PRESSURE TRANSFER PROCESS FOR THIN FILM SOLAR CELL FABRICATION
In one aspect, a method for fabricating a thin film solar cell includes the following steps. A first absorber material is deposited as a layer A on a substrate while applying pressure to the substrate/layer A. A second absorber material is deposited as a layer B on layer A while applying pressure to the substrate/layer B. A third absorber material is deposited as a layer C on layer B while applying pressure to the substrate/layer C. A fourth absorber material is deposited as a layer D on layer C while applying pressure to the substrate/layer D. The first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein by way of performing the steps of claim 1 a chalcogenide absorber layer is formed on the substrate.
The present invention relates to the fabrication of copper-indium-gallium-sulfur/selenium (CIGS)-based thin film solar cells and more particularly, to techniques for fabricating CIGS-based thin film solar cells that employ a pressure transfer process to control volume expansion and stresses on the CIGS layers that occur during the fabrication process and thereby prevent loss of adhesion between the layers.
BACKGROUNDCopper-indium-gallium-sulfur/selenium (CIGS) materials are commonly used as the absorber in thin film solar cells. One approach to producing a CIGS absorber in thin film solar cell technology is to successively deposit elemental layers of the copper, indium, gallium and sulfur, followed by an annealing step (for example in a selenium environment).
One challenge in this fabrication process is to maintain adhesion between the deposited layers. Namely, the layers being formed from different materials will have different coefficients of thermal expansion. During the heating and cooling cycles of absorber fabrication, the differing amounts of volume expansion can cause the layers to delaminate. This delamination problem is a significant roadblock to large-scale implementation of CIGS thin film solar cell production.
Thus, techniques for fabricating CIGS thin film solar cells that minimize or eliminate such adhesion problems would be desirable.
BRIEF SUMMARYThe present invention provides techniques for fabricating CIGS-based thin film solar cells that employ a pressure transfer process to control volume expansion and stresses on the CIGS layers that occur during the fabrication process and thereby prevent loss of adhesion between the layers. In one aspect of the invention, a method for fabricating a thin film solar cell is provided. The method includes the following steps. A substrate is provided. A first absorber material is deposited as a layer A on the substrate while applying pressure to both the substrate and the layer A. A second absorber material is deposited as a layer B on the layer A while applying pressure to both the substrate and the layer B. A third absorber material is deposited as a layer C on the layer B while applying pressure to both the substrate and the layer C. A fourth absorber material is deposited as a layer D on the layer C while applying pressure to both the substrate and the layer D. The layers A-D are annealed while applying pressure to both the substrate and the layer D, wherein the first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein by way of performing the steps of the method a chalcogenide absorber layer is formed on the substrate.
In another aspect of the invention, an apparatus for fabricating a thin film solar cell is provided. The apparatus includes a set of rollers (a) configured to, when a substrate passes between the set of rollers (a), deposit a first absorber material as a layer A on the substrate while applying pressure to both the substrate and the layer A; a set of rollers (b) configured to, when the substrate with the layer A thereon passes through the set of rollers (b), deposit a second absorber material as a layer B on the layer A while applying pressure to both the substrate and the layer B; a set of rollers (c) configured to, when the substrate with the layers A and B thereon passes through the set of rollers (c), deposit a third absorber material as a layer C on the layer B while applying pressure to both the substrate and the layer C; a set of rollers (d) configured to, when the substrate with the layers A-C thereon passes through the set of rollers (d), deposit a fourth absorber material as a layer D on the layer C while applying pressure to both the substrate and the layer D; and a set of rollers (e) configured to, when the substrate with the layers A-D thereon passes through the set of rollers (e), anneal the layers A-D while applying pressure to both the substrate and the layer D, wherein the first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein the apparatus is configured to form a chalcogenide absorber layer on the substrate.
A more complete understanding of the present invention, as well as further features and advantages of the present invention, will be obtained by reference to the following detailed description and drawings.
