OBJECT MOVING APPARATUS, OBJECT PROCESSING APPARATUS, EXPOSURE APPARATUS, OBJECT INSPECTING APPARATUS AND DEVICE MANUFACTURING METHOD
A substrate is held by adsorption by a substrate holding frame that is formed into a frame shape and is lightweight, and the substrate holding frame is driven along a horizontal plane by a drive unit that includes a linear motor. Below the substrate holding frame, a plurality of air levitation units are placed that support by levitation the substrate in a noncontact manner such that the substrate is substantially horizontal, by jetting air to the lower surface of the substrate. Since the plurality of air levitation units cover a movement range of the substrate holding frame, the drive unit can guide the substrate holding frame (substrate) along the horizontal plane at high speed and with high precision.
Latest Nikon Patents:
- Detection device and program
- Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
- Processing system, processing method, computer program, recording medium, and control apparatus
- Substrate bonding apparatus and substrate bonding method
- Measurement device and measurement method, exposure apparatus and exposure method, and device manufacturing method
This non-provisional application claims the benefit of Provisional Application No 61/235,490 filed Aug. 20, 2009, the disclosure of which is hereby incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to object moving apparatuses, object processing apparatuses, exposure apparatuses, object inspecting apparatuses and device manufacturing methods, and more particularly to an object moving apparatus that moves a tabular object placed along a predetermined two-dimensional plane, an object processing apparatus that performs predetermined processing to the object that is moved by the object moving apparatus, an exposure apparatus that forms a predetermined pattern by exposing the object moved by the object moving apparatus, an object inspecting apparatus that inspects the object moved by the object moving apparatus, and a device manufacturing method that uses the object processing apparatus or the exposure apparatus.
2. Description of the Background Art
Conventionally, in a lithography process for manufacturing electron devices (microdevices) such as liquid crystal display elements or semiconductor devices (integrated circuits or the like), an exposure apparatus such as a projection exposure apparatus by a step-and-repeat method (a so-called stepper) or a projection exposure apparatus by a step-and-scan method (a so-called scanning stepper (which is also called a scanner)) is mainly used.
In this type of the exposure apparatus, a substrate such as a glass plate or a wafer whose surface is coated with a photosensitive agent (hereinafter, generically referred to as a substrate), which serves as an exposure subject, is mounted on a substrate stage device. And, exposure light is irradiated on a mask (or a reticle) on which a circuit pattern formed, and the exposure light via the mask is irradiated on a substrate via an optical system such as a projection lens, and thereby the circuit pattern is transferred onto the substrate (e.g. refer to PCT International Publication No. 2008/129762 (the corresponding U.S. Patent Application Publication No. 2010/0010950)).
In recent years, however, a substrate that is an exposure subject in an exposure apparatus, especially, a substrate for liquid crystal display element (a rectangular glass substrate) has tended to grow in size, for example, the length of a side of the substrate has been increased to 3 m or more, and accordingly, a stage device of the exposure apparatus has also grown in size, and its weight has also increased. Therefore, the development of a stage device has been desired that can guide an exposure subject (substrate) at high speed and with high precision, and further, has a simple configuration with which the size and weight can be reduced.
SUMMARY OF THE INVENTIONAccording to a first aspect of the present invention, there is provided an object moving apparatus that moves a tabular object placed along a predetermined two-dimensional plane that includes a first axis and a second axis orthogonal to each other, the apparatus comprising: a movable body that holds an end of the object and is movable along the two-dimensional plane; a drive device that drives the movable body at least in one axial direction within the two-dimensional plane; and a noncontact support device that supports the object in a noncontact manner from below, with its support surface made to be opposed to a lower surface of the object, when the movable body is driven by the drive device.
With this apparatus, the end of the tabular object is held by the movable body and the movable body is driven by the drive device, and thereby the tabular object moves along a predetermined two-dimensional plane. Further, since the object is supported from below by the noncontact support device, downward deformation (bending) of the object owing to the self weight is restrained although only the end of the object is supported by the movable body. Consequently, the object can be guided along the predetermined two-dimensional plane with high accuracy. Further, since the noncontact support device supports the object in a noncontact manner, frictional resistance is not generated when the object moves along the predetermined two-dimensional plane. Consequently, the drive device can drive a system composed of the movable body and the object at high speed and with high precision. Further, since, the configurations of the movable body and the drive device can be simplified, the object moving apparatus as a whole can be reduced in size and weight.
According to a second aspect of the present invention, there is provided an object processing apparatus, comprising: the object moving apparatus of the present invention; and an executing device that executes a predetermined operation on a section, held by the adjustment device, of the object from a side opposite to the adjustment device, in order to perform predetermined processing on the object.
With this apparatus, since a predetermined operation is executed on the object that is guided along a predetermined two-dimensional plane by the object moving apparatus of the present invention, predetermined processing can be performed on the object at high speed and with high accuracy.
According to a third aspect of the present invention, there is provided a first exposure apparatus, comprising: the object moving apparatus of the present invention; and a pattern forming apparatus that forms a predetermined pattern on the object by exposing the object with an energy beam.
With this apparatus, since exposure is performed, using an energy beam, on the object that is guided along a predetermined two-dimensional plane by the object moving apparatus of the present invention, a predetermined pattern can be formed on the object at high speed and with high precision.
According to a fourth aspect of the present invention, there is provided an object inspecting apparatus, comprising; the object moving apparatus of the present invention; and an imaging section that picks up an image of a surface of the object to inspect the object.
With this apparatus, since the object that is subject to inspection is guided along a predetermined two-dimensional plane by the object moving apparatus of the present invention at high speed and with high precision, the inspection of the object can efficiently be performed.
According to a fifth aspect of the present invention, there is provided a second exposure apparatus that forms a predetermined pattern on an object by exposing the object with an energy beam, the apparatus comprising: a movable body which holds an end of a tabular object placed along a predetermined two-dimensional plane that includes a first axis and a second axis orthogonal to each other, and which is movable along the two-dimensional plane; a drive device that drives the movable body at least in one axial direction within the two-dimensional plane; and a noncontact support device that supports the object in a noncontact manner from below, when the movable body is driven by the drive device.
With this apparatus, the end of the tabular object is held by the movable body and the movable body is driven by the drive device, and thereby the object moves along a predetermined two-dimensional plane. Further, since the object is supported from below by the noncontact support device, the downward deformation (bending) of the object because of its empty weight is restrained although only the end of the object is supported by the movable body. Consequently, the object can be guided along the predetermined two-dimensional plane with high accuracy. Further, since the noncontact support device supports the object in a noncontact manner, frictional resistance is not generated when the object moves along the predetermined two-dimensional plane. Consequently, the drive device can drive a system composed of the movable body and the object at high speed and with high precision. Further, exposure is performed on the object using an energy beam, it becomes possible to form a predetermined pattern on the object at high speed and with high precision.
According to a sixth aspect of the present invention, there is provided a third exposure apparatus that forms a predetermined pattern on an object by exposing the object with an energy beam, the apparatus comprising: an optical system that irradiates the energy beam via the pattern on a partial area within a predetermined two-dimensional plane parallel to a horizontal plane; a drive device that drives a tabular object placed along the two-dimensional plane, at least in one axial direction within a predetermined area that includes the partial area within the two-dimensional plane; and a fixed-point stage that holds a section, including the partial area on which the energy beam is irradiated, of the object in a noncontact state from below the object, and that adjusts a position of the section in a direction intersecting the two-dimensional plane, when the object is driven by the drive device.
With this apparatus, the drive device drives the tabular object placed along the two-dimensional plane, at least in one axial direction within the predetermined area within the two-dimensional plane that includes the partial area on which an energy beam via the pattern is irradiated by the optical system. On the driving, the section, which includes the partial area on which the energy beam is irradiated, of the object is held in a noncontact manner from below, by especially the fixed-point stage, and the position of the section in the direction intersecting the two-dimensional plane is adjusted. Consequently, the object can be exposed with high accuracy, Further, since the fixed-point stage adjusts only the portion, irradiated with the energy beam, of the object in a pinpoint manner, the apparatus configuration can be simplified.
According to a seventh aspect of the present invention, there is provided a device manufacturing method, comprising: exposing the object using the object processing apparatus or the exposure apparatus of the present invention; and developing the exposed object.
In this case, there is provided a manufacturing method of manufacturing a flat-panel display as a device, by using a substrate for a flat-panel display as an object.
According to an eighth aspect of the present invention, there is provided an exposure method of forming a predetermined pattern on an object by exposing the object with an energy beam, the method comprising: driving a tabular object placed along a two-dimensional plane parallel to a horizontal plane, at least in one axial direction within a predetermined area, which includes a partial area on which the energy beam via the pattern is irradiated by an optical system, within the predetermined two-dimensional plane; and holding a section that includes the partial area, on which the energy beam is irradiated, of the object in a noncontact state from below the object, and adjusting a position of the section in a direction intersecting the two-dimensional plane, when the object is driven.
