BARRIER LAYER STACK FOR BIT LINE AIR GAP FORMATION
Air gaps are formed between conductive metal lines that have an inner barrier layer and an outer barrier layer. An etch step to remove sacrificial material is performed under a first set of process conditions producing a byproduct that suppresses further etching. A byproduct removal step performed under a second set of process conditions removes the byproduct.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/993,264, entitled, “Stacked Barrier Metal for Forming Bit line Air Gap” filed on May 14, 2014, which is hereby incorporated by reference in its entirety.
BACKGROUNDThis application relates generally to non-volatile semiconductor memories of the flash memory type, their formation, structure and use.
There are many commercially successful non-volatile memory products being used today, particularly in the form of small form factor cards, USB drives, embedded memory, and Solid State Drives (SSDs) which use an array of flash EEPROM cells. An example of a flash memory system is shown in
One popular flash EEPROM architecture utilizes a NAND array, wherein a large number of strings of memory cells are connected through one or more select transistors between individual bit lines and a reference potential. A portion of such an array is shown in plan view in
The top and bottom of the string connect to the bit line and a common source line respectively through select transistors (source select transistor and drain select transistor). Select transistors do not contain floating gates and are used to connect NAND strings to control circuits when they are to be accessed, and to isolate them when they are not being accessed.
NAND strings are generally connected by conductive lines in order to form arrays that may contain many NAND strings. At either end of a NAND string a contact area may be formed. This allows connection of the NAND string as part of the array. Metal contacts may be formed over contact areas to connect the contact areas (and thereby connect NAND strings) to conductive metal lines that extend over the memory array (e.g. bit lines).
Thus, there is a need for a memory chip manufacturing process that forms uniform low resistance conductive lines, such as bit lines, in close proximity in an efficient manner.
SUMMARYAccording to an example of formation of a memory integrated circuit, air gaps are formed between bit lines by removing sacrificial material in a series of etch steps that produce an etch-inhibiting byproduct and removal steps that selectively remove the byproduct. Removal may be selective according to geometry so that byproduct is removed at a high rate over sacrificial material (thus exposing the sacrificial material for subsequent etching) while byproduct may be removed at a low rate in other areas so that it remains in those areas and inhibits further etching. For example, an inner barrier layer may be exposed in a narrow gap between bit line metal and an outer barrier layer. Byproduct may remain in such a narrow gap during a removal step so that the byproduct subsequently protects the inner barrier layer from damage during removal of sacrificial material. When the desired amount of sacrificial material has been removed, a final removal step, which may be performed at a higher temperature than other steps, removes remaining byproduct including byproduct in narrow gaps.
An example of a method of forming an air gap between adjacent conductive lines includes: forming a plurality of trenches in a dielectric layer that is formed of a dielectric material; subsequently forming a first barrier layer in the plurality of trenches; subsequently forming a second barrier layer over the first barrier layer; and subsequently filling the plurality of trenches with a conductive metal to form bit lines; subsequently removing dielectric material between bit lines by: (a) performing a Chemical Dry Etching (CDE) step under a first set of process conditions thereby substantially etching the dielectric material and the second barrier layer without substantially etching the first barrier layer, the etching of the dielectric material under the first set of process conditions producing a byproduct that suppresses the etching of the dielectric material: and (b) subsequently performing a removal step to remove the byproduct of the etching of the dielectric material in the CDE step under a second set of process conditions.