As provided above, the fabrication of copper-indium-gallium-sulfur/selenium (CIGS) absorbers for thin film solar cell production can be accomplished by successive deposition of elemental layers of the copper (Cu), indium (In), gallium (Ga) and sulfur (S), followed by an anneal in a selenium (Se) environment. However due to the differences in material composition, adhesion problems can occur during the fabrication process as the layers are heated and cooled. Advantageously, provided herein are techniques for fabricating chalcogenide (e.g., CIGS) thin film solar cells that employ a pressure transfer process, for example by way of rollers that apply pressure to both sides of the solar cell workpiece, to control volume expansion and stresses on the CIGS layers that occur during the fabrication process and thereby prevent loss of adhesion between the layers.
In one exemplary embodiment which will be described in detail below, the present techniques are applied to a continuous line chalcogenide (e.g., CIGS) thin film solar cell fabrication process wherein the elemental layers of the CIGS absorber are successively applied to a substrate (e.g., molybdenum (Mo)-coated glass or metal substrate) material that is being continuously fed through the production line. The thin film layers of the absorber are applied at different stages of the continuous line process. In some exemplary embodiments, described below, sets of rollers are employed throughout the fabrication stages to deposit the CIGS layers onto the workpiece and/or heat/cool the workpiece while at the same time applying pressure to both sides of the workpiece. Applying pressure to both sides of the workpiece during the thin film fabrication process serves to passivate the stresses caused by the volume expansion of the layers. Thus, the above-described adhesion problems commonly associated with conventional thin film solar cell fabrication can be avoided.
According to the present techniques, deposition of the CIGS layers onto the workpiece can be carried out in several different ways. For example, in one scenario an electrodeposition process is used to deposit the CIGS layers using separate electroplating cells. As will be described in detail below, the rollers can be used during this electrodeposition process to simultaneously apply pressure to both sides of the workpiece while serving to deposit the CIGS material onto the workpiece (and at some stages of the process heat or cool the workpiece). In another exemplary scenario, one or more of the CIGS components are deposited onto the workpiece from a molten bath. Again, the rollers can be used during this molten deposition process to simultaneously apply pressure to both sides of the workpiece while serving to deposit the CIGS material onto the workpiece (and at some stages of the process heat or cool the workpiece).
An overview of the first exemplary scenario wherein the CIGS materials are deposited onto the workpiece via electrodeposition is provided by way of reference to
Next, in step 104 a Cu layer is deposited onto the substrate material. It is notable that in the case of a Mo-coated glass substrate, in this step the Cu is deposited onto the Mo layer. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom-to the substrate and Cu layer, respectively) of the workpiece during this Cu deposition step. By way of example only, a linear pressure applied to the workpiece during this step is from about 10 N/mm to about 700 N/mm.
As will be described in detail below, in some exemplary embodiments, the Cu deposition and simultaneous application of pressure to the workpiece is performed via a set of two rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers.
According to an exemplary embodiment, the rollers are configured to deposit the Cu onto the workpiece from a Cu-containing electrochemical electrolyte solution through which one of the rollers passes. Namely, the Cu (which is electrodeposited onto the roller from the electrolyte solution) is transferred from the roller onto the workpiece. The transfer of the Cu from the roller to the workpiece can be facilitated by cooling the roller, see below. Namely, as will be described in detail below, the rollers may be made of a metal such as stainless steel. The material (in this case Cu) will be deposited via the rollers onto the substrate under pressure—as provided above. Cooling the rollers will facilitate cladding the Cu to the workpiece, rather than to the (metal) roller. Further, due to this being a continuous line process, as the workpiece passes through each stage, the material already deposited and cladded onto the workpiece will aid in removing the material from the roller (similar to when any sort of material is unwound from a roll) and cooling the rollers facilitates removal of the material from the roll. Thus, in one exemplary embodiment, the rollers are in this step cooled to a temperature of from about −5° C. to about 10° C. Thus, in this exemplary embodiment, the rollers are configured to simultaneously 1) apply Cu to the workpiece and 2) apply pressure to both sides of the workpiece. Pressure is defined herein as a physical force being exerted on a first object (in this case the workpiece) by one or more other objects (in this case the rollers) in contact with the first object. As the CIGS absorber layers are successively deposited onto the substrate, pressure is applied to the workpiece via the rollers which are in contact with the substrate and the layer currently being deposited. Thus, during the Cu deposition step, pressure from the rollers is exerted simultaneously on the Cu layer and on the substrate. During the In deposition step, pressure from the rollers is exerted simultaneously on the In layer and on the substrate. And so on.