With this method, the tabular object placed along the two-dimensional plane is driven at least in one axial direction within a predetermined area within the two-dimensional plane that includes the partial area on which an energy beam via the pattern is irradiated by the optical system. On the driving, the section, including the partial area on which the energy beam is irradiated, of the object is held in a noncontact manner, especially from below, and the position of the section in the direction intersecting the two-dimensional plane is adjusted. Consequently, the object can be exposed with high accuracy.
According to a ninth aspect of the present invention, there is provided a device manufacturing method, comprising: exposing the object the exposure method of the present invention; and developing the exposed object.
BRIEF DESCRIPTION OF DRAWINGS
In the accompanying drawings;
A first embodiment of the present invention is described below, with reference to
As shown in
Illumination system IOP is configured similar to the illumination system that is disclosed in, for example, U.S. Pat. No. 6,552,775 and the like. More specifically, illumination system IOP irradiates mask M with a light emitted from a light source that is not illustrated (e.g. a mercury lamp), as an illumination light for exposure (illumination light) IL, via a reflection mirror, a dichroic mirror, a shutter, a wavelength selecting filter, various types of lenses and the like, which are not illustrated. As illumination light IL, for example, alight such as an i-line (with a wavelength of 365 nm), a g-line (with a wavelength of 436 nm) or an h-line (with a wavelength of 405 nm) (or a synthetic light of the i-line, the g-line and the h-line described above) is used. Further, the wavelength of illumination light IL can be appropriately switched by the wavelength selecting filter, for example, according to the required resolution.
On mask stage MST, mask M having a pattern surface (the lower surface in
Projection optical system PL is supported below mask stage MST in
Therefore, when an illumination area on mask M is illuminated with illumination light IL from illumination system IOP, by illumination lights IL that have passed through mask M whose pattern surface is placed substantially coincident with the first plane (object plane) of projection optical system PL, a projected image (partial erected image) of a circuit pattern of mask M within the illumination area is formed on an irradiation area (exposure area IA) of illumination light IL, which is conjugate to the illumination area, on substrate P which is placed on the second plane (image plane) side of projection optical system PL and whose surface is coated with a resist (sensitive agent), via projection optical system PL. Then, by moving mask M relative to the illumination area (illumination light IL) in the scanning direction (X-axis direction) and also moving substrate relative to exposure area IA (illumination light IL) in the scanning direction (X-axis direction) by synchronous drive of mask stage MST and substrate stage device PST, scanning exposure of one shot area (divided area) on substrate P is performed, and a pattern of mask M (mask pattern) is transferred onto the shot area. More specifically, in the present embodiment, a pattern of mask M is generated on substrate P by illumination system IOP and projection optical system PL, and the pattern is formed on substrate P by exposure of a sensitive layer (resist layer) on substrate P with illumination light IL.
As disclosed in, for example, U.S. Patent Application Publication No. 2008/0030702 and the like, body BD has barrel surface plate 31 described earlier, and a pair of support walls 32 that support the ends on the +Y side and the −Y side of barrel surface plate 31 from below, on a floor surface F. Each of the pair of support walls 32 is supported on floor surface E via a vibration isolation table 34 that includes, for example, an air spring, and body BD is separated from floor surface F in terms of vibration. Further, between the pair of support walls 32, a Y beam 33 made up of a member having a rectangular sectional shape (see
Substrate stage device PST is equipped with surface plate 12 installed on floor surface F, a fixed-point stage 40 (see
As shown in
Fixed-point stage 40 is placed at a position that is slightly on the −X side from the center on surface plate 12. Further, as shown in
Weight canceller 42 is equipped with a case 43, for example, fixed to Y beam 33, an air spring 44 housed in the lowermost section inside case 43, and a Z slider 45 supported by air spring 44. Case 43 is made up of a cylinder-like member having a bottom which is opened on the +Z side. Air spring 44 has a bellows 44a made up of a hollow member formed with a rubber-based material, and a pair of plates 44b (e.g. metal plates) parallel to the XY plane that is placed on (on the +Z side of) and under (on the −Z side of) bellows 44a. The inside of bellows 44a is set to be a positive pressure space whose atmospheric pressure is higher compared with the outside, because a gas is supplied from a gas supplying device that is not illustrated. Weight canceller 42 reduces the load on the plurality of Z-VCMs by cancelling out the weight (a downward force (in the −Z direction) owing to the gravitational acceleration) of substrate P, air chuck unit 80, Z slider 45 and the like with an upward force (in the +Z direction) generated by air spring 44.
Z slider 45 is made up of a columnar member arranged extending parallel to the Z-axis whose lower end is fixed to plate 44b placed on the +Z side of air spring 44. Z slider 45 is connected to the inner wall surface of case 43 via a plurality of parallel plate springs 46. Parallel plate spring 46 has a pair of plate springs parallel to the XY plane that are placed apart in the vertical direction. Parallel plate springs 46 connect Z slider 45 and case 43 at, for example, four positions in total which are positions on the +X side, the −X side, the +Y side and the −Y side of Z slider 45 (the illustration of the parallel plate springs on the +Y side and the −Y side of Z slider 95 is omitted). While relative movement of Z slider 45 with respect to case 43 in directions parallel to the XY plane is restricted owing to the stiffness (extensional stiffness) of the respective parallel plate springs 46, Z slider 45 can be relatively moved with a minute stroke with respect to case 43 in the Z-axis direction owing to the flexibility of the respective parallel plate springs 46. Consequently, Z slider 45 vertically moves with respect to Y beam 33 by the pressure of a gas within bellows 44a being adjusted. Incidentally, a member that generates an upward force used to cancel the weight of substrate P is not limited to the air spring (bellows) described above, but can be an air cylinder, a coil spring, or the like. Further, as a member that restricts the position of the Z slider within the XY plane, for example, a noncontact thrust bearing (e.g. a static gas bearing such as an air bearing) whose bearing surface is opposed to the side surface of the Z slider, or the like can also be used (refer to PCT International Publication No. 2008/129762 (the corresponding U.S. Patent Application Publication No. 2010/0018950)).
Air chuck unit 80 includes a chuck main body 81 that holds by adsorption a portion that corresponds to exposure area IA (portion subject to exposure), of substrate P in a noncontact manner from the lower surface side of substrate P, and a base 82 that supports chuck main body 81 from below. The upper surface (the surface on the +Z side) of chuck main body 81 has a rectangular shape with the Y-axis direction serving as its longitudinal direction in a planar view (see
Chuck main body 81 has a plurality of gas jetting ports, which are not illustrated, on its upper surface, and supports substrate P by levitation by jetting a gas supplied from the gas supplying device that is not illustrated, for example, a high-pressure gas toward the lower surface of substrate P. Furthermore, chuck main body 81 has a plurality of gas suctioning ports, which are not illustrated, on the upper surface. A gas suctioning device (vacuum device) that is not illustrated is connected to chuck main body 81, and the gas suctioning device suctions the gas between the upper surface of chuck main body 81 and the lower surface of substrate P via the gas suctioning ports of chuck main body 81, and generates the negative pressure between chuck main body 81 and substrate P. Air chuck unit 80 holds substrate P by adsorption in a noncontact manner using a balance between the pressure of the gas jetted from chuck main body 81 to the lower surface of substrate P and the negative pressure generated when the gas between chuck main body 81 and the lower surface of substrate P is suctioned. In this manner, since air chuck unit 80 places so-called preload on substrate P, the stiffness of the gas (air) membrane formed between chuck main body 81 and substrate P can be increased, and accordingly, even if substrate P has deformation or warpage, the portion subject to exposure, which is located directly under projection optical system PL, of substrate P can surely be redressed along the holding surface of chuck main body 81. However, since air chuck unit 80 does not restrict the position of substrate P within the XY plane, substrate P can relatively move in each of the X-axis direction (scan direction) and the Y-axis direction (step direction) with respect to illumination light IL (see
As shown in
Referring back to
One each of a plurality, four in this embodiment, of the Z-VCMs is arranged on the +X side, the −X side, the +Y side and the −Y side of weight canceller 42 (as for the Z-VCM on the −Y side, see
Base frame 85 includes a main section 85a made up of a plate-shaped member formed so as to have an annular shape in a planar view and a plurality of leg sections 85b that support main section 85a from below on surface plate 12. Main section 85a is placed above Y beam 33 and weight canceller 42 is inserted in an opening section formed in the center portion of main section 85a. Therefore, main section 85a is noncontact with each of Y beam 33 and weight canceller 42. Each of the plurality (three or more, in this case) of leg sections 85b is made up of a member arranged extending parallel to the Z-axis, and the +Z side end of leg section 85b is connected to main section 85a and the −Z side end is fixed to surface plate 12. The plurality of leg section 85b are respectively inserted in a plurality of through-holes 33a, which are formed in Y beam 33 so as to respectively correspond to the plurality of leg sections 85b and which penetrate in the Z-axis direction, and the plurality of leg section 85b are noncontact with Y beam 33.