The second barrier layer may be formed of a barrier metal; and the first barrier layer may be a nitride or an oxide of the barrier metal. Under the first set of process conditions an etchant may be supplied; and under the second set of process conditions no etchant may be supplied. The first set of process conditions may include a first temperature that is lower than a sublimation temperature of the byproduct, and the second set of process conditions may include a second temperature that is higher than the sublimation temperature of the byproduct. Steps (a) and (b) may be repeated two or more times until a predetermined amount of the dielectric material is removed. The etchant may be a gas containing fluorine (F) and hydrogen (H); and the byproduct may contain ammonium fluorosilicate ((NH4)2SiF6). The example may also include: (c) subsequently, after a predetermined amount of the dielectric material is removed, performing an anneal step at a temperature that his higher than any of: a sublimation temperature of the byproduct and any temperature of the first or second sets of process conditions. The second barrier layer may be exposed to the CDE step in an opening between the first barrier layer and the conductive metal, the opening may have a width that is equal to or smaller than 1/10 of a width of exposed dielectric portions between the bit lines. The first barrier layer may be titanium nitride (TiN), the second barrier layer may be titanium (Ti), and the conductive metal may be copper (Cu). The first set of process conditions may provide equilibrium between producing the byproduct and removing the byproduct from areas between the bit lines while generating some buildup of the byproduct over exposed areas of the second barrier layer to provide suppressed etching of the second barrier layer, and the second set of process conditions may be sufficient to remove the byproduct only from the areas between the bit lines. An area of the second layer may be exposed to the CDE step and the area may have a width along a direction perpendicular to the bit lines that is smaller than a distance between neighboring bit lines.
An example of a method of forming air gaps between bit lines includes: (a) forming a plurality of bit lines in a dielectric material, an individual bit line having an inner barrier layer and an outer barrier layer; (b) subsequently etching the dielectric material using an etch step that etches the inner barrier layer, does not significantly etch the outer barrier layer, and etches the dielectric material to produce a byproduct that suppresses further etching; (c) subsequently removing the byproduct using a removal step that removes substantially all of the byproduct from over the dielectric material between bit lines and leaves at least some of the byproduct on surfaces of the inner barrier layer; and (d) repeating steps (b) and (c) until a predetermined amount of the dielectric material is removed.
The inner barrier layer may be formed of titanium, the outer barrier layer may be formed of titanium nitride, and the byproduct may be ammonium fluorosilicate ((NH4)2SiF6). The etch step may be performed using a gas mixture that contains fluorine (F) and hydrogen (H). The etch step may be performed at a temperature below the sublimation temperature of ammonium fluorosilicate and the removal step may be performed at a temperature above the sublimation temperature of ammonium fluorosilicate. Subsequent to step (d), an anneal step may be performed to remove any remaining byproduct from over the dielectric material between bit lines and from surfaces of the inner barrier layer.
An example of a method of forming air gaps between bit lines may include: (a) forming a plurality of bit lines in a sacrificial layer of silicon oxide, an individual bit line having an inner barrier layer of titanium and an outer barrier layer of titanium nitride; (b) subsequently etching the silicon oxide using an etch step that etches the titanium of the inner barrier layer, does not significantly etch the titanium nitride of the outer barrier layer, and etches the silicon oxide to produce a byproduct containing ammonium fluorosilicate ((NH4)2SiF6) that suppresses further etching; (c) subsequently removing the byproduct using a removal step that removes substantially all of the byproduct from over the silicon oxide between bit lines and leaves at least some of the byproduct on surfaces of the inner barrier layer; and (d) repeating steps (b) and (c) until a predetermined amount of the silicon oxide is removed. Subsequent to removing the predetermined amount of silicon oxide a final removal step may remove substantially all of the byproduct on surfaces of the inner barrier layer. The removal step may apply a temperature below 150 degrees centigrade and the final removal step may apply a temperature above 150 degrees centigrade. Step (b) may etch approximately 1-2 nanometers of silicon oxide and may be repeated at least 10 times.
Various aspects, advantages, and features are included in the following description of certain examples, which description should be taken in conjunction with the accompanying drawings.
Semiconductor memory devices include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information. Each type of memory device may have different configurations. For example, flash memory devices may be configured in a NAND or a NOR configuration.
The memory devices can be formed from passive and/or active elements, in any combinations. By way of non-limiting example, passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse, phase change material, etc., and optionally a steering element, such as a diode, etc. Further by way of non-limiting example, active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
Multiple memory elements may be configured so that they are connected in series or so that each element is individually accessible. By way of non-limiting example, flash memory devices in a NAND configuration (NAND memory) typically contain memory elements connected in series. A NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group. Alternatively, memory elements may be configured so that each element is individually accessible, e.g., a NOR memory array. NAND and NOR memory configurations are exemplary, and memory elements may be otherwise configured.
The semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three dimensional memory structure.
