Vapor Chamber with Boiling-Enhanced Multi-Wick Structure
A heat transfer device includes a chamber with a condensable fluid with an evaporative region coupled to a heat source. Within the chamber is a boiling-enhanced multi-wick structure.
Latest Convergence Technologies Limited Patents:
This application is a continuation of U.S. patent application Ser. No. 11/164,429 filed Nov. 22, 2005, entitled “Vapor Chamber with Boiling-Enhanced Multi-Wick Structure,” which claims priority under 35 U.S.C. § 119(e) from U.S. Provisional Patent Application Ser. No. 60/632,704, filed Dec. 1, 2004, and entitled “Vapor Device,” the entire contents of each of which are hereby incorporated by reference.
BACKGROUNDCooling or heat removal has been one of the major obstacles of electronic industry. The heat dissipation increases with the scale of integration, the demand of the high performance, and the multi-functional applications. The development of high performance heat transfer devices becomes one of the major development efforts of the industry.
A heat sink is often used for removing the heat from the device or from the system to the ambient. The performance of heat sink is characterized by the thermal resistance with the lower value representing a higher performance level. This thermal resistance generally consists of the heat-spreading resistance within the heat sink and the convective resistance between the heat sink surface and the ambient environment. To minimize the heat-spreading resistance, highly conductive materials, e.g. copper and aluminum are typically used to make the heat sink. However, this solid diffusion mechanism is generally insufficient to meet the higher cooling requirements of newer electronic devices. Thus, more efficient mechanisms have been developed and evaluated, and vapor chamber has been one of those commonly considered mechanism.
Vapor chambers make use of the heatpipe principle in which heat is carried by the evaporated working fluid and is spread by the vapor flow. The vapor eventually condenses over the cool surfaces, and, as a result, the heat is distributed from the evaporation surface (the interface with the heat source) to the condensation surfaces (the cooling surfaces). If the area of the cooling surfaces is much higher than the evaporating surface, the spreading of heat can be achieved effectively since the phase change (liquid-vapor-liquid) mechanism occurs near isothermal conditions.
SUMMARYThe object of the present invention is to provide a high performance vapor device for heat removal/cooling applications. The overall performance of the vapor device depends on the performance of each components involved in the vapor-liquid cycle (heat spreading mechanism) and the performance of the devices involved on the cooling side (convection mechanism). In order to have high performance, both mechanisms must be addressed.
The vapor-condensate cycle includes condensate flow, boiling, vapor flow, and condensation. In a separate pending patent application, I have disclosed the usage of a Multi-Wick (MW) structure to improve the condensate flow within a vapor chamber (U.S. patent application Ser. No. 10/390,773, which is hereby incorporated by reference). Specifically, the high heat-flux requirement coupled with the size of the vapor chamber creates the illusion of requiring a wicking structure with high wicking-power, but at the same time capable of providing sufficient lift to account for the size of the device. In general, wicking structures that can sustain both high flow-rate and provide large lift require expensive processes. In reality, only the heating (boiling) zone has a high wicking-power requirement, and this wicking-power requirement reduces with increasing distance away from the heating zone. This is because the condensation occurs at a significantly reduced heat-flux, and it is only at the evaporation site where the condensate converges together that must sustain a high condensate flow-rate. Therefore, the wicking structure (referred to as the Multi-Wick structure) can be varied according to the spatial flow rate requirement in order to better balance the forces (capillary force, viscous force, and gravitational force) acting on the liquid.
As this condensate will undergo boiling as it approaches the boiling zone, the object of the present invention is to disclose a Multi-Wick structure adapted for reducing the boiling superheat (the difference between the temperatures of the boiling surface and that of the vapor). Protruded boiling structures have commonly been used in pool boiling for superheat reduction. However, the length scale of the liquid pool is typically larger than that of the protruded structures, and thus the protrusions are generally totally immersed within the liquid pool (liquid-pool boiling). Furthermore, as the liquid near the heating region boils, the neighboring liquid replaces it through a gravity mechanism. In the context of a vapor chamber, this would not only prohibit its operation in anti-gravity orientations, but will also require part of the chamber to be totally flooded with liquid, which may interfere with the vapor and/or condensate flow processes.