As will be described in detail below, electrodeposition is only one possible process that may be implemented to deposit the thin film materials onto the substrate. For instance, the Cu can be deposited onto the rollers using for example a sputtering (or other suitable process) and then transferred from the rollers to the substrate in the manner described above. Alternatively, the Cu can be deposited directly onto the substrate and pressure/heat would be applied via the rollers in the manner described above. These alternative embodiments are described in detail below.
In order to bond the Cu deposited onto the substrate material in step 104, pressure and heat are applied to the workpiece in step 106. This process of bonding dissimilar metals (e.g., the Cu with the metal substrate or with the Mo-coated substrate) is also referred to herein by the term “cladding.” Linear pressure (e.g., from about 10 N/mm to about 700 N/mm) is applied to both sides (i.e., to a top and bottom-to the Cu layer and substrate, respectively) of the workpiece during this step which, as provided above, also serves to control volume expansion and stresses on the layers of the cell. By way of example only, the workpiece may be heated at this step to a temperature of from about 50° C. to about 250° C.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 106 via a set of two rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
Next, in step 108 an In layer is deposited onto the substrate material on top of the Cu layer. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom-to the substrate and In layer, respectively) of the workpiece during this In deposition step. Exemplary pressure values that may be employed during this metal deposition step were provided above.
As will be described in detail below, in some exemplary embodiments, the In deposition and simultaneous application of pressure to the workpiece is performed via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be configured to deposit the In onto the workpiece from a In-containing electrochemical electrolyte solution through which one of the rollers passes. Namely, the In (which is electrodeposited onto the roller from the electrolyte solution) is transferred from the roller onto the workpiece. As with the case of the Cu deposition above, the transfer of the In from the roller to the workpiece can be facilitated by cooling the roller, see below. Exemplary temperature values were provided above regarding cooling the workpiece to facilitate material transfer from the rollers to the workpiece. Thus, in this exemplary embodiment, the rollers are configured to simultaneously 1) apply In to the workpiece, and 2) apply pressure to both sides of the workpiece.
Cladding of the In deposited onto the Cu layer (in step 108) is achieved by applying pressure and heat to the workpiece in step 110. Exemplary temperature and pressure values for this cladding process were provided above.
Alternatively, as provided above, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above. These alternative embodiments are described in detail below.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 110 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
Next, in step 112 a Ga layer is deposited onto the substrate material on top of the In layer. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom-to the substrate and Ga layer, respectively) of the workpiece during this Ga deposition step. Exemplary pressure values that may be employed during this metal deposition step were provided above.
As will be described in detail below, in some exemplary embodiments, the Ga deposition and simultaneous application of pressure to the workpiece is performed via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be configured to deposit the Ga onto the workpiece from a Ga-containing electrochemical electrolyte solution through which one of the rollers passes. Namely, the Ga (which is electrodeposited onto the roller from the electrolyte solution) is transferred from the roller onto the workpiece. As with the materials above, the transfer of the Ga from the roller to the workpiece can be facilitated by cooling the roller, see below. Thus, in one exemplary embodiment, the rollers are in this step are cooled. Exemplary temperature values were provided above regarding cooling the workpiece to facilitate material transfer from the rollers to the workpiece. Thus, in this exemplary embodiment, the rollers are configured to simultaneously 1) apply Ga to the workpiece, and 2) apply pressure to both sides of the workpiece.
Cladding of the Ga deposited onto the In layer (in step 112) is achieved by applying pressure and heat to the workpiece in step 114. Exemplary temperature and pressure values for this cladding process were provided above.
