STRUCTURE AND PROCESS OF HEAT DISSIPATION SUBSTRATE
Structure of a heat dissipation substrate including a metal substrate, a first insulating material, a second insulating material, a first patterned conductive layer and a second patterned conductive layer is provided. The metal substrate has an upper surface and a lower surface opposite to each other, a plurality of first recesses located on the upper surface and a plurality of second recesses located on the lower surface. The first insulating material is provided to fill into the first recesses. The second insulating material is provided to fill into the second recesses. The first patterned conductive layer is disposed on the upper surface of the metal substrate and a portion of the first insulating material. The second patterned conductive layer is disposed on the lower surface of the metal substrate and a portion of the second insulating material.
Latest Subtron Technology Co., Ltd. Patents:
This application claims the priority benefit of Taiwan application serial no. 100129781, filed on Aug. 19, 2011. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
BACKGROUND OF THE INVENTION1. Field of the Invention
The invention relates to a metal substrate, more particularly, the invention relates to a structure of a heat dissipation substrate adopted in a heating device and a fabricating process of the same.
2. Description of Related Art
With the progression in fabricating technology, light emitting diodes (LEDs) have gradually increased the light emitting efficiency through persistent research and improvement to further enhance the light emitting brightness thereof so as to satisfy demands in various products. In other words, other than improving the external packaging thereof, LEDs also require advanced design to achieve higher electrical power and working current, which would lead to the fabrication of LEDs with high brightness. However, when the electrical power and the working current of LEDs are increased, LEDs generate higher thermal energy which then affects the performance of LEDs or results in the malfunction of LEDs by overheat.
Conventionally, a copper substrate is adopted in a heat dissipation substrate for an etching process, so that a plurality of recesses is formed on an upper surface of the copper substrate. Thereafter, an insulating material is provided to fill the recesses, where the insulating material substantially aligns with the upper surface of the copper substrate. A copper layer is then electroplated on the upper surface of the copper substrate and the insulating material. A patterning process is performed to the copper layer to form a patterned copper layer. Finally, a plurality of independent heat dissipation substrates is formed through a singulation process to complete the fabrication of the heat dissipation substrates.
In general, when conventional heat dissipation substrate has a thickness more than 1 millimeter (mm), structures of individual heat dissipation substrates can be formed rapidly by punching as the larger heat dissipation substrate has sufficient flexural strength. Obviously, structures of individual heat dissipation substrates can also be formed through etching in the fabrication of conventional heat dissipation substrate. Since the etching process requires an additional photo-resist layer covering on the copper substrate and the copper layer of the insulating material, additional steps and fabrication cost are needed. Moreover, when the thickness of the heat dissipation substrate is reduced in half to satisfy the trend of miniaturization in packaging technology so that the thickness of the heat dissipation substrate is decreased from 1 mm to less than 0.6 mm, the heat dissipation substrate easily bends and deforms due to insufficient flexural strength, thereby affecting the subsequent packaging process.
SUMMARY OF THE INVENTIONThe invention is directed to a structure of a heat dissipation substrate and a process of fabricating the same, where the process is capable of reducing fabrication steps and fabrication cost.
The invention is directed to a process of fabricating a heat dissipation substrate, the process includes the following. A metal substrate is provided. The metal substrate has an upper surface and a lower surface opposite to each other, a plurality of first recesses located on the upper surface, and a plurality of second recesses located on the lower surface. The metal substrate is divided into a plurality of carrier units and a plurality of connecting units connecting the carrier units. A first insulating material is filled into the first recesses and a second insulating material is filled into the second recesses. A first conductive layer is formed on the upper surface of the metal substrate and the first insulating material and a second conductive layer is formed on the lower surface of the metal substrate and the second insulating material. The first conductive layer and the second conductive layer are patterned to form a first patterned conductive layer and a second patterned conductive layer. The first insulating material and the second insulating material are taken as an etching mask to etch the connecting units of the metal substrate so as to form a plurality of individual heat dissipation substrates.
According to an embodiment of the invention, a method of forming the first recesses and the second recesses includes an etching.
According to an embodiment of the invention, a method of forming the first conductive layer and the second conductive layer includes an electroplating.
According to an embodiment of the invention, the metal substrate has a thickness less than 0.6 millimeter (mm).
The invention is directed to a structure of a heat dissipation substrate including a metal substrate, a first insulating material, a second insulating material, a first patterned conductive layer, and a second patterned conductive layer. The metal substrate has an upper surface and a lower surface opposite to each other, a plurality of first recesses located on the upper surface, and a plurality of second recesses located on the lower surface. The first insulating material is filled into the first recesses. The second insulating material is filled into the second recesses. The first patterned conductive layer is disposed on the upper surface of the metal substrate and a portion of the first insulating material. The second patterned conductive layer is disposed on the lower surface of the metal substrate and a portion of the second insulating material.
According to an embodiment of the invention, the first insulating material substantially aligns with the upper surface of the metal substrate.
According to an embodiment of the invention, the second insulating material substantially aligns with the lower surface of the metal substrate.
According to an embodiment of the invention, the metal substrate has a thickness less than 0.6 mm.
According to an embodiment of the invention, a material of the metal substrate includes copper, and the first insulating material and the second insulating material includes a glass fiber film.