In a two dimensional memory structure, the semiconductor memory elements are arranged in a single plane or a single memory device level. Typically, in a two dimensional memory structure, memory elements are arranged in a plane (e.g., in an x-z direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements. The substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed. As a non-limiting example, the substrate may include a semiconductor such as silicon.
The memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations. The memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
A three dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the y direction is substantially perpendicular and the x and z directions are substantially parallel to the major surface of the substrate).
As a non-limiting example, a three dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels. As another non-limiting example, a three dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements in each column. The columns may be arranged in a two dimensional configuration, e.g., in an x-z plane, resulting in a three dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes. Other configurations of memory elements in three dimensions can also constitute a three dimensional memory array.
By way of non-limiting example, in a three dimensional NAND memory array, the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-z) memory device levels. Alternatively, the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels. Other three dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels. Three dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
Typically, in a monolithic three dimensional memory array, one or more memory device levels are formed above a single substrate. Optionally, the monolithic three dimensional memory array may also have one or more memory layers at least partially within the single substrate. As a non-limiting example, the substrate may include a semiconductor such as silicon. In a monolithic three dimensional array, the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array. However, layers of adjacent memory device levels of a monolithic three dimensional memory array may be shared or have intervening layers between memory device levels.
Then again, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device having multiple layers of memory. For example, non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three dimensional memory arrays. Further, multiple two dimensional memory arrays or three dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements. As non-limiting examples, memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading. This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate. For example, a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
In other examples, types of memory other than the two dimensional and three dimensional exemplary structures described here may be used.
An example of a prior art memory system is illustrated by the block diagram of
The data stored in the memory cells are read out by the column control circuit 2 and are output to external I/O lines via an I/O line and a data input/output buffer 6. Program data to be stored in the memory cells are input to the data input/output buffer 6 via the external I/O lines, and transferred to the column control circuit 2. The external I/O lines are connected to a controller 9. The controller 9 includes various types of registers and other memory including a volatile random-access-memory (RAM) 10.
The memory system of
As memories become smaller, the spacing between bit lines tends to diminish. Accordingly, capacitive coupling between bit lines tends to increase as technology progresses to ever-smaller dimensions.
One way to reduce bit line-to-bit line coupling is to provide an air gap between neighboring bit lines. Thus, rather than maintain dielectric portions between bit lines, the bit lines are formed in a sacrificial layer which is then removed to leave air gaps between bit lines.
Removing sacrificial material between bit lines generally requires some form of etching which may expose bit lines to etch related damage. While a suitable combination of sacrificial material and etch chemistry may be chosen so that sacrificial material is etched at a higher rate than bit line materials, some etching of bit line materials may occur and bit lines may be damaged accordingly. For example, bit line metal and/or barrier layer material may be damaged by etching.
Excess metal is then removed to leave metal only in trenches thereby forming separate bit lines 619a-e and peripheral lines 619f-g as shown in
An alternative scheme for removing sacrificial material reduces etching of inner barrier layer material that may be exposed between the outer barrier layer and the conductive metal. Using suitable materials and etch chemistry, a suitable etching scheme may produce a byproduct that inhibits further etching. The byproduct may be removed from large exposed areas so that etching on large areas continues while the byproduct remains in small areas (such as the gap between conductive metal and outer barrier layer).
A suitable etch scheme may use Chemical Dry Etching (CDE) with an ammonia (NH3) and hydrofluoric acid (HF) to etch sacrificial material such as silicon oxide thereby producing ammonium fluorosilicate ((NH4)2SiF6). Ammonium fluorosilicate may be considered an etch byproduct. Ammonium fluorosilicate may form a layer of byproduct as shown in
When a sufficient depth of byproduct builds up on surfaces being etched, the etch rates drop to very low levels (i.e. there is little or no further etching). A byproduct removal step may remove byproduct so that etching may resume.