Alternatively, as provided above, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above. These alternative embodiments are described in detail below.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 114 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
In step 116, the workpiece is subjected to an intermediate or soft anneal. As with the heating steps described above, pressure is applied to the workpiece while the workpiece is heated during step 116. While the soft anneal performed in step 116 is optional, uniformity of the final CIGS material will be enhanced by performing this soft/intermediate anneal. According to an exemplary embodiment, in step 116 the workpiece is annealed at a temperature of from about 100° C. to about 300° C., e.g., at a temperature of about 155° C., while a linear pressure of from about 10 N/mm to about 700 N/mm is simultaneously applied to both sides (i.e., to a top and bottom) of the workpiece which, as provided above, also serves to control volume expansion and stresses on the layers of the cell. As will be described below, a final anneal will be performed in an S-containing environment to complete the CIGS absorber.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 116 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
Next, in step 118 a S, Se, or S+Se layer (abbreviated herein as S/Se layer) is deposited onto the substrate material on top of the Ga layer. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom-to the substrate and S/Se layer, respectively) of the workpiece during this S/Se deposition step. Exemplary pressure values that may be employed during this metal deposition step were provided above.
As will be described in detail below, in some exemplary embodiments, the S/Se deposition and simultaneous application of pressure to the workpiece is performed via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be configured to deposit the S/Se onto the workpiece from a S/Se-containing electrochemical electrolyte solution through which one of the rollers passes. Namely, the S/Se (which is electrodeposited onto the roller from the electrolyte solution) is transferred from the roller onto the workpiece. As with the materials above, the transfer of the S/Se from the roller to the workpiece can be facilitated by cooling the roller, see below. Thus, in one exemplary embodiment, the rollers are in this step cooled. Exemplary temperature values were provided above regarding cooling the workpiece to facilitate material transfer from the rollers to the workpiece. Thus, in this exemplary embodiment, the rollers are configured to simultaneously 1) apply S/Se to the workpiece, and 2) apply pressure to both sides of the workpiece.
Cladding of the S/Se deposited onto the Ga layer (in step 118) is achieved by applying pressure and heat to the workpiece in step 120. Exemplary temperature and pressure values for this cladding process were provided above.
As provided above, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above. These alternative embodiments are described in detail below.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 120 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
Finally, in step 122, the workpiece is subjected to a final anneal in a S environment. As with the heating steps described above, pressure is applied to the workpiece while the workpiece is heated during step 122. According to an exemplary embodiment, in step 122 the workpiece is annealed at a temperature of from about 500° C. to about 600° C., e.g., at a temperature of about 500° C., while a linear pressure of from about 10 N/mm to about 700 N/mm is simultaneously applied to both sides (i.e., to a top and bottom) of the workpiece which, as provided above, also serves to control volume expansion and stresses on the layers of the cell.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 122 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
The CIGS absorber is now complete. Any further processing of the cell can be carried out using conventional techniques to form a buffer layer, top electrode, etc. to complete the solar cell.
It is notable that the thin film compositions described above, and elsewhere herein are merely examples intended to illustrate the present techniques, and a variety of other film compositions can be achieved in the manner described herein. One would need only to vary the composition of the materials deposited in one or more of the steps and/or the order in which the materials are deposited in order to achieve different thin film compositions. In addition to the CIGS example provided above, by way of example only, one may adapt the present techniques to produce any of the following thin film solar cell compositions: CZTS (Cu2ZnSn(Se,S)4), FeS2, Zn2P3, CdSe, CdS, ZnSe, WSe2, MoSe2, Bi2S3, Ag2S, Cu2Zn(Fe,Sn)(Se,S)4, CuxS, CdTe, ZnTe, PbSe, PdS, NiS, NiSeS, InP, ZnO, GaAs. An example involving a I-III-IV2 material is provided below.
As provided above, according to another exemplary scenario, one or more of the CIGS components are deposited onto the workpiece from a molten bath. An overview of this process is now provided by way of reference to
In step 202, a substrate material is provided. Suitable substrate materials for solar cell applications include, but are not limited to, glass substrates having a back contact layer formed thereon such as a Mo-coated glass substrate, and a flexible metal substrate, such as a stainless steel foil substrate. In the exemplary embodiments described below, the substrate material is fed continuously from a roll, the CIGS absorber material is formed on the substrate material, and the output is spooled onto a second roll. This process is also referred to herein as a roll-to-roll process.
Next, in step 204 a Cu layer is deposited onto the substrate material. It is notable that in the case of a Mo-coated glass substrate, in this step the Cu is deposited onto the Mo layer. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom-to the substrate and Cu layer, respectively) of the workpiece during this Cu deposition step. By way of example only, a linear pressure applied to the workpiece during this step is from about 10 N/mm to about 700 N/mm. In this example, the Cu will be deposited in step 204 by electrodeposition from an electrolyte, whereas the In, Ga and S will be deposited from a molten bath.