Z mover 48 is made up of a member having an inverse U-like sectional shape and has a magnetic unit 49 including magnets on each of a pair of opposed surfaces. Meanwhile, Z stator 47 has a coil unit including coils (the illustration is omitted) and the coil unit is inserted between a pair of magnetic units 49. The magnitude and the direction of the electric current supplied to the coils of Z stator 47 are controlled by a main controller that is not illustrated, and when the electric current is supplied to the coils of the coil unit, Z mover 48 (i.e. air chuck unit 80) is driven with respect to Z stator 47 (i.e. base frame 85) in the Z-axis direction by the electromagnetic force (Lorentz force) generated by the electromagnetic interaction between the coil unit and the magnetic units. The main controller, which is not illustrated, drives (vertically moves) air chuck unit 80 in the Z-axis direction by synchronously controlling the four Z-VCMs. Further, the main controller swings air chuck unit 80 in arbitrary directions with respect to the XY plane (drives air chuck unit 80 in the θx direction and the θy direction) by appropriately controlling the magnitude and the direction of the electric current supplied to each of the coils that the four Z stators 47 have. With this operation, fixed-point stage 40 adjusts at least one position of the position in the Z-axis direction and the position in the θx and the θy directions of the portion subject to exposure of substrate P. Incidentally, while each of the X-axis VCMs, the Y-axis VCMs and the Z-axis VCM in the present embodiment is a voice coil motor by a moving magnet type in which the mover has the magnetic unit, this is not intended to be limiting, and each of the VCMs can be a voice coil motor by a moving coil type in which the mover has the coil unit. Further, the drive method can be drive methods other than the Lorentz force drive method.
In this case, since Z stator 47 of each of the four Z-VCMs is mounted on base frame 85, the reaction force of the drive force which acts on Z stator 47 when air chuck unit 80 is driven in the Z-axis direction, or the ex direction and the θy direction using the four Z-VCMs is not transmitted to Y beam 33. Consequently, when air chuck unit 80 is driven using the Z-VCMs, the operation of weight canceller 42 is not affected at all. Further, because the reaction force of the drive force is not transmitted to body BD that has Y beam 33 as well, the reaction force of the drive force does not affect projection optical system PL and the like when air chuck unit 80 is driven using the Z-VCMs. Incidentally, the number of the Z-VCMs can be three if the three Z-VCMs are arranged, for example, at three noncollinear positions, because the Z-VCMs only should vertically move air chuck unit 80 along the Z-axis direction and swing the air chuck unit in arbitrary directions with respect to the XY plane.
Positional information of air chuck unit 80 that is driven by the Z-VCMs is obtained using a plurality, e.g. four in the embodiment, of Z sensors 86. One each of Z sensors 86 is arranged on the +X side, the −X side, the +Y side and the −Y side of weight canceller 42 so as to correspond to the four Z-VCMs (the illustration of the Z sensors on the +Y side and on the −Y side are omitted). Accordingly, in the present embodiment, the drive point (the point of action of the drive force) by the Z-VCMs on a driven object (in this case, air chuck unit 80) that is driven by the Z-VCMs and the measurement points by Z sensors 86 are made to be closely arranged, and thereby the stiffness of the driven object between the measurement points and the drive point is increased, which increases the controllability of Z sensors 86. More specifically, Z sensors 86 output the accurate measurement values that correspond to the drive distance by the driven object, thereby decreasing the positioning time. It is desirable for Z sensors 86 to have a short sampling period, from the viewpoint of increasing the controllability.
The four Z sensors 86 are substantially the same sensors. Z sensor 86 configures, together with a target 87 fixed to the lower surface of base 82 of air chuck unit 80, a position sensor by, for example, a capacitance method (or an eddy current method) that obtains the positional information of air chuck unit 80 in the Z-axis direction with Y beam 33 serving as a reference. The main controller, which is not illustrated, constantly obtains positional information of air chuck unit 80 in the Z-axis direction and each of the θx and θy directions based on the outputs of the four Z sensors 86, and controls the position of the upper surface of air chuck unit 80 by appropriately controlling the four Z-VCMs based on the measurement values. In this case, the final position of air chuck unit 80 is controlled such that the exposure surface (e.g. the resist surface to be the upper surface) of substrate P that passes close to above air chuck unit 80 substantially coincides with the focal position of projection optical system PL (i.e. is within a depth of focus of projection optical system PL) at all times. While monitoring the position of the upper surface (the surface position) of substrate P with a surface position measuring system (autofocus device) that is not illustrated, the main controller, which is not illustrated, drives and controls air chuck unit 80 using the positional information from Z sensors 86 that have high controllability such that the upper surface of substrate P is constantly located within a depth of focus of projection optical system PL (such that projection optical system PL is focused on the upper surface of substrate P at all times). In this case, the surface position measuring system (autofocus device) has a plurality of measurement points whose positions in the Y-axis direction are different within exposure area IA. For example, at least one measurement point is placed in each projection area. In this case, the plurality of measurement points are placed in two rows spaced apart in the X-axis direction, in accordance with the zigzag-shaped placement of the plurality of projection areas. Consequently, based on the measurement values of the plurality of measurement points (the surface positions), the pitching amount (θy rotation) and the rolling amount (θx rotation) of substrate P can be obtained, in addition to the Z-position of the substrate P surface of exposure area IA portion. Further, the surface position measuring system can have a measurement point on the outer side of exposure area IA in the Y-axis direction (non-scanning direction), separately from or in addition to the plurality of measurement points. In this case, by using the measurement values of the two measurement points located outermost in the Y-axis direction that include the measurement point located on the outer side, it becomes possible to more accurately obtain the rolling amount (θx rotation). Further, the surface position measuring system can have another measurement point at a position slightly away in the X-axis direction (scanning direction) on the outer side of exposure area IA. In this case, so-called read-ahead control of focus/leveling of substrate P becomes possible. Besides, instead of or in addition to the plurality of measurement points at least one of which is placed in each projection area, the surface position measuring system can have a plurality of measurement points disposed in the Y-axis direction at positions away from exposure area IA in the X-axis direction (scanning direction) (the placement area of such plurality of measurement points corresponds to the position of exposure area IA in the Y-axis direction). In such a case, it becomes possible to perform the focus mapping that acquires the distribution of surface position of substrate P in advance, prior to exposure start, for example, during alignment measurement. During the exposure, the focus/leveling control of substrate P is performed using information obtained in the focus mapping. The focus mapping of a substrate and focus/leveling control of the substrate during exposure using the information of the focus mapping are disclosed in detail in, for example, U.S. Patent Application Publication No. 2008/0088843 and the like.
Incidentally, the number of the Z sensors can be three if the three Z sensors are arranged, for example, at three noncollinear positions, because the Z sensors only should obtain positional information of air chuck unit 80 in the Z-axis direction and each of the θx and θy directions.
The plurality of air levitation units 50 (e.g. 34 units in this embodiment) prevent the vibration from the outside from being transmitted to substrate P, preventing substrate P from deforming (bending) and breaking because of the self weight, restraining occurrence of size error in each of the X and Y directions (or positional deviation within the XY plane) of substrate P that is caused by bending of substrate P in the Z-axis direction because of the self weight, and so on, by supporting substrate P (in this case, an area excluding the portion subject to exposure of substrate P that is held by fixed-point stage 40 described previously) from below in a noncontact manner such that substrate P is maintained roughly parallel to a horizontal plane.
The plurality of air levitation units 50 are substantially the same air levitation units except that their placement positions are different. In the present embodiment, as shown in
As shown in
Support section 52 is made up of a plate-shaped member having a rectangular shape in a planar view, and its lower surface is supported by the pair of leg sections 53. Incidentally, the leg sections of a pair (two) of air levitation units 50 arranged on the +Y side and the −Y side of fixed-point stage 40, respectively, are configured so as not to come in contact with Y beam 33 (e.g. the leg sections are each formed into an inverse U-like shape and placed astride Y beam 33). Incidentally, the number and the placement of the plurality of the air levitation units are not limited to those described above as examples, and the number and the placement can appropriately be changed in accordance with, for example, the size, shape, weight and movable range of substrate P or the capability of each air levitation unit, or the like. Further, the shape of the support surface (gas jetting surface) of each of the air levitation units, the distance between the adjacent air levitation units and the like are also not limited in particular. The point is that the air levitation units should be placed so as to cover the entire area of a movable range where substrate P can move (or an area slightly larger than the movable range).
As shown in
On the upper surface of X frame member 61x on the −Y side, a Y movable mirror 62y having a reflection surface orthogonal to the Y-axis on its −Y side surface is fixed. And, on the upper surface of Y frame member 61y on the −X side, an X movable mirror 62x having a reflection surface orthogonal to the X-axis on its −X side surface is fixed. Positional information within the XY plane (including rotational information in the θz direction) of substrate holding frame 60 (i.e. substrate P) is constantly detected at a resolution of, for example, around 0.25 nm with a laser interferometer system that includes a plurality, e.g. two, of X laser interferometers 63x that irradiate the reflection surface of X movable mirror 62x with measurement beams and a plurality, e.g. two, of Y laser interferometers 63y that irradiate the reflection surface of Y movable mirror 62y with measurement beams. X laser interferometers 63x and Y laser interferometers 63y are fixed to body BD (not illustrated in
Substrate holding frame 60 has a plurality, e.g. four, of holding units 65 that hold the end (the outer peripheral portion) of substrate P by vacuum adsorption from below. Two each of the four holding units 65 are attached to the opposed surfaces of the pair of X frame members 61x that are opposed to each other, so as to be spaced apart in the X-axis direction. Incidentally, the number and the placement of the holding units are not limited to those described above, but the extra holding unit (s) can be additionally arranged as needed, for example, in accordance with the size and the vulnerability to bending of a substrate, and the like. Further, holding units 65 can be attached to the Y frame members.
