COMPOSITION OF NANOCOMPOSITE CONTAINING GRAPHENE SHEETS
A novel nanocomposite having graphene sheets is described. The nanocomposite may be used for medical devices such as bone cement, dentures, paper, paint and automotive industries. A novel Microwave irradiation (MWI) was used to obtain R-(GO-(STY-co-MMA)). The results indicate that the nanocomposite obtained using the MWI had a better morphology and dispersion with enhanced thermal stability compared with the nanocomposite prepared without MWI. An average increase of 136% in hardness and 76% in elastic modulus were achieved through the addition of only 2.0 wt % of RGO nanocomposite obtained via the MWI method.
Latest ALFAISAL UNIVERSITY Patents:
- In situ polymer proppant particulates and methods for use thereof
- METHOD OF MAKING HIGH PEROFRMANCE POLYMER AEROGEL ABSORBENT FOR WATER RETENTION IN SANDY SOIL
- IN SITU METHOD OF MAKING POROUS 2D BASED TRI-NANOCOMPOSITE FOR USE IN MEDICAL TREATMENT
- Method and process to make chitosan-doped strontium oxide nanocomposite for bactericidal applications
- Method and process to make chitosan-doped strontium oxide nanocomposite for water purification
This application is a divisional application and claims priority to U.S. patent application Ser. No. 13/873,329 filed on 30 Apr. 2013, now allowed. The pending U.S. application Ser. No. 13/873,329 is hereby incorporated by reference in its entireties for all of its teachings.
FIELD OF TECHNOLOGYThe present disclosure relates to a novel composition for a nanocomposite containing graphene sheets.
BACKGROUNDGraphene (GR) is known as the thinnest two-dimensional graphitic carbon (sp2-bonded carbon sheet) material and is one atom in thickness [Hassan et. al. 2009, Huang et al. 2011, Kuilla et al. 2010]. GR has recently attracted much interest as filler for the development of new nanocomposite. Its extraordinary structural, mechanical, thermal, optical and electrical properties make GR an excellent two-dimensional filler material for polymer composite for application in many technological fields.
However, one of many challenges is achieving good dispersion of the nanoscale filler GR, which has a strong tendency to agglomerate due to intrinsic van der Waals forces, in the composite. Good dispersion is crucial for achieving the desired enhancement in the final physical and chemical properties of the composite. There is a need to find an optimal method to create a nanocomposite that has superior physical and chemical properties and is easy to make.
SUMMARYThe present disclosure describes a composition and its use for various industrial uses. In one embodiment, a composition for a nanocomposite having graphene sheet is described.
The nanocomposite, in one embodiment, is made by using microwave irradiation (MWI). In another embodiment, the nanocomposite comprises of graphene, styrene and methyl methacrylate. In one embodiment, the nanocomposite is used for medical devices/articles such as bone cement, dentures, paper, paint and automotive article. In another embodiment, the nanocomposite has a superior nanomechanical properties compared to non MWI method of preparation.
In one embodiment, a method of making nanocomposite is by synthesizing reduced graphene oxide powder. In another embodiment, styrene and methyl methacrylate is mixed in a specific weight ratio. The ratio is 1:1. In another embodiment, specific time and specific temperatures are used for performing various steps to obtain a copolymer of ST-co-MMA polymer with graphene sheets that is called a nanocomposite in the instant invention.
The composition of the nanocomposite and using the nanocomposite disclosed herein may be implemented in any means for achieving various aspects, and may be executed to be used for various industrial applications including medical and non-medical applications. Other features will be apparent from the accompanying drawings and from the detailed description that follows.
Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.
DETAILED DESCRIPTIONIn the instant invention the composition and preparation of the nanocomposite (using in situ and microwave method), characterization and evaluation of the chemical, structural properties, thermal behavior and intercalation and/or exfoliation, dispersion of graphene (GR) sheet is described.
The description describes the materials used for making the nanocomposite as well as other means of making the composite to be compared with the instant invention.