It can be seen in
Subsequent to the removal step of
As in the earlier etch step, byproduct is produced which coats surfaces and inhibits further etching as shown by additional byproduct 819 in
In an example, a series of alternating etch steps and byproduct removal steps are performed until the desired amount of sacrificial material is etched away. Where byproduct removal is selective this cycle of etching and removing produces selective etching of sacrificial material with very little etching of inner barrier layer material. While some etching of barrier layer material may occur (e.g. in first step, or steps) this etching tends to be limited because as the inner barrier material is etched a narrow trench is formed and byproduct tends to remain in such a narrow trench during a subsequent removal step. Thus, significant etching of the inner barrier layer may be confined to one or more early etch steps (and may be confined to a few nanometers in depth) and may not be significant in later steps.
The number of etch-removal steps depends on the amount of sacrificial material to be removed and on the specific process used. In an example, an individual etch step may remove 1-2 nanometers of sacrificial material so that removing 30-40 nanometers of sacrificial material may be achieved with about 30 cycles. In some cases, an etch stop layer may be included in a structure at a level where etching is to cease, i.e. below the sacrificial material. The etch stop layer may have a low etch rate so that when etching reaches the etch stop layer etching becomes very slow.
In general, because the etch steps described above are self-limiting, etching proceeds in a controlled and uniform manner. While some etch processes may be sensitive to temperature variation, variation in electromagnetic field strength, variation in chemical concentration, or other variation in process parameters, a self-limiting etch step such as described above tends to be less sensitive and thus provide good etch uniformity even if some process parameters are not uniform. Etch depth may be controlled by setting the number of cycles. In some cases, a cycle of self-limiting etch and byproduct removal may provide sufficiently uniform etching with enough etch depth control so that an etch stop layer is unnecessary.
After a desired amount of sacrificial material is removed it may be desirable to remove all remaining byproduct including byproduct overlying the inner barrier layer. Thus, after a final etch step, when no further etching is to occur, this byproduct too may be removed. The byproduct removal step used in the cycle described above does not generally remove byproduct at this location at a significant rate. Therefore, an alternative step may be used.
An alternative to the cycled process described above is illustrated in
When a process is maintained in equilibrium a single etch step may continue until the desired amount of sacrificial material is removed. Then, a single final removal step may be performed to remove all byproduct. This may be similar to the final byproduct removal step described above. Thus, rather than performing multiple cycles of etching and removing byproduct, a single etch step may be performed followed by a single byproduct removal step. The etch depth may be controlled by time rather than by the number of cycles. Alternatively, multiple steps may be performed under equilibrium conditions.
Although the various non-limiting examples have been described with respect to the present drawings, it will be understood that protection within the full scope of the appended claims is appropriate. Furthermore, although methods for implementation are discussed with respect to particular prior art structures, it will be understood that examples may be implemented in memory arrays with architectures other than those described.
Claims
1. A method of forming an air gap between adjacent conductive lines comprising:
- forming a plurality of trenches in a dielectric layer that is formed of a dielectric material;
- subsequently forming a first barrier layer in the plurality of trenches;
- subsequently forming a second barrier layer over the first barrier layer; and
- subsequently filling the plurality of trenches with a conductive metal to form bit lines;
- subsequently removing dielectric material between bit lines by:
- (a) performing a Chemical Dry Etching (CDE) step under a first set of process conditions thereby substantially etching the dielectric material and the second barrier layer without substantially etching the first barrier layer, the etching of the dielectric material under the first set of process conditions producing a byproduct that suppresses the etching of the dielectric material: and
- (b) subsequently performing a removal step to remove the byproduct of the etching of the dielectric material in the CDE step under a second set of process conditions.
2. The method of claim 1 wherein the second barrier layer is formed of a barrier metal; and
- the first barrier layer is a nitride or an oxide of the barrier metal.
3. The method of claim 1 wherein under the first set of process conditions an etchant is supplied; and
- under the second set of process conditions no etchant is supplied.
4. The method of claim 1 wherein the first set of process conditions includes a first temperature that is lower than a sublimation temperature of the byproduct, and
- the second set of process conditions includes a second temperature that is higher than the sublimation temperature of the byproduct.
5. The method of claim 1 further comprising repeating steps (a) and (b) two or more times until a predetermined amount of the dielectric material is removed.
6. The method of claim 3 wherein the etchant is a gas containing fluorine (F) and hydrogen (H); and
- the byproduct contains ammonium fluorosilicate ((NH4)2SiF6).