As can be seen from
In this case, the lower end surface (−Z side end surface) of hand 66 protrudes on the −Z side, below the lower end surface (−Z side end surface) of each of the pair of the X frame members 61x and the pair of the Y frame members 61y. However, a thickness T of the substrate mounting surface of hand 66 is set less (e.g. set to around 0.5 mm) than distance Db (e.g. around 0.8 mm in the present embodiment) between the gas jetting surfaces of air levitation units 50 and the lower surface of substrate P. Therefore, a clearance of, for example, around 0.3 mm is formed between the lower surface of the substrate mounting surface of hand 66 and the upper surfaces of the plurality of air levitation units 50, and when substrate holding frame 60 moves parallel to the XY plane above the plurality of air levitation units 50, hand 66 and air levitation units 50 do not come in contact. Incidentally, as shown in
As shown in
As shown in
On each of the side surface on the side, the side surface on the −Y side and the upper surface (the surface on the +Z side) of main section 71a, as shown in
As shown in
On the upper surface of X movable section 72, one end (lower end) of a shaft 79 parallel to the Z-axis is fixed. As shown in
As shown in
Furthermore, Y movable section 74 has a coil unit including coils (the illustration is omitted) inside thereof. The coil unit configures a Y linear motor by the electromagnetic force drive method that drives Y movable section 74 in the Y-axis direction above Y guide 73 owing to the electromagnetic interaction with the magnetic unit that Y guide 73 has. The magnitude and the direction of the electric current supplied to the coils of the coil unit are controlled by the main controller that is not illustrated. Positional information of Y movable section 74 in the Y-axis direction is measured by a linear encoder system or an optical interferometer system, which is not illustrated, with high precision. Incidentally, each of the X linear motor and the Y linear motor described above is either of the moving magnet type or the moving coil type, and the drive method is not limited to the Lorentz force drive method but can be other methods such as a variable magnetoresistance drive method. Further, as a drive device that drives the X movable section described above in the X-axis direction and a drive device that drives the Y movable section described above in the Y-axis direction, for example, a uniaxial drive device can be used that includes a ball screw, a rack-and-pinion or the like, or a device can be used that drives the X movable section and the Y movable section in the X-axis direction and the Y-axis direction, respectively, by towing the X movable section and the Y movable section using a wire, a belt or the like, for example, according to the required accuracy of positioning of substrates, the throughput, the movement stroke of substrates, and the like.
Besides, liquid crystal exposure apparatus 10 has a surface position measuring system (the illustration is omitted) that measures surface position information (positional information in each of the Z-axis, θx and θy directions) of the surface (upper surface) of substrate located directly under projection optical system PL. As the surface position measuring system, the one by an oblique incidence method as disclosed in, for example, U.S. Pat. No. 5,448,332 and the like can be used.
In liquid crystal exposure apparatus 10 (see
In the middle of the exposure operation by a step-and-scan method shown in
Further, when the surface position of substrate P is adjusted by fixed-point stage 40, hand 66 of substrate holding frame 60 is displaced in the Z-axis direction, following the operation (a movement in the Z-axis direction or a tilt operation) of substrate P. Accordingly, damage of substrate P, a shift (adsorption error) between hand 66 and substrate P, or the like is prevented. Incidentally, since the plurality of air levitation units 50 levitate substrate P higher compared with air chuck unit 80, the air stiffness between substrate P and the plurality of air levitation units 50 is lower compared with the air stiffness between air chuck unit 80 and substrate P. Consequently, substrate P can change its attitude without difficulty above the plurality of air levitation units 50. Further, if the amount of the attitude change of substrate 2 is large and hand 66 cannot follow substrate 2, the adsorption error referred to above or the like can be avoided by the attitude of substrate holding frame 60 itself changing, since Y movable section 74 to which substrate holding frame 60 is fixed is supported by Y guide 73 in a noncontact manner. Incidentally, a configuration can also be employed in which the stiffness of the fastening section between Y guide 73 and X movable section 72 is lowered and the attitude of Y guide 73 as a whole changes together with substrate holding frame 60.
Further, in substrate stage device PST, substrate P that is substantially horizontally supported by levitation with the plurality of air levitation units 50 is held by substrate holding frame 60. Then, in substrate stage device PST, substrate holding frame 60 is driven by drive unit 70, and thereby substrate P is guided along a horizontal plane (the XY two-dimensional plane) and also the surface position of the portion subject to exposure of substrate P (a part of substrate P, within exposure area IA) is controlled by fixed-point stage 40 in a pinpoint manner. As described above, in substrate stage device PST, drive unit 70 (XY stage device) that is a device to guide substrate P along the XY plane, and the plurality of air levitation units 50 and fixed-point stage 40 (Z/leveling stage device) that are devices to hold substrate P substantially horizontally and to position substrate P in the Z-axis direction are of different bodies that are independent from each other, and therefore, the weight of substrate stage device PST (especially, the weight of its movable section) can be considerably reduced, compared with a conventional stage device (e.g. refer to PCT International Publication No. 2008/129762 (the corresponding U.S. Patent Application Publication No. 2010/0018950))) that drives a table member (substrate holder) used to hold substrate P with a good flatness degree, having an area size that is around the same as an area size of substrate P, in the Z-axis direction and the tilt direction respectively (the Z/leveling stage is also driven XY-two-dimensionally together with the substrate), on an XY two-dimensional stage device. To be specific, for example, in the case of using a large substrate one side of which exceeds 3 m, the total weight of the movable section amounts to nearly 10 t in the conventional stage device, whereas the total weight of the movable section (such as substrate holding frame 60, X movable section 72, Y guide 73 and Y movable section 74) can be reduced to around several hundreds kg in substrate stage device PST of the present embodiment. Consequently, for example, each of the X linear motor used to drive X movable section 72 and the Y linear motor used to drive Y movable section 74 can be the linear motor with small outputs, which makes it possible to reduce the running cost. Further, the infrastructure such as power-supply facility can be provided without difficulty. Further, the initial cost can also be reduced because the outputs of the linear motors can be small.
Further, in drive unit 70, Y movable section 74 that holds substrate holding frame 60 is supported by Y guide 73 in a noncontact manner, and substrate P is guided along the XY plane, and therefore, there is little risk that the vibration (disturbance) in the Z-axis direction transmitted via the air bearings from the side of surface plate 12 installed on floor surface F adversely affects control of substrate holding frame 60. Consequently, the attitude of substrate P becomes stable and the exposure accuracy is improved.
Further, Y movable section 74 of drive unit 70 is supported by Y guide 73 in a noncontact state and dust is prevented from being generated, and therefore, although Y guide 73 and Y movable section 74 are placed above the upper surfaces (gas jetting surfaces) of the plurality of air levitation units 50, the exposure processing of substrate P is not affected. Meanwhile, X guide 71 and X movable section 72 are placed below air levitation units 50, and therefore, even if dust is generated, the possibility that dust affects the exposure processing is low. However, X movable section 72 can be supported in a noncontact state with respect to X guide 71 so as to be movable in the X-axis direction, using, for example, air bearings or the like.
Further, weight canceller 42 of fixed-point stage 40 and air chuck unit 80 are mounted on Y beam 33 that is separated from surface plate 12 in terms of vibration, and therefore, for example, the reaction force of the drive force, vibration, or the like that is generated when substrate holding frame 60 (substrate P) is driven using drive unit 70 is not transmitted to weight canceller 42 and air chuck unit 80. Consequently, control of the position of air chuck unit 80 (i.e. the surface position of the portion subject to exposure of substrate P) using the Z-VCMs can be performed with high precision. Further, of the four Z-VCMs that drive air chuck unit 80, Z stators 47 are fixed to base frame 85 that is noncontact with Y beam 33, and therefore the reaction force of the drive force generated when air chuck unit 80 is driven is not transmitted to weight canceller 42. Consequently, the position of air chuck unit 80 can be controlled with high precision.
Further, positional information of substrate holding frame 60 is measured with the interferometer system that uses movable mirrors 62x and 62y that are fixed to substrate frame 60, or more specifically, are placed close to substrate P that is subject to final positioning control, and therefore, the stiffness between the control subject (substrate P) and the measurement points can be maintained high. More specifically, since the substrate whose final position should be known and the measurement points can be regarded as being integrated, the measurement accuracy is improved. Further, the positional information of substrate holding frame 60 is directly measured, and therefore, even if a linear motion error occurs in X movable section 72 and Y movable section 74, the measurement results are hard to be affected.