In the present invention, boiling enhancement features are adapted into the vapor chamber through a Boiling-Enhanced Multi-Wick (BEMW) structure. With this BEMW structure, the condensate is collected from the condensation sites using a wicking structure with a spatially-varying wicking power, where various boiling enhancement structures are adapted at the heating zone (boiling region) to simultaneously provide wicking power and boiling enhancement. In this manner, the boiling enhancement structure is not totally submerged inside a pool of liquid, and thus could operate in anti-gravity orientations. In addition, this boiling enhancement structure may also act as a 3-D bridging wick, which mayor may not also provide a structural supporting function. In this sense, some aspect of the Boiling-Enhanced Multi-Wick may be considered as a sub-class of the earlier-disclosed Multi-Wick structure.
The boiling enhancement (BE) structure is a protruded wick having a wicking power greater than that at the condensation site. This protruded wick can be in the form of fins so that the liquid can be wicked between the fins towards the tips of the fins. Besides fins, the protruded wick can also be an array of pins. Interlinking structures between fins or pins can also be used to increase the boiling surface-area. Foam/porous structures can also be used in the protruded wick to provide the larger boiling surface-area. In all of these structures, the objective is to provide a heat conduction path from the heating source toward a larger boiling surface, and to saturate this boiling surface (without total immersion) with condensate that is continually supplied by the complex wicking system.
To allow greater flexibility and control in the wicking power, parts of the BEMW structure may be created through a Multi-Layer (ML) structure consisting of layers of materials disposed on top of each other. Each layer does not have to be identical, and the wicking structure may be the result of multiple layers acting in unison. For example, multiple layers of perforated copper sheets may be disposed on top of an un-grooved copper surface to give rise to a groove wicking structure. Similarly, a copper plate may be disposed on top of a grooved copper surface to give rise to a capillary wick. Thus, this Multi-Layer wick may, in general, consists of perforated plates, grooved plates, mesh layers, sintered layer, solid plate, or any combination thereof. Furthermore, the pattern on each layer may have spatially varying properties including varying perforation pattern, varying slits spacing and/or direction, varying porosity, varying pore size, varying mesh size, and any combination thereof.
The vapor chamber can be implemented in different format for different applications. The simplest format is that of a flat heat-spreader where the heat from the heat source is spread to another side, which may be in contact with a fin or another cooling system. Another format is that of a heat sink, where part of the vapor chamber may be in thermal contact with solid fins, or the vapor chamber may consists of base and fin chambers that are functionally connected. In the latter scenario, additional solid fins may be contact with some of the fin chambers to maximize the convecting surfaces. For applications with spatial constraint, the vapor chamber may be in the form of a clip that clips (Vaporclip) onto the printed circuit board (especially for daughter board). The vapor chamber may be further implemented in the form of a casing (Vaporcase) within which electronic devices are functionally disposed. Additionally, the vapor chamber may be implemented as a cabinet within which Vaporcase may be functionally disposed.
As the internal resistance can be highly improved, the convective resistance must be further improved; otherwise the overall performance may still be choked by the convective resistance. Fin structure can be varied from flat fins, pin fins, perforated fins, and porous fins. The interface between the fins and the vapor chamber should be in functional contact. The method of joining the fin structure with the vapor chamber could be any method with or without bonding materials. The method without involving bonding material can be diffusive bonding, welding, or any bonding method known in the arts. The method of bonding with bonding material can be adhesive bonding, soldering, brazing, welding, or any bonding method known in the art. Furthermore, the method can be any combination of them. For better function contact, a “J”-leg may be used at the bonding location of fins for better bonding quality and contact surfaces.
Furthermore, the cooling medium can be air, water, or refrigerant, which depends on applications. For liquid cooling, the heat exchanging portion with the vapor chamber can an open shell type, serial flow type, parallel flow type, or any combination of them.
With different application requirements and constrains, the vapor chamber can be made of metals, plastics, and/or composite materials. The vapor chamber surface may also be in functional contact with different materials, e.g. plastic, metal coating, graphite layer, diamond, carbon-nanotubes, and/or any highly conductive material known in the art.
To allow greater flexibility and control in the wicking power, parts of the BEMW structure may be created through a Multi-Layer (ML) structure.
The vapor chamber may be implemented in different format to meet the requirement of different applications. Besides the flat heat spreader format in
Besides the heat sink format 400 (
Besides air, the cooling medium may be a liquid (such as water or refrigerant) which may be remove heat from the vapor chamber 400 in the format of an exterior shell 710 (
The vapor chamber 800 (
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope. Accordingly, other embodiments are within the scope of the following claims.