As will be described in detail below, in some exemplary embodiments, the Cu deposition and simultaneous application of pressure to the workpiece is performed via a set of two rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be configured to deposit the Cu onto the workpiece from a Cu-containing electrolyte solution through which one of the rollers passes. Namely, the Cu (which is electrodeposited onto the roller from the electrochemical electrolyte solution) is transferred from the roller onto the workpiece. As described above, the transfer of the Cu from the roller to the workpiece can be facilitated by cooling the roller. Exemplary temperature values for cooling the rollers to facilitate material transfer from the roller to the workpiece were provided above. Thus, in this exemplary embodiment, the rollers are configured to simultaneously 1) apply Cu to the workpiece, and 2) apply pressure to both sides of the workpiece.
As provided above, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above. These alternative embodiments are described in detail below.
In order to bond the Cu deposited onto the substrate material in step 204, pressure and heat are applied to the workpiece in step 206. This process of bonding dissimilar metals (e.g., the Cu with the metal substrate or with the Mo-coated substrate) is also referred to herein by the term “cladding.” Linear pressure (e.g., from about 10 N/mm to about 700 N/mm) is applied to both sides (i.e., to a top and bottom) of the workpiece during this step which, as provided above, also serves to control volume expansion and stresses on the layers of the cell. By way of example only, the workpiece may be heated at this step to a temperature of from about 50° C. to about 250° C.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 206 via a set of two rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
Next, in step 208 an In layer is deposited onto the substrate material on top of the Cu layer. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom-to the substrate and In layer, respectively) of the workpiece during this In deposition step. Exemplary pressure values that may be employed during this metal deposition step were provided above.
As will be described in detail below, in some exemplary embodiments, the In deposition and simultaneous application of pressure to the workpiece is performed via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be configured to deposit the In onto the workpiece from a bath of molten In through which one of the rollers passes. Namely, as the roller passes through the bath, some of the molten In is picked up by the roller and transferred to the workpiece. Thus, in this exemplary embodiment, the rollers are configured to simultaneously 1) apply In to the workpiece, 2) apply pressure to both sides of the workpiece.
The In material deposited in step 208 will still be (at least to some extent) molten after it is transferred to the workpiece. Thus, in step 210 the workpiece is cooled. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom) of the workpiece during this cooling step. By way of example only, the workpiece is cooled in this step to a temperature of from about −5° C. to about 10° C. and the linear pressure applied to the workpiece during this step is from about 10 N/mm to about 700 N/mm.
As will be described in detail below, m some exemplary embodiments, the cooling and simultaneous application of pressure to the workpiece is performed in step 210 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be cooled to thereby cool the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) cool the workpiece and 2) apply pressure to both sides of the workpiece.
Next, in step 212 a Ga layer is deposited onto the substrate material on top of the In layer. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom-to the substrate and Ga layer, respectively) of the workpiece during this Ga deposition step. Exemplary pressure values that may be employed during this metal deposition step were provided above.
As will be described in detail below, in some exemplary embodiments, the Ga deposition and simultaneous application of pressure to the workpiece is performed via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be configured to deposit the Ga onto the workpiece from a bath of molten Ga through which one of the rollers passes. Namely, as the roller passes through the bath, some of the molten Ga is picked up by the roller and transferred to the workpiece. Thus, in this exemplary embodiment, the rollers are configured to simultaneously 1) apply Ga to the workpiece, 2) apply pressure to both sides of the workpiece.
The Ga material deposited in step 212 will still be (at least to some extent) molten after it is transferred to the workpiece. Thus, in step 214 the workpiece is cooled. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom) of the workpiece during this cooling step. Exemplary temperature and pressure values for this stage of the process were provided above.
As will be described m detail below, in some exemplary embodiments, the cooling and simultaneous application of pressure to the workpiece is performed in step 212 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be cooled to thereby cool the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) cool the workpiece and 2) apply pressure to both sides of the workpiece.