One of the advantages of graphene or graphene oxide (GO) is that it can be well-dispersed in water and physiological environments because of its abundant hydrophilic groups, such as hydroxyl, epoxide and carboxylic groups, on its surfaces. Graphene has recently attracted interest from researchers as a filler material in new composite polymers. The structural, mechanical, thermal, optical and electrical properties of graphene make it an excellent two-dimensional filler material for polymer composite that may find applications in numerous technological fields.
Various techniques have been developed for the synthesis of such composite structures, including solution mixing, melt blending, in situ polymerization and in situ polymerization using microwave irradiation (MWI). The MWI method offers a fast and easy way to synthesize graphene-based materials. In MWI, dielectric heating energy is transferred directly to the reactants. Energy is supplied to the molecules faster than they are able to relax, which creates high instantaneous temperatures and increases the yield and quality of the products. The co-polymer of methyl methacrylate and styrene (MMA-co-STY) is an important polymeric material that has numerous applications in medicine (e.g., as bone cement), dentistry (e.g., dentures) and the paper, paint and automotive industries.
In the instant invention we present our characterization of nanocomposite material that contains co-polymers (STY-co-MMA) with graphene sheets.
Experimental Section—Materials:
Extra pure graphite powder (>99.5%) was purchased from Merck (Germany), and hydrazine hydrate (HH, 80%) was obtained from Loba Chemi. Pvt. Ltd (India). Styrene (STY) and Methyl methacrylate (MMA) monomers (Acros Chemical Co., UK, 99%) were kept in a refrigerator and used as received. Benzoyl peroxide (BP) (BDH Chemicals Ltd., UK) was used as an initiator. Potassium permanganate (KMNO4, >99%) and hydrogen peroxide (H2O2, 30%) were obtained from Merck (Germany). Other solvents and chemicals were of analytical grade and used without further purification.
Preparation of GR Oxide (GO):
GO was synthesized from the oxidation of graphite powder via the Hummers and Offeman method. Natural graphite (3.5 g) was added to 100 ml of 98% H2SO4 under vigorous stirring. KMNO4 (10 g) was slowly added, and the temperature was maintained below 20° C. The stirring was continued for 1-2 hrs at 35° C. Then, the content of the flask was poured into 500 ml of deionized water, and a sufficient amount of H2O2 (20 ml of a 30% aqueous solution) was added to destroy any excess permanganate. Upon treatment with the peroxide, the suspension turned bright yellow. GO was isolated by filtration through a sintered glass filter. The product was thoroughly washed with dilute HCl and then hot water to remove the residual sulfate ions yielding a yellow-brown filter cake. After repeated washing of the resulting yellowish-brown cake with hot water, the GO was dried at 80° C.
Preparation of Reduced GO (RGO):
The dried GO (400 mg) was stirred and sonicated in 20 ml of deionized water until a homogeneous yellow dispersion was obtained. The GO can be dispersed easily in water due to the presence of a variety of hydrophilic oxygen groups (OH, O and COOH) on the basal planes and edges. The solution was placed inside a conventional microwave after the addition of 400 μl of the HH reducing agent. The microwave oven (KenWood MW740) was operated at full power (900 W) in 30 s cycles (on for 10 s and off and stirring for 20 s) for a total reaction time of 2 min. The yellow dispersion of GO gradually changed to a black color indicating the completion of the chemical reduction to GR. The GR sheets were separated using a centrifuge (Centurion Scientific Ltd.) operated at 5000 rpm for 15 min and dried at 80° C. overnight.
In Situ Preparation of RGO-(STY-Co-MMA) Composite:
RGO powder (2.0 (wt./wt. %)) was added to the STY and MMA (1:1 wt %) mixture, stirred and sonicated for 1 hr. Soon after the BP initiator (5.0 wt %) was added to the suspension and stirred until the initiator was dissolved. And then the mixture was heated and maintained at 60° C. for 20 h to promote polymerization using shaking-water bath (GFL). After the polymerization was complete, the product was poured into an excess of methanol, stirred for 15 minutes, and washed with hot water; it was the filtered and dried in an oven at 80° C. overnight.