Further, the size in the X-axis direction of the upper surface (substrate holding surface) of main section 81 of air chuck unit 80 is set longer than the size in the X-axis direction of exposure area IA, and therefore, in a state where a portion subject to exposure (a portion to be exposed) of substrate P is located upstream of exposure area IA in the movement direction of substrate P, especially just before starting scanning exposure, the surface position of the portion subject to exposure of substrate P can be adjusted in advance, at an acceleration stage before performing constant-velocity movement of substrate P. Consequently, the surface position of the portion subject to exposure of substrate P can surely be located within a depth of focus of projection optical system PL from the beginning of exposure, and accordingly the exposure accuracy can be improved.
Further, in substrate stage device PST, a configuration is employed in which the plurality of air levitation units 50, fixed-point stage 40 and drive unit 70 are placed side by side in a planar manner on surface plate 12, and therefore, the assembly, adjustment, maintenance and the like can be performed without difficulty. Further, the members are small in number and also the respective members are lightweight, which facilitates the transportation as well.
Incidentally, for example, in the cases such as when the +X side end or the −X side end of substrate P passes above fixed-point stage 40, a state where substrate P overlaps only a part of air chuck unit 80 (a state where air chuck unit 80 is not completely covered with substrate P) is created. In such a case, since the load of substrate P acting on the upper surface of air chuck unit 80 is decreased, the force of air chuck unit 80 that levitates substrate P is weakened because of imbalance of the air, and distance Da (see
Next, a liquid crystal exposure apparatus of a second embodiment is described. Since the liquid crystal exposure apparatus of the present second embodiment has a configuration similar to the configuration of liquid crystal exposure apparatus 10 of the first embodiment described earlier except that a configuration of a substrate stage device that holds substrate P is different, only the configuration of the substrate stage device is explained in the description below. Herein, from the viewpoint of preventing the redundant description, members which have functions equivalent to those of the first embodiment are denoted by the same reference signs as the reference signs in the first embodiment and the description thereabout is omitted.
As shown in
Substrate holding frame 60 (see
Further, in substrate stage device PST2 related to the second embodiment, as shown in
Further, in the second embodiment, Y movable section 274 and substrate holding frame 260 are connected by a hinge device 299. While hinge device 299 restricts relative movement of Y movable section 274 and substrate holding frame 260 along a horizontal plane (XY plane), hinge device 299 allows relative movement in directions around predetermined axis lines parallel to the XY plane including the θx direction and the θy direction. Consequently, Y movable section 274 and substrate holding frame 260 integrally move along the XY plane, but in the case where substrate P is tilted with respect to XY plane by fixed-point stage 40, only substrate holding frame 260 is tilted with respect to the XY plane following the tilt of substrate P, and therefore the load is not placed on Y linear guide 90 and slider 92.
Since substrate holding frame 260 of substrate stage device PST2 related to the second embodiment as described above has no protrusions, including substrate P, which protrude below the lower surfaces of X frame members 261x and Y frame members 261y, it is possible to make the lower surface of substrate holding frame 260 and the upper surfaces (gas jetting surfaces) of the plurality of air levitation units 50 come close together compared with the first embodiment. Accordingly, the height of levitation of substrate P by air levitation units 50 can be lowered, which allows the flow rate of the air jetted from air levitation units 50 to be reduced. Consequently, the running cost can be decreased. Further, since substrate holding frame 260 has no protrusions on its lower surface, the pair of X frame members 261x and the pair of Y frame members 261y can pass above air chuck unit 80 respectively. Consequently, the movement course of substrate P used when substrate P is guided to, for example, a substrate exchange position that is not illustrated, an alignment measurement position or the like can be freely set.
Third EmbodimentNext, a third embodiment is described. Since a liquid crystal exposure apparatus of the third embodiment has a configuration similar to the configuration of each of the liquid crystal exposure apparatuses of the first and second embodiments described earlier except that a configuration of a substrate stage device that holds substrate P is different, only the configuration of the substrate stage device is described below. Incidentally, members which have functions similar to those in the first and second embodiments described above are denoted by the same reference signs as the reference signs in the first and second embodiments described above and the description thereabout is omitted.
As shown in
In substrate stage device PST3 related to the third embodiment, Y guide 73 is supported, at two points that are apart in the Y-axis direction, by X movable sections 72, and therefore, for example, in the case where Y movable section 74 is located near the +Y side end or the −Y side end on Y guide 73, the downward bending of one of the ends of Y guide 73 is restrained and so on, which allows the attitude of Y guide 73 to be stable. Thus, this is especially effective in the cases such as when the length of Y guide 73 is increased in order to guide substrate P with a long stroke in the Y-axis direction.
Incidentally, in substrate stage device PST3 of the third embodiment, one of X guides 71 is placed on the −Y side of fixed-point stage 40 and the other of X guides 71 is placed on the +Y side of fixed-point stage 40, and therefore, each of the pair of X guides 71 can be arranged extending to the vicinity of the −X side end of surface plate 12 (in this case, the pair of X guides 71 are configured so as not to come in contact with Y beam 33 and each of air levitation units 50 on the +Y side and the −Y side of fixed-point stage 40). In such a case, it becomes possible to guide substrate holding frame 60 to the −X side beyond fixed-point stage 40 (e.g. it is also possible to guide substrate holding frame 60 to the −X side beyond the −X side end of surface plate 12). Since the movable range where substrate P is movable within the XY plane can be increased in this manner, it is possible to move substrate P to a position (e.g. the substrate exchange position, the alignment measurement position, or the like) different from the exposure position using drive unit 370. Incidentally, while the pair (two) of X guides 71 are arranged in the present third embodiment, the number of the X guides is not limited thereto, but can be three or more.
Fourth EmbodimentNext, a fourth embodiment is described with reference to
As shown in
In a drive unit 470, Y guide 73 is installed over a pair of X movable sections 72, which is similar to substrate stage device PST3 (see
In substrate stage device PST4 related to the fourth embodiment as described above, substrate holding frame 460 is supported, at two points that are apart in the Y-axis direction, by the pair of Y movable sections 474, and therefore, the bending (especially, bending of the ends on the +Y side and on the −Y side) owing to the self weight can be restrained. Further, with this configuration, the stiffness of substrate holding frame 460 in a direction parallel to a horizontal plane is improved, and therefore, the stiffness of substrate P, which is held by substrate holding frame 460, in a direction parallel to a horizontal plane is also improved, which improves the positioning accuracy of substrate P.
Further, on the side surfaces of X frame member 61x and Y frame member 61y that configure substrate holding frame 460, movable mirrors 462x and 462y are respectively arranged, or more specifically, substrate holding frame 460 itself has the reflection surfaces, and therefore, the weight and the size of substrate holding frame 460 can be reduced, which improves the position controllability of substrate holding frame 460. Further, the positions in the Z-axis direction of the reflection surfaces of movable mirrors 462x and 462y come close to the position of the surface of substrate P in the Z-axis direction, and therefore, occurrence of the so-called Abbe error can be restrained, which improves the positioning accuracy of substrate P.
Fifth EmbodimentNext, a fifth embodiment is described with reference to
As shown in
As shown in
Further, on the upper surface of Y frame member 561y on the +X side of substrate holding frame 560, one Y mover 577y and a pair of X movers 577x are each fixed via a fixing member 578 (see
In substrate stage device PST5 related to the fifth embodiment, for example, during an exposure operation or the like, the main controller controls the positions of X movable section 72 and Y movable section 574 using the X linear motor and the Y linear motor based on the measurement values of a linear encoder system that is not illustrated, thereby performing the rough positioning of substrate holding frame 570 (substrate P) within the XY plane, and also finely drives substrate holding frame 570 along the XY plane by appropriately controlling the Y-VCM and the pair of X-VCMs based on the measurement values of the interferometer system, thereby performing the final positioning of substrate P within the XY plane. On this operation, the main controller drives substrate holding frame 560 also in the θz direction by appropriately controlling the outputs of the pair of X-VCMs. More specifically, in substrate stage device PST5, an XY two-dimensional stage device composed of the pair of X guides 71, X movable section 72, Y guide 73 and Y movable section 574 functions as a so-called coarse movement stage device, and substrate holding frame 560 that is finely driven by the Y-VCM and the pair of X-VCMs with respect to Y movable section 574 functions as a so-called fine movement stage device.
As described above, according to substrate stage device PST5 related to the fifth embodiment, since the positioning of substrate P within the XY plane can be performed with high precision with respect to Y movable section 574 using substrate holding frame 570 that is lightweight, the positioning accuracy and the positioning speed of substrate P are improved. On the other hand, since the nano-order accuracy is not required for the positioning accuracy of X movable section 72 by the X linear motor and the positioning accuracy of Y movable section 574 by the Y linear motor, an inexpensive linear motor and an inexpensive linear encoder system can be used. Further, since substrate holding frame 560 and Y movable section 574 are separated in terms of vibration, the vibration in a horizontal direction and the reaction forces of the drive forces of the X-VCMs and the Y-VCM do not travel to substrate holding frame 560,
Sixth EmbodimentNext, a sixth embodiment is described with reference to
As shown in.