Claims
1. A heat transfer device, comprising:
- at least one chamber containing a condensable fluid, the at least one chamber including an evaporation region configured to be coupled to a heat source for vaporizing the condensable fluid, the vaporized condensable fluid collecting as condensate on surfaces within the at least one chamber; and
- a boiling-enhanced multi-wick structure comprising a plurality of interoperable wick structures disposed within the at least one chamber for facilitating flow of the condensate toward the evaporation region and reducing an associated boiling superheat.
2. The heat transfer device of claim 1, wherein the at least one chamber includes a condensation site, and wherein the boiling-enhanced multi-wick structure includes a wick at the condensation site and a boiling-enhanced wick at the evaporation region that has a higher wicking power factor than the wick at the condensation site.
3. The heat transfer device of claim 2, wherein the boiling-enhanced wick at the evaporation region includes at least one of: fins, pins, interlinking structures between fins, interlinking structures between pins, foam, and porous structure.
4. The heat transfer device of claim 3, wherein the porous structure includes mesh.
5. The heat transfer device of claim 1, where at least part of the boiling-enhanced multi-wick structure comprises a multi-layer structure comprising at least one of: a plate, a mesh, at least one groove in a surface of the at least one chamber, a sintered layer, and a porous layer.
6. The heat transfer device of claim 1, wherein the boiling-enhanced multi-wick structure has a spatially varying wick structure that varies in accordance with the condensate's spatial flow requirements as the condensate travels toward the evaporation region.
7. The heat transfer device of claim 6, wherein the boiling-enhanced multi-wick structure includes at least one of: at least one fin, at least one pin, a plate, a mesh, a groove in a surface of at least one chamber, a powder wick, and a foam wick.
8. The heat transfer device of claim 6, wherein the spatially varying wick structure includes a spatially varying quantity of wicking structure.
9. The heat transfer device of claim 1, wherein the boiling-enhanced multi-wick structure includes at least one bridging wick structure interoperably connecting portions of the boiling-enhanced multi-wick structure to facilitate flow of the condensate between the portions of the boiling-enhanced multi-wick structure.
10. The heat transfer device of claim 9, wherein the bridging wick structure comprises at least one of: fins, pins, interlinking structures between fins, interlinking structures between pins, foam, mesh, and porous structure; and wherein a proximity of at least a portion of the bridging wick structure to at least a part of the condensation surface enables the functional return of condensate.
11. The heat transfer device of claim 9, wherein the bridging wick structure comprises an internal support structure for the at least one chamber.
12. The heat transfer device of claim 1, wherein the boiling-enhanced multi-wick structure includes a wick structure with varying porosity.
13. The heat transfer device of claim 1, wherein some part of at least one chamber is in functional contact with at least one fin.
14. The heat transfer device of claim 13, wherein the at least one fin includes at least one opening through which air can flow.
15. The heat transfer device of claim 1, wherein at least one chamber includes a base chamber and a fin chamber.
16. The heat transfer device of claim 15, wherein at least one fin is in functional contact with the fin chamber.
17. The heat transfer device of claim 1, wherein the at least one chamber has a substantially clip configuration.
18. The heat transfer device of claim 1, wherein the at least one chamber forms a part of a casing enclosure.
19. The heat transfer device of claim 1, wherein the at least one chamber forms a part of a cabinet enclosure.
20. The heat transfer device of claim 1, wherein the at least one chamber is in functional contact with a cooling liquid.
21. The heat transfer device of claim 1, wherein part of the at least one chamber is constructed out of at least one of: metal, plastic, metal coated plastic, graphite, diamond and carbon-nanotubes.
22. The heat transfer device of claim 1, wherein the at least one chamber includes an internal support structure to prevent collapse of the at least one chamber.
23. A method for transferring heat from a heat source, the method comprising:
- receiving heat in a heat device from the heat source, the heat device comprising at least one chamber containing a condensable fluid, the at least one chamber including an evaporation region configured to be coupled to the heat source; and a boiling-enhanced multi-wick structure comprising a plurality of interoperable wick structures disposed within the at least one chamber for facilitating flow of the condensate toward the evaporation region and reducing an associated boiling superheat; and
- vaporizing the condensable fluid in the at least one chamber, the vaporized condensable fluid collecting as condensate on surfaces within the at least one chamber.
Type: Application
Filed: Sep 29, 2009
Publication Date: Jan 28, 2010
Applicant: Convergence Technologies Limited (Hong Kong)
Inventor: Wing Ming Siu (Hong Kong)
Application Number: 12/569,406
International Classification: F28D 15/04 (20060101); H05K 7/20 (20060101);