7. The method of claim 1 further comprising:
- (c) subsequently, after a predetermined amount of the dielectric material is removed, performing an anneal step at a temperature that his higher than any of: a sublimation temperature of the byproduct and any temperature of the first or second sets of process conditions.
8. The method of claim 1 wherein the second barrier layer is exposed to the CDE step in an opening between the first barrier layer and the conductive metal, the opening having a width that is equal to or smaller than 1/10 of a width of exposed dielectric portions between the bit lines.
9. The method of claim 1 wherein the first barrier layer is titanium nitride (TiN), the second barrier layer is titanium (Ti), and the conductive metal is copper (Cu).
10. The method of claim 1 wherein the first set of process conditions provide equilibrium between producing the byproduct and removing the byproduct from areas between the bit lines while generating some buildup of the byproduct over exposed areas of the second barrier layer to provide suppressed etching of the second barrier layer, and wherein the second set of process conditions is sufficient to remove the byproduct only from the areas between the bit lines.
11. The method of claim 1 wherein an area of the second layer is exposed to the CDE step and the area has a width along a direction perpendicular to the bit lines that is smaller than a distance between neighboring bit lines.
12. A method of forming air gaps between bit lines comprising:
- (a) forming a plurality of bit lines in a dielectric material, an individual bit line having an inner barrier layer and an outer barrier layer;
- (b) subsequently etching the dielectric material using an etch step that etches the inner barrier layer, does not significantly etch the outer barrier layer, and etches the dielectric material to produce a byproduct that suppresses further etching;
- (c) subsequently removing the byproduct using a removal step that removes substantially all of the byproduct from over the dielectric material between bit lines and leaves at least some of the byproduct on surfaces of the inner barrier layer; and
- (d) repeating steps (b) and (c) until a predetermined amount of the dielectric material is removed.
13. The method of claim 12 wherein the inner barrier layer is formed of titanium, the outer barrier layer is formed of titanium nitride, and the byproduct is ammonium fluorosilicate ((NH4)2SiF6).
14. The method of claim 13 wherein the etch step is performed using a gas mixture that contains fluorine (F) and hydrogen (H).
15. The method of claim 14 wherein the etch step is performed at a temperature below the sublimation temperature of ammonium fluorosilicate and the removal step is performed at a temperature above the sublimation temperature of ammonium fluorosilicate.
16. The method of claim 15 further comprising, subsequent to (d), performing an anneal step to remove any remaining byproduct from over the dielectric material between bit lines and from surfaces of the inner barrier layer.
17. A method of forming air gaps between bit lines comprising:
- (a) forming a plurality of bit lines in a sacrificial layer of silicon oxide, an individual bit line having an inner barrier layer of titanium and an outer barrier layer of titanium nitride;
- (b) subsequently etching the silicon oxide using an etch step that etches the titanium of the inner barrier layer, does not significantly etch the titanium nitride of the outer barrier layer, and etches the silicon oxide to produce a byproduct containing ammonium fluorosilicate ((NH4)2SiF6) that suppresses further etching;
- (c) subsequently removing the byproduct using a removal step that removes substantially all of the byproduct from over the silicon oxide between bit lines and leaves at least some of the byproduct on surfaces of the inner barrier layer; and
- (d) repeating steps (b) and (c) until a predetermined amount of the silicon oxide is removed.
18. The method of claim 17 wherein subsequent to removing the predetermined amount of silicon oxide a final removal step removes substantially all of the byproduct on surfaces of the inner barrier layer.
19. The method of claim 18 wherein the removal step applies a temperature below 150 degrees centigrade and the final removal step applies a temperature above 150 degrees centigrade.
20. The method of claim 17 wherein step (b) etches approximately 1-2 nanometers of silicon oxide and is repeated at least 10 times.
Type: Application
Filed: Sep 25, 2014
Publication Date: Nov 19, 2015
Inventors: Takuya Futase (Nagoya), Katsuo Yamada (Yokkaichi), Tomoyasu Kakegawa (Yokkaichi), Noritaka Fukuo (Yokkaichi), Yuji Takahashi (Yokkaichi)
Application Number: 14/496,360