Substrate stage device PST6 further has another XY two-dimensional stage device, in an area on the −X side of fixed-point stage 40, which has a configuration similar to the XY two-dimensional stage device described earlier (however, symmetric with respect to Y-axis (bilateral symmetric on the page surface)), or more specifically, which is composed of a pair of X guides 71, a pair of X movable sections 72 (not illustrated in
Further, substrate holding frame 660 is finely driven in the X-axis direction, the Y-axis direction and the θz direction with respect to the second Y movable section 574, by three voice coil motors (one Y-VCM and a pair of X-VCMs) that are configured of a Y stator and a pair of X stators fixed to the second Y Movable section 574, and a Y mover and a pair of X movers fixed to Y frame member 661y on the −X side of substrate holding frame 660. The main controller, which is not illustrated, coarsely adjusts the position of substrate holding frame 660 within the XY plane by synchronously controlling the X linear motors and the Y linear motor on each of the side and the −X side of fixed-point stage 40 based on the measurement values of a linear encoder system that is not illustrated, and also finely adjusts the position of substrate holding frame 660 (substrate P) within the XY plane by appropriately controlling the Y-VCM and the pair of the X-VCMs on each of the +X side and the −X side of substrate holding frame 660 (substrate P) based on the measurement values of an interferometer system to finely drive the substrate holding frame in each of the X-axis, Y-axis and θz directions.
In substrate stage device PST6 related to the sixth embodiment, since both ends of substrate holding frame 660 in the X-axis direction are supported by the XY two-dimensional stage devices, the bending (downward bending on the free end side) owing to the self weight of substrate holding frame 660 is restrained. Further, since the drive forces by the voice coil motors are made to act on substrate holding frame 660 from the +X side and the −X side, respectively, it is possible to make the drive forces of the respective voice coil motors act on the vicinity of the position of the center of gravity of a system that is composed of substrate holding frame 660 and substrate P. Consequently, the moment in the θz direction can be restrained from acting on substrate holding frame 660. Incidentally, it is also possible that, only one each of the X-VCM is placed on the −X side and the +X side of substrate holding frame 660, at diagonal positions (such that the center of the diagonal line is located in the vicinity of the center of gravity of substrate P) such that the X-VCMs drive the position of the center of gravity of substrate holding frame 660.
Seventh EmbodimentNext, a seventh embodiment is described with reference to
As shown in
Between the two Y movable sections 772 on the +Y side, as shown in
Further, substrate holding frame 760 is finely driven in each of the X-axis, Y-axis and θz directions as needed, by the X-VCM and the Y-VCM placed on the +Y side of substrate holding frame 760 and the X-VCM and the Y-VCM placed on the −Y side of substrate holding frame 760. The configurations of the X-VCM and the Y-VCM are the same as those of the X-VCM and the Y-VCM in the sixth embodiment described above. In this case, on the +Y side of substrate holding frame 760, the X-VCM is located on the −X side of the Y-VCM, and on the −Y side of substrate holding frame 760, the X-VCM is located on the +X side of the Y-VCM. Further, the two X-VCMs are located at diagonal positions and the two Y-VCMs are located at diagonal positions with respect to substrate holding frame 760 (such that the centers of the diagonal lines are located in the vicinity of the center of gravity of substrate P). Consequently, similar to the sixth embodiment described above, substrate P can be driven at the center of gravity (can be driven by making a drive force act on the vicinity of the position of the center of gravity). Consequently, when substrate holding frame 760 is finely driven in the X-axis direction, the X-axis direction and the θz direction using a pair of the X-VCMs and/or a pair of the Y-VCMs, substrate P can be rotated around the vicinity of the position of the center of gravity of a system, as the center, that is composed of substrate holding frame 760 and substrate P.
Moreover, although each of the X-VCMs and the Y-VCMs has a configuration protruding on the +Z side above the upper surface of substrate holding frame 760 (see
Further, substrate stage device PST7 has a fifth air levitation unit row that is composed of six air levitation units 50 disposed at a predetermined distance in the Y-axis direction, in an area on the +X side of fixed-point stage 40, which is located on the +X side of the fourth air levitation unit row. And, the third to sixth air levitation units 50 of the fourth air levitation unit row and the second to fourth air levitation units 50 of the fifth air levitation unit row each have main section 51 (see
Referring back to
In substrate stage device PST, as described above, main sections 51 of a plurality of air levitation units 750 are configured movable in the Z-axis direction, and therefore by making substrate holding frame 760 move along the XY plane to be positioned below the substrate exchange position, substrate P can be separated from substrate holding frame 760 and only substrate P can be moved to the substrate exchange position without difficulty.
Eighth EmbodimentNext, an eighth embodiment is described with reference to
As shown in
Further, substrate stage device PST8 of the eighth embodiment has a fifth air levitation unit row, which is composed of six air levitation units 50 disposed at a predetermined distance in the Y-axis direction, in an area on the +X side of fixed-point stage 40, which is located on the +X side of the fourth air levitation unit row. Further, substrate stage device PST8 has two rows, which are placed at a predetermined distance in the X-axis direction, of air levitation unit rows each of which is composed of four air levitation units 50 disposed at a predetermined distance in the Y-axis direction, in an area on the +X side of surface plate 12 on floor surface F (see
In substrate stage device PST8 related to the eighth embodiment, substrate P can be drawn in the +X direction from substrate holding frame 860 and can be carried to, for example, the substrate exchange position, in a state where the holding of substrate P by a plurality of holding units 65 of substrate holding frame 860 is released. As a method of carrying substrate P to the substrate exchange position, for example, a plurality of air levitation units can be provided with an air conveyer function to carry (send) substrate P in a horizontal direction, or a mechanical carrier device can be used. According to substrate stage device PST8 related to the eighth embodiment, since substrate P can easily and promptly be carried to the substrate exchange position by horizontally moving substrate P, the throughput is improved. Incidentally, a configuration can be employed in which when the substrate is drawn from the substrate holding frame via the opening section, and when the substrate is inserted into the substrate holding frame via the opening section, the holding units that hold the substrate by adsorption can be withdrawn from the movement course of the substrate (e.g. a configuration in which the holding units can be moved in vertical directions or can be housed inside the respective frame members that configure the substrate holding frame). In this case, the exchange of substrates can be performed more reliably.
Incidentally, the first to eighth embodiments described above can appropriately be combined. For example, a substrate holding frame that has a configuration similar to the substrate holding frame of the second embodiment described earlier can be used in each of the substrate stage devices related to the third to sixth embodiments described earlier.
Ninth EmbodimentNext, a ninth embodiment is described. The substrate stage device related to each of the first to eighth embodiments is arranged in a liquid crystal exposure apparatus, whereas a substrate stage device PST9 related to the present ninth embodiment is arranged in a substrate inspecting apparatus 900 as shown in
Substrate inspecting apparatus 900 has a photographic unit 910 that is supported by body BD. Photographic unit 910 has a photographic optical system that includes, for example, an image sensor such as a CCD (Charge-Coupled Device), a lens and the like which are not illustrated, and photographs the surface of substrate P placed directly under (on the −Z side of) photographic unit 910. The outputs from photographic unit 910 (image data of the substrate P surface) are output to the outside, and inspection (e.g. detection of defects of patterns, or particles and the like) of substrate P is performed based on the image data. Note that substrate stage device PST9, which substrate inspecting apparatus 900 has, has a configuration that is the same as the configuration of substrate stage device PST1 of the first embodiment described above (see
Incidentally, in each of the embodiments above, the fixed-point stage can employ a configuration that displaces the area subject to exposure (or the area subject to photographing) of the substrate only in the Z-axis direction, of the Z-axis direction and the θx and θy directions. Further, in each of the embodiments above, while the surface position of the area subject to exposure (or the area subject to photographing) of the substrate is adjusted directly under the projection optical system (or the photographic unit) using the fixed-point stage, the fixed-point stage does not necessarily have to be arranged in the case of an object moving apparatus for an apparatus in which the surface position of a substrate needs not to be controlled with high precision.
Further, in each of the embodiments above, while the substrate is guided along the horizontal plane by the drive unit (XY two-dimensional stage device) that drives the substrate in the orthogonal two axial directions which are the X-axis and the Y-axis directions, the drive unit should guide the substrate only in one axial direction as far as, for example, the exposure area on the substrate and the substrate are the same in width.
Further, in each of the embodiments above, the plurality of air levitation units support the substrate by levitation so as to make the substrate parallel to the XY plane, but depending on a type of an object that is subject to support, the configuration of the device that levitates the object is not limited thereto, and for example, the object can be levitated by magnetism or static electricity. Similarly, as the air chuck unit of the fixed-point stage, depending on a type of an object that is subject to holding, a configuration of holding an object that is subject to holding by magnetism or static electricity can also be employed.
Further, in each of the embodiments above, while the positional information of the substrate holding frame within the XY plane is obtained by the laser interferometer system that includes the laser interferometers that irradiate the movable mirrors arranged at the substrate holding frame with the measurement beams, the position measuring device of the substrate holding frame is not limited thereto, and for example, a two-dimensional encoder system can be used. In this case, for example, scales are arranged on the substrate holding frame and the positional information of the substrate holding frame can be obtained by heads fixed to the body or the like, or heads are arranged on the substrate holding frame and the positional information of the substrate holding frame can be obtained using scales fixed, for example, to the body or the like.