Preparation of R-(GO-(STY-Co-MMA)) Nanocomposite by MWI:
GO powder (2.0 (wt./wt. %)) was added to the STY and MMA (1:1 wt %) mixture, stirred and sonicated for 1 hr. Then BP initiator (5.0 wt. %) was added to the suspension and stirred until the initiator dissolved. Then, the reaction mixture was maintained at 60° C. for 20 h to promote polymerization using a shaking-water bath (GFL). After the polymerization finished, the product was poured into an excess of methanol, stirred for 15 min and washed with hot water. Then, the product was filtered and dried at 80° C. overnight. Four hundred milligrams of the dried composite of GO-polymers were dissolved in solvent, stirred and sonicated for 1 h. Then, the composite was placed inside a conventional microwave oven (Kenwood MW740) following the addition of 400 μl of HH. The microwave oven was operated at full power (900 W) in 30 s cycles (on for 10 s and off and stirring for 20 s) for a total reaction time of 2 min. Then, the composite were separated using a centrifuge (Centurion Scientific Ltd.) operated at 5000 rpm for 15 min and dried in an oven at 80° C. overnight. For comparison, the neat poly(STY-co-MMA) was prepared via a similar procedure in the absence of the RGO and GO.
Instrumentation and Characterization:
The FTIR (Thermo Scientific Nicolet-iS10) spectra of the nanocomposite were recorded in the range of 4000-500 cm−1. The 1H NMR of the solution was recorded on a Bruker Avance (III) at 400 MHz using CDCl3 as the solvent, and the nanocomposite were macerated in a solvent for 1 day. The Raman spectra of nanocomposite were measured with a Bruker Equinox 55 FT-IR spectrometer equipped with an FRA106/S FT-Raman module and a liquid N2-cooled Ge detector using the 1064 nm line of a Nd:YAG laser with an output laser power of 200 mW. The X-ray diffraction (Philips-Holland, PW 1729) of the nanocomposite were investigated with Cu radiation (30 kV, 40 mA, Kα radiation (λ=1.54430 Å)) between 2θ of 5° and 100°. The thermogravimetric analyses (TGA) of the nanocomposite were studied using a NETZCH 209 F1 thermogravimetric analyzer. The decomposition temperature measurements using TGA were performed under an N2 atmosphere at a heating rate of 10° C. per minute from 25° C. to 800° C. Differential scanning calorimetry (DSC, NETZCH 204 F1) measurements were employed to estimate the glass-transition temperature (Tg) of each nanocomposite. The nanocomposite were heated from −25° C. to 100° C. at a heating rate of 10° C. per min. Then, a double run was performed after cooling at a heating rate of 2° C. per min from 25° C. to 350° C. The Tg was taken as the midpoint of the transition. A scanning electron microscope (SEM, FEI Quanta 200) was employed to study the morphology of the nanocomposite after they were mounted on the nanocomposite slabs and coated with gold via sputtering system (Polaron E6100, Bio-Rad). Ultrathin sections of the composite were prepared for high resolution transmission electron microscopy (HR-TEM) studies; the high resolution transmission electron microscope (JEOL JSM-2100F, JEOL) was operated at 200 kV. A drop of the composite dispersed in ethanol was placed on copper grids and dried for studies.
Results and DiscussionCopolymers and Graphene-Copolymers Composite by In Situ and MWI:
Following the procedure of in situ and MWI reduction methods, the solvent can be dried and the RGO-(STY-co-MMA) composite can be recovered in the film form, and a powder form for R-(GO-(STY-co-MMA)) composite. These composite are different from pristine graphene and neat copolymer.
FTIR spectral analysis was performed to confirm the chemical structure of all copolymers.
Another structural-evidence can be obtained from 1H-NMR and 13C-NMR.