In light of the foregoing, in the invention, the first insulating material and the second insulating material are taken as the etching mask to etch the connecting units of the metal substrate so as to form a plurality of individual heat dissipation substrates. Therefore, comparing to conventional fabrication which requires an additional photo-resist layer as the etching mask, the process of fabricating the heat dissipation substrate in the invention can reduce the fabrication steps and fabrication cost.
In order to make the aforementioned and other features and advantages of the invention more comprehensible, several embodiments accompanied with figures are described in detail below.
The accompanying drawings are included to provide further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments and, together with the description, serve to explain the principles of the invention.
Referring to
Referring to
Thereafter, referring to
Referring to
Finally, referring to
In terms of the structure, referring to
In the present embodiment, the first insulating material 120 and the second insulating material 130 are taken as the etching mask to etch the connecting units 110b of the metal substrate 110 so as to form a plurality of individual heat dissipation substrates 100. Thus, comparing to conventional fabrication which requires an additional photo-resist layer as the etching mask, the process of fabricating the heat dissipation substrates 100 in the present embodiment can reduce the fabrication steps and fabrication cost.
Moreover, although the thickness of the metal substrate 110 is less than 0.6 mm in the present embodiment, that is, the thickness of the metal substrate 110 in the present embodiment is less than half of the thickness of a conventional copper substrate, the stress on the upper surface 112 and the lower surface 114 of the metal substrate is offset by the symmetrical recessive structures (that is, the first recesses 116 and the second recesses 118), the insulating materials (that is, the first insulating material 120 and the second insulating material 130), and the circuit layers (that is, the first patterned conductive layer 142 and the second patterned conductive layer 152). In other words, the heat dissipation substrate 100 of the present embodiment is a double-sided plate. Accordingly, the heat dissipation substrate 100 of the present embodiment has sufficient flexural strength.
Furthermore, in the subsequent fabricating process, referring to
In summary, the first insulating material and the second insulating material are taken as the etching mask in the invention to etch the connecting units of the metal substrate for forming a plurality of individual heat dissipation substrates. Therefore, comparing to conventional fabrication which requires an additional photo-resist layer as the etching mask, the process of fabricating the heat dissipation substrate in the invention can reduce the fabrication steps and fabrication cost. Also, since the thickness of the metal substrate in the invention is less than 0.6 mm and the upper surface and the lower surface of the metal substrate are disposed with the recessive structures, the insulating materials, and the patterned conductive layers simultaneously, the stress on the upper surface and the lower surface of the metal substrate can be offset for the heat dissipation substrate of the invention to have sufficient flexural strength. In addition, when the heating device is electrically connected to the patterned conductive layer through a wire bonding process to form a packaging structure, this packaging structure has a thinner packaging thickness.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Claims
1. A process of fabricating a heat dissipation substrate, the process comprising:
- providing a metal substrate having an upper surface and a lower surface opposite to each other, a plurality of first recesses located on the upper surface, and a plurality of second recesses located on the lower surface, wherein the metal substrate is divided into a plurality of carrier units and a plurality of connecting units connecting the carrier units;
- filling a first insulating material into the first recesses and a second insulating material into the second recesses;
- forming a first conductive layer on the upper surface of the metal substrate and the first insulating material and a second conductive layer on the lower surface of the metal substrate and the second insulating material;
- patterning the first conductive layer and the second conductive layer to form a first patterned conductive layer and a second patterned conductive layer; and
- taking the first insulating material and the second insulating material as an etching mask to etch the connecting units of the metal substrate so as to form a plurality of individual heat dissipation substrates.
2. The process of fabricating the heat dissipation substrate as claimed in claim 1, wherein a method of forming the first recesses and the second recesses comprises an etching.
3. The process of fabricating the heat dissipation substrate as claimed in claim 1, wherein a method of forming the first conductive layer and the second conductive layer comprises an electroplating.
4. The process of fabricating the heat dissipation substrate as claimed in claim 1, wherein the metal substrate has a thickness less than 0.6 millimeter (mm).
5. A structure of the heat dissipation substrate fabricated using the process for fabricating the heat dissipation substrate as claimed in claim 1, the structure comprising:
- a metal substrate having an upper surface and a lower surface opposite to each other, a plurality of first recesses located on the upper surface, and a plurality of second recesses located on the lower surface;
- a first insulating material filled into the first recesses;
- a second insulating material filled into the second recesses;
- a first patterned conductive layer disposed on the upper surface of the metal substrate and a portion of the first insulating material; and
- a second patterned conductive layer disposed on the lower surface of the metal substrate and a portion of the second insulating material.
6. The structure of the heat dissipation substrate as claimed in claim 5, wherein the first insulating material substantially aligns with the upper surface of the metal substrate.
7. The structure of the heat dissipation substrate as claimed in claim 5, wherein the second insulating material substantially aligns with the lower surface of the metal substrate.
8. The structure of the heat dissipation substrate as claimed in claim 5, wherein the metal substrate has a thickness less than 0.6 mm.
9. The structure of the heat dissipation substrate as claimed in claim 5, wherein a material of the metal substrate comprises copper, and the first insulating material and the second insulating material comprise a glass fiber film.
Type: Application
Filed: Nov 10, 2011
Publication Date: Feb 21, 2013
Applicant: Subtron Technology Co., Ltd. (Hsinchu)
Inventor: Tzu-Shih Shen (Hsinchu)
Application Number: 13/293,130
International Classification: F28F 7/00 (20060101); B21D 53/02 (20060101);