Further, in each of the embodiments above, while the substrate holding frame has an outer shape (contour) that is rectangular in a planar view and the opening section that is rectangular in a planar view, the shape of the member that holds the substrate is not limited thereto, and for example, the shape can appropriately be changed in accordance with the shape of an object that is subject to holding (e.g. when an object is discoidal, a holding member can also have a circular frame shape).
Incidentally, in each of the embodiments above, the substrate holding frame does not have to enclose the whole periphery of the substrate, and it is also possible that a part of the periphery is not enclosed. Further, a member to hold the substrate such as the substrate holding frame does not necessarily have to be used for substrate carriage. In this case, it is necessary to measure the position of the substrate itself, and the position of the substrate can be measured by, for example, an interferometer that irradiates a measurement beam on the side surface of the substrate that serves as a mirror surface. Or, it is also possible that a grating is formed on the front surface (or the rear surface) of the substrate and the position of the substrate is measured by an encoder equipped with a head that irradiates the grating with a measurement light and receives diffraction light of the measurement light.
Further, the illumination light can be ultraviolet light, such as ArF excimer laser light (with a wavelength of 193 nm) and KrF excimer laser light (with a wavelength of 248 nm), or vacuum ultraviolet light such as F2 laser light (with a wavelength of 157 nm). Further, as the illumination light, a harmonic wave, which is obtained by amplifying a single-wavelength laser light in the infrared or visible range emitted by a DFB semiconductor laser or fiber laser with a fiber amplifier doped with, for example, erbium (or both erbium and ytteribium), and by converting the wavelength into ultraviolet light using a nonlinear optical crystal, can also be used. Further, solid state laser (with a wavelength of 355 nm, 266 nm) or the like can also be used.
Further, in each of the embodiments above, while the case has been described where projection optical system PL is the projection optical system by a multi-lens method that is equipped with a plurality of optical systems, the number of the projection optical systems is riot limited thereto, but there should be one or more projection optical systems. Further, the projection optical system is not limited to the projection optical system by a multi-lens method, but can be a projection optical system using, for example, a large mirror of the Offner type, or the like. Further, while the case has been described where the projection optical system whose projection magnification is equal magnification is used as projection optical system PL in each of the embodiments above, this is not intended to be limiting, and the projection optical system can be either of a reduction system or a magnifying system.
Further, in each of the embodiments above, while the case has been described where the exposure apparatus is a scanning stepper, this is not intended to be limiting, and each of the embodiments above can also, be applied to a static type exposure apparatus such as a stepper. Further, each of the embodiments above can also be applied to a projection exposure apparatus by a step-and-stitch method that synthesizes a shot area and a shot area. Further, each of the embodiments above can also be applied to an exposure apparatus by a proximity method that does not use any projection optical systems.
Further, the application of the exposure apparatus is not limited to the exposure apparatus for liquid crystal display elements in which a liquid crystal display element pattern is transferred onto a rectangular glass plate, but each of the embodiments above can also be widely applied, for example, to an exposure apparatus for manufacturing semiconductors, and an exposure apparatus for producing thin-film magnetic heads, micromachines, DNA chips, and the like. Further, each of the embodiments above can be applied not only to an exposure apparatus for producing microdevices such as semiconductor devices, but can also be applied to an exposure apparatus in which a circuit pattern is transferred onto a glass substrate, a silicon wafer or the like to produce a mask or a reticle used in a light exposure apparatus, an EUV exposure apparatus, an X-ray exposure apparatus, an electron-beam exposure apparatus, and the like. Incidentally, an object that is subject to exposure is not limited to a glass plate, but for example, can be another object such as a wafer, a ceramic substrate, a film member, or a mask blank.
Incidentally, the substrate stage device related to each of the embodiments above can be applied not only to the exposure apparatus but also to, for example, an element manufacturing apparatus equipped with a functional liquid deposition device by an ink-jet method.
Incidentally, the disclosures of all publications, the PCT International Publications, the U.S. Patent Application Publications and the U.S. Patents that are cited in the description so far and are related to exposure apparatuses and the like are each incorporated herein by reference.
Device Manufacturing MethodA manufacturing method of a microdevice that uses the exposure apparatus in each of the embodiments above in a lithography process is described next. In the exposure apparatus in each of the embodiments above, a liquid crystal display element as a microdevice can be obtained by forming a predetermined pattern (such as a circuit pattern or an electrode pattern) on a plate (a glass substrate).
Pattern Forming ProcessFirst of all, a so-called optical lithography process in which a pattern image is formed on a photosensitive substrate (such as a glass substrate coated with a resist) is executed using the exposure apparatus in each of the embodiments above. In this optical lithography process, a predetermined pattern that includes many electrodes and the like is formed on the photosensitive substrate. After that, the exposed substrate undergoes the respective processes such as a development process, an etching process and a resist removing process, and thereby the predetermined pattern is formed on the substrate.
Color Filter Forming Process
Next, a color filter in which many sets of three dots corresponding to R (Red), G (Green) and B (blue) are disposed in a matrix shape, or a color filter in which a plurality of sets of filters of three stripes of R, G and B are disposed in horizontal scanning line directions is formed.
Cell Assembling Process
Next, a liquid crystal panel (a liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern forming process, the color filter obtained in the color filter forming process, and the like. For example, a liquid crystal panel (a liquid crystal cell) is manufactured by injecting liquid crystal between the substrate having the predetermined pattern obtained in the pattern forming process and the color filter obtained in the color filter forming process.
Module Assembling Process
After that, a liquid crystal display element is completed by attaching respective components such as an electric circuit that causes a display operation of the assembled liquid crystal panel (liquid crystal cell) to be performed, and a backlight.
In this case, since exposure of the plate is performed with high throughput and high precision using the exposure apparatus in each of the embodiments above in the pattern forming process, the productivity of liquid crystal display elements can be improved as a consequence.
While the above-described embodiments of the present invention are the presently preferred embodiments thereof, those skilled in the art of lithography systems will readily recognize that numerous additions, modifications, and substitutions may be made to the above-described embodiments without departing from the spirit and scope thereof. It is intended that all such modifications, additions, and substitutions fall within the scope of the present invention, which is best defined by the claims appended below.
Claims
1. An object moving apparatus that moves a tabular object placed along a predetermined two-dimensional plane that includes a first axis and a second axis orthogonal to each other, the apparatus comprising:
- a movable body that holds an end of the object and is movable along the two-dimensional plane;
- a drive device that drives the movable body at least in one axial direction within the two-dimensional plane; and
- a noncontact support device that supports the object in a noncontact manner from below, with its support surface made to be opposed to a lower surface of the object, when the movable body is driven by the drive device.
2. The object moving apparatus according to claim 1, wherein
- the movable body has a main section that is made up of a frame-shaped member arranged extending along the end of the object.
3. The object moving apparatus according to claim 2, wherein
- the movable body has a holding member that holds by adsorption at least a part of an outer periphery of the object from below, and
- the holding member can be displaced in a direction orthogonal to the two-dimensional plane in a state holding the object, with respect to the main section.
4. The object moving apparatus according to claim 3, wherein
- the holding member is arranged protruding below the lower surface of the object, and a distance of the protrusion is less than a distance between the support surface of the noncontact support device and the lower surface of the object.
5. The object moving apparatus according to claim 2, wherein
- the main section has an opening section that allows passing of the object by relative movement of the main section with respect to the object in a direction parallel to the two-dimensional plane.
6. The object moving apparatus according to claim 2, wherein
- the movable body has a pressing device that causes the main section to hold the object by pressing the object from one of a pair of opposed surfaces that is opposed to each other, toward the other of the opposed surfaces, the opposed surfaces being of inner wall surfaces of the main section.
7. The object moving apparatus according to claim 1, further comprising:
- an optical interferometer system that obtains positional information of the main section within the two-dimensional plane, by irradiating each of a first outer side surface and a second outer side surface of the main section with a measurement beam and receiving reflected light of the measurement beam, the first outer side surface being orthogonal to the first axis and the second outer side surface being orthogonal to the second axis.
8. The object moving apparatus according to claim 1, further comprising:
- an optical interferometer system that obtains positional information of the movable body within the two-dimensional plane, by irradiating a reflection surface arranged at the movable body with a measurement beam and receiving reflected light of the measurement beam.
9. The object moving apparatus according to claim 1, wherein
- the drive device includes a first guide member arranged extending parallel to the first axis, a first movable member that moves in a direction parallel to the first axis on the first guide member, a second guide member arranged extending parallel to the second axis and connected to the first movable member, and a second movable member that holds the movable body and moves in a direction parallel to the second axis on the second guide member, and
- the first guide member and the first movable member are placed lower than the predetermined two-dimensional plane.
10. The object moving apparatus according to claim 9, wherein
- a plurality of the first guide members are arranged at a predetermined distance in the direction parallel to the second axis,
- a plurality of the first movable members are arranged so as to correspond to the plurality of the first guide members, and
- the second guide member is installed over the plurality of the first movable members.