The 13C-NMR spectra of neat poly(STY-co-MMA), RGO-(STY-co-MMA) composite, and R-(GO-(STY-co-MMA)) composite are shown in (
The composition of copolymer and copolymers composite were further studied by Raman spectroscopy (
The presence, intercalation and/or exfoliation and dispersion of GR sheets in the polymer matrix can be evaluated using XRD. The XRD pattern of the graphite displayed in (
Direct evidence of exfoliation of the graphene in the final polymer composite can be obtained from SEM and HR-TEM; also it provides images of dispersion of graphene layers in neat (STY/MMA) copolymer matrix.
Because SEM cannot spatially resolve the thickness of an individual GR-based sheet, high resolution transmission electron microscopy (HR-TEM) was employed to determine if the GR-based sheets were indeed present in the composite as single exfoliated sheets or as multi-layered sheets. HR-TEM offers direct evidence for the formation of the GR nanosheets on the polymer composite. HR-TEM of GR, neat poly(STY-co-MMA), RGO-(STY-co-MMA) and R-(GO-(STY-co-MMA)) composite are shown in (
The thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements were performed on co-polymer and co-polymer composite to examine the effect of the graphene content on the thermal stability. The TGA and DSC results of poly(STY-co-MMA), RGO-(STY-co-MMA) and R-(GO-(STY-co-MMA)) composite are displayed in
To further understand the thermal behavior and homogeneity of the composite prepared by the two different methods, differential scanning calorimetry (DSC) of the neat poly(STY-co-MMA), RGO-(STY-co-MMA) and R-(GO-(STY-co-MMA)) composite was employed to compare the glass transition temperature (Tg) of the polymer itself with the composite. The DSC curves of all synthesized poly(STY-co-MMA) are shown in (
The instant experiment proves that RGO-(STY-co-MMA) and R-(GO-(STY-co-MMA)) using in situ bulk polymerization facilitated by MWI was successfully prepared. Thermal analysis showed an enhancement in the thermal properties of the R-(GO-(STY-co-MMA)) nanocomposite prepared using MWI, which indicates that the RGO sheets efficiently reinforced the (STY-co-MMA)) matrix. Therefore, our approach is promising for the development of a new class of graphene-polymer nanocomposite. This investigation considered the relative changes in physical and thermal properties of composite in which GR was used as a nano-filler. The composite obtained using MWI exhibited a better morphology and increased dispersion with enhanced thermal stability. Therefore, our approach is promising for the development of a new class of graphene-polymer composite. In this disclosure composite and nanocomposite are used interchangeably.
In addition, it will be appreciated that the various composition of the nanocomposite and method of making the nanocomposite disclosed herein may be embodied using means for achieving the various combinations of material and irradiation doses using microwave. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Claims
1. A nanocomposite composition, comprising:
- a styrene added using a specific weight ratio;
- a methyl methacrylate equal to the ratio of the specific ratio of the styrene; and
- a graphene powder added using a weight/weight % of the styrene and methyl methacrylate ratio.
2. The composition of claim 1, wherein the specific weight ratio for the styrene is 1.
3. The composition of claim 1, wherein the specific weight ratio of the methyl methacrylate is 1.
4. The composition of claim 1, wherein the weight/weight % for the graphene powder is 2.
5. A nanocomposite composition, comprising:
- a graphene powder added using a weight/weight % of a styrene and methyl methacrylate ratio to be used for a specific article.
6. The nanocomposite of claim 5, further comprising:
- the styrene added using a specific weight ratio, wherein the specific weight ratio for the styrene is 1; and
- the methyl methacrylate equal to the ratio of the specific ratio of the styrene.
7. The composition of claim 6, wherein the specific weight ratio of the methyl methacrylate is 1.
8. The composition of claim 5, wherein the weight/weight % for the graphene powder is 2.
9. The composition of claim 5, wherein the specific article is at least one of a bone cement, denture, paper, paint and automotive industry article.
Type: Application
Filed: Sep 4, 2013
Publication Date: Oct 30, 2014
Applicant: ALFAISAL UNIVERSITY (RIYADH)
Inventors: Edreese H. Alsharaeh (Riyadh), Mohammad AlDosari (Riyadh), Ali Abdel-Rahman Mohammad Othman (Riyadh)
Application Number: 14/017,645
International Classification: C08K 3/04 (20060101);