the curved section and the heat dissipating section. The penetrating openings are combined into a penetrating channel to contact with the curved section and the heat dissipating section.
Latest INVENTEC CORPORATION Patents:
1. Field of Invention
The present invention relates to a heatsink module having a fin assembly structure, and more particularly, to a heatsink module having a fin assembly structure corresponding to a heat pipe.
2. Related Art
Currently, with the changes of the times and increasing demand, common notebooks or relevant electronic products are definitely pursuing the improvement of performance. The result of the improved performance will lead to a high heat energy generated, and thus heat dissipation is an important issue for relevant products. Furthermore, more and more attention has been paid on light body currently, so the space inside the electronic products is getting more and more limited. A common conventional heatsink module includes a fan, a heat pipe, and a fin assembly. As shown in
For the purpose of solving the problems in the conventional art, the present invention is directed to provide a heatsink module having a fin assembly structure corresponding to a heat pipe, which is space-saving and has preferred heat dissipation effect.
The heatsink module of the present invention includes a fan, a fin assembly, and a heat pipe. The fan generates an airflow. The heat pipe has a heat absorbing section, a curved section, and a heat dissipating section. The curved section and the heat dissipating section are disposed at a side of the fan to accept the airflow. The fin assembly includes a plurality of heat sink fins, and the heat sink fins are stacked to form a plurality of air ducts to accept the airflow. The heat sink fins each have a penetrating openings corresponding to the curved section and the heat dissipating section. The penetrating openings are combined into a penetrating channel to contact with the curved section and the heat dissipating section.
According to the above structure, the fin assembly of the present invention has a penetrating channel simultaneously corresponding to the curved section and the heat dissipating section of the heat pipe, so as to contact with and cover the curved section and the heat dissipating section, such that the curved section and the heat dissipating section of the heat pipe not only can accept the heat dissipating airflow of the fan to dissipate the heat, but also can improve the overall heat transfer performance and enhance the heat dissipation effect by dissipating heat through heat conduction. Furthermore, the problem that the heat pipe occupies space is also solved.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below for illustration only, and thus are not limitative of the present invention, and wherein:
The embodiments of the present invention are illustrated in detail with reference to
As shown in
As shown in
Furthermore, a heat sink adhesive is disposed between the penetrating channel 202 of the fin assembly 200 and the heat pipe 210 to enhance the heat conduction. The contact relationship between the penetrating channel 202 of the fin assembly 200 and the curved section 212 and the heat dissipating section 211 of the heat pipe 210 includes point contact, line contact and surface contact.
The heat energy is transferred to the air ducts 203 through the airflow by the fan 220. Next, the heat energy is transferred to the penetrating channel 202 formed by the penetrating openings 204 through the heat sink fins 201. Then, the heat energy is transferred to the covered and contacted heat dissipating section 211 and curved section 212 by the penetrating channel 202. And finally, the heat energy is transferred to the heat absorbing section 213 through the curved section 212, thus completing heat dissipation operation.
The problem that the heat pipe in conventional art occupies too much space can be totally solved by the embodiments of the present invention, as well as the problems that the penetrating channel of the fin assembly cannot contact with a part of the curved section of the heat pipe and a part of the curved section cannot cover the penetrating channel. The present invention not only saves the space occupied by the heat pipe, but also enhances the heat conduction performance of the heatsink module to achieve preferred heat dissipation effect by designing the shapes of the curved section and the heat dissipating section of the heat pipe corresponding to the penetrating channel and designing the shape and length of the heat sink fins of the fin assembly corresponding to the shape of the fan.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims
1. A heatsink module having a fin assembly structure corresponding to a heat pipe, comprising:
- a fan, for generating an airflow;
- a heat pipe, having a heat absorbing section, a curved section, and a heat dissipating section, wherein the curved section and the heat dissipating section are disposed at a side of the fan and blow by the airflow; and
- a fin assembly, comprising a plurality of heat sink fins, wherein the heat sink fins are stacked to form a plurality of air ducts to accept the airflow, the heat sink fins each have a penetrating opening, the penetrating openings are corresponding to the curved section and the heat dissipating section, the penetrating openings are combined into a penetrating channel, and the penetrating channel contacts with the curved section and the heat dissipating section.
2. The heatsink module as claimed in claim 1, further comprising a heat sink adhesive disposed between the heat sink fins and the heat pipe.
3. The heatsink module as claimed in claim 1, wherein the shape and length of the heat sink fins of the fin assembly are corresponding to the shape of the fan.
Type: Application
Filed: Feb 22, 2008
Publication Date: Aug 27, 2009
Applicant: INVENTEC CORPORATION (Taipei)
Inventors: Feng-Ku WANG (Taipei), Chih-Kai YANG (Taipei), Wei-Hsin WU (Taipei)
Application Number: 12/035,742
International Classification: F28D 15/00 (20060101);