11. The object moving apparatus according to claim 9, wherein
- the second guide member is placed higher than the support surface of the noncontact support device and a lower surface of the second guide member is supported in a noncontact state by the noncontact support device.
12. The object moving apparatus according to claim 9, wherein
- the second movable member is supported in a noncontact manner by the second guide member.
13. The object moving apparatus according to claim 9, wherein
- a plurality of the second movable members are placed at a predetermined distance in the direction parallel to the second axis, and
- a plurality of portions of the movable body are held by the plurality of the second movable members.
14. The object moving apparatus according to claim 9, wherein
- the movable body is held in a noncontact manner by the second movable member.
15. The object moving apparatus according to claim 14, wherein
- the drive device comprises a fine drive device that finely drives the movable body with respect to the second movable member in the direction parallel to the two-dimensional plane.
16. The object moving apparatus according to claim 9, wherein
- the first movable member is arranged on each of one side and the other side of the movable body in one axial direction within the two-dimensional plane,
- the second guide member and the second movable member are arranged so as to correspond to the first movable member on the one side and the first movable member on the other side, respectively, and
- the one side and the other side of the movable body in the one axial direction are held by the second movable member on the one side and the second movable member on the other side, respectively.
17. The object moving apparatus according to claim 9, wherein
- the movable body is connected to the second movable member via a hinge device that allows rotation of the movable body and the second movable member around an axis line parallel to the two-dimensional plane while restricting relative movement between the movable body and the second movable member in the direction parallel to the two-dimensional plane.
18. The object moving apparatus according to claim 1, wherein
- the noncontact support device supports the object in a noncontact manner by jetting a gas from the support surface to the object.
19. The object moving apparatus according to claim 1, wherein
- the support surface of the noncontact support device covers a movement range of the object where the object moves when being driven by the drive device.
20. The object moving apparatus according to claim 1, wherein
- at least apart of the support surface of the noncontact support device is arranged to be movable in a direction intersecting the two-dimensional plane, and the noncontact support device separates the object from the movable body and moves the object in the direction intersecting the two-dimensional plane, by movement of the at least a part of the support surface in the direction intersecting the two-dimensional plane.
21. The object moving apparatus according to claim 1, further comprising:
- an adjustment device whose position within the two-dimensional plane is fixed, and which has a holding surface smaller than an area size of the object, holds a section, opposed to the holding surface, of the object that moves along the two-dimensional plane, in a noncontact state from below the object and adjusts a position of the section in the direction intersecting the two-dimensional plane.
22. The object moving apparatus according to claim 21, wherein
- the adjustment device holds the object in a noncontact manner by jetting a gas from the holding surface to the object and suctioning a gas between the holding surface and the object.
23. The object moving apparatus according to claim 22, wherein
- the adjustment device causes at least one of a pressure and a flow rate of the gas between the object and the holding surface to be variable such that a distance between the object and the holding surface is constant.
24. The object moving apparatus according to claim 21, wherein
- the adjustment device has an actuator that drives a member having the holding surface in the direction intersecting the two-dimensional plane.
25. The object moving apparatus according to claim 24, wherein
- the actuator includes a mover arranged at the member having the holding surface and a stator arranged at a member that is separated, in terms of vibration, from a measurement member that measures positional information of the member having the holding surfaces.
26. The object moving apparatus according to claim 21, wherein
- the adjustment device has a weight cancelling device that cancels a weight of the object.
27. The object moving apparatus according to claim 21, wherein
- the member having the holding surface is separated from the drive device in terms of vibration.
28. The object moving apparatus according to claim 21, wherein
- the distance between the holding surface of the adjustment device and the object is shorter than a distance between the support surface of the noncontact support device and the object.
29. An object processing apparatus, comprising:
- the object moving apparatus according to claim 21; and
- an executing device that executes a predetermined operation on a section, held by the adjustment device, of the object from a side opposite to the adjustment device, in order to perform predetermined processing on the object.
30. The object processing apparatus according to claim 29, wherein
- the executing device includes an imaging device that picks up an image of a surface of the object to inspect the object.
31. The object processing apparatus according to claim 29, wherein
- the object is a substrate that is used for a display panel of a display device.
32. The object processing apparatus according to claim 29, wherein
- the executing device is a pattern forming device that forms a predetermined pattern on the object by exposing the object with an energy beam.
33. A device manufacturing method, comprising:
- exposing the object using the object processing apparatus according to claim 32; and
- developing the exposed object.
34. An exposure apparatus, comprising:
- the object moving apparatus according to claim 1; and
- a pattern forming device that forms a predetermined pattern on the object by exposing the object with an energy beam.
35. The exposure apparatus according to claim 34, wherein
- the object is a substrate used for a display panel of a display device.
36. A device manufacturing method, comprising:
- exposing the object using the exposure apparatus according to claim 34; and
- developing the exposed object.
37. A flat-panel display manufacturing method, comprising:
- exposing a substrate for a flat-panel display using the exposure apparatus according to claim 34; and
- developing the substrate that has been exposed.
38. An object inspecting apparatus, comprising:
- the object moving apparatus according to claim 1; and
- an imaging section that picks up an image of a surface of the object to inspect the object.
39. The object inspecting apparatus according to claim 38, wherein
- the object is a substrate that is used for a display panel of a display device.
40. An exposure apparatus that forms a predetermined pattern on an object by exposing the object with an energy beam, the apparatus comprising:
- a movable body which holds an end of a tabular object placed along a predetermined two-dimensional plane that includes a first axis and a second axis orthogonal to each other, and which is movable along the two-dimensional plane;
- a drive device that drives the movable body at least in one axial direction within the two-dimensional plane; and
- a noncontact support device that supports the object in a noncontact manner from below, when the movable body is driven by the drive device.
41. The exposure apparatus according to claim 40, further comprising:
- an adjustment device whose position within the two-dimensional plane is fixed, and which has a holding surface smaller than an area size of the object, holds a section, opposed to the holding surface, of the object that moves along the two-dimensional plane, in a noncontact state from below the object and adjusts a position of the section in a direction intersecting the two-dimensional plane.
42. The exposure apparatus according to claim 40, wherein
- the object is a substrate with a size not less than 500 mm.
43. A device manufacturing method, comprising:
- exposing the object using the exposure apparatus according to claim 40; and
- developing the exposed object.
44. A flat-panel display manufacturing method, comprising:
- exposing a substrate for a flat-panel display using the exposure apparatus according to claim 40; and
- developing the substrate that has been exposed.
45. An exposure apparatus that forms a predetermined pattern on an object by exposing the object with an energy beam, the apparatus comprising:
- an optical system that irradiates the energy beam via the pattern on a partial area within a predetermined two-dimensional plane parallel to a horizontal plane;
- a drive device that drives a tabular object placed along the two-dimensional plane, at least in one axial direction within a predetermined area that includes the partial area within the two-dimensional plane; and
- a fixed-point stage that holds a section, including the partial area on which the energy beam is irradiated, of the object in a noncontact state from below the object, and that adjusts a position of the section in a direction intersecting the two-dimensional plane, when the object is driven by the drive device.
46. The exposure apparatus according to claim 45, further comprising:
- a noncontact support device that supports the object in a noncontact manner from below, with its support surface made to be opposed to the other area, excluding the section held by the fixed-point stage, of the object.
47. The exposure apparatus according to claim 45, further comprising:
- a surface position measuring system that measures a distribution of surface positions, in a direction perpendicular to the two-dimensional plane, of an upper surface of the object within apart of the predetermined area.
48. The exposure method according to claim 45, wherein
- the object is a substrate with a size not less than 500 mm.
49. A device manufacturing method, comprising:
- exposing the object using the exposure apparatus according to claim 45; and
- developing the exposed object.
50. A flat-panel display manufacturing method, comprising:
- exposing a substrate for a flat-panel display using the exposure apparatus according to claim 45; and
- developing the substrate that has been exposed.
51. An exposure method of forming a predetermined pattern on an object by exposing the object with an energy beam, the method comprising:
- driving a tabular object placed along a two-dimensional plane parallel to a horizontal plane, at least in one axial direction within a predetermined area, which includes a partial area on which the energy beam via the pattern is irradiated by an optical system, within the predetermined two-dimensional plane; and
- holding a section, including the partial area on which the energy beam is irradiated, of the object in a noncontact state from below the object, and adjusting a position of the section in a direction intersecting the two-dimensional plane, when the object is driven.
52. The exposure method according to claim 51, further comprising:
- supporting the other area, excluding the section, of the object in a noncontact manner from below.
53. A device manufacturing method, comprising;
- exposing the object using the exposure method according to claim 51; and
- developing the exposed object.
Type: Application
Filed: Aug 12, 2010
Publication Date: Feb 24, 2011
Patent Grant number: 8699001
Applicant: NIKON CORPORATION (Tokyo)
Inventors: Yasuo AOKI (Zushi-shi), Tomohide Hamada (Yokohama-shi), Hiroshi Shirasu (Yokohama-shi), Manabu Toguchi (Yokohama-shi)
Application Number: 12/855,181
International Classification: G03B 27/58 (20060101); B65G 47/00 (20060101); B65G 43/00 (20060101);