In step 216, the workpiece is subjected to an intermediate or soft anneal. As with the heating steps described above, pressure is applied to the workpiece while the workpiece is heated during step 216. While the soft anneal performed in step 216 is optional, uniformity of the final CIGS material will be enhanced by performing this soft/intermediate anneal. According to an exemplary embodiment, in step 216 the workpiece is annealed at a temperature of from about 100° C. to about 300° C., e.g., at a temperature of about 155° C., while a linear pressure of from about 10 N/mm to about 700 N/mm is simultaneously applied to both sides (i.e., to a top and bottom) of the workpiece which, as provided above, also serves to control volume expansion and stresses on the layers of the cell. As will be described below, a final anneal will be performed in an S-containing environment to complete the CIGS absorber.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 216 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
Next, in step 218 a S/Se layer is deposited onto the substrate material on top of the Ga layer. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom-to the substrate and S/Se layer, respectively) of the workpiece during this S/Se deposition step. Exemplary pressure values that may be employed during this metal deposition step were provided above.
As will be described in detail below, in some exemplary embodiments, the S/Se deposition and simultaneous application of pressure to the workpiece is performed via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be configured to deposit the S/Se onto the workpiece from a bath of molten S/Se through which one of the rollers passes. Namely, as the roller passes through the bath, some of the molten S/Se is picked up by the roller and transferred to the workpiece. Thus, in this exemplary embodiment, the rollers are configured to simultaneously 1) apply S/Se to the workpiece, 2) apply pressure to both sides of the workpiece.
The S/Se material deposited in step 218 will still be (at least to some extent) molten after it is transferred to the workpiece. Thus, in step 220 the workpiece is cooled. In order to control volume expansion and stresses on the layers of the cell, pressure is applied to both sides (i.e., to a top and bottom) of the workpiece during this cooling step. Exemplary temperature and pressure values for this stage of the process were provided above.
As will be described in detail below, in some exemplary embodiments, the cooling and simultaneous application of pressure to the workpiece is performed in step 220 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be cooled to thereby cool the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) cool the workpiece and 2) apply pressure to both sides of the workpiece.
Finally, in step 222, the workpiece is subjected to a final anneal in a S environment. As with the heating steps described above, pressure is applied to the workpiece while the workpiece is heated during step 222. According to an exemplary embodiment, in step 222 the workpiece is annealed at a temperature of from about 500° C. to about 600° C., e.g., at a temperature of about 500° C., while a linear pressure of from about 10 N/mm to about 700 N/mm is simultaneously applied to both sides (i.e., to a top and bottom) of the workpiece which, as provided above, also serves to control volume expansion and stresses on the layers of the cell.
As will be described in detail below, in some exemplary embodiments, the heating and simultaneous application of pressure to the workpiece is performed in step 222 via another set of rollers that are in contact with opposing sides (i.e., one roller is in contact with the top and one roller is in contact with the bottom) of the workpiece such that as the workpiece is fed through the continuous line fabrication process, the workpiece passes between the set of rollers. The rollers can be heated to thereby heat the workpiece as the workpiece passes between the rollers. Thus, in this exemplary embodiment, the rollers at this stage of the continuous line process are configured to simultaneously 1) heat the workpiece and 2) apply pressure to both sides of the workpiece.
The CIGS absorber is now complete. Any further processing of the cell can be carried out using conventional techniques to form a buffer layer, top electrode, etc. to complete the solar cell.
It is notable that the above sequence of processing steps is merely exemplary, and depending on the desired final composition of the thin film solar cell the sequence of steps performed and/or the materials deposited at each of the stages may vary. Thus, the present process is configurable to a variety of different thin film configurations. What is notable here is that the present techniques provide means to apply pressure to both sides of the workpiece while simultaneously depositing a thin film material (and potentially also simultaneously heating or cooling the workpiece). The exact thin film material being deposited and/or the order in which the materials are deposited, heated/cooled, etc. can be varied yet still remain within the confines of the present techniques.
Further, as is apparent from the description above, in accordance with the present techniques, the materials may be deposited from an electrochemical solution (via an electrodeposition process) and/or from another chemical solution (e.g., via deposition from a molten bath, sputtering, etc.). The term “electrochemical solution” as used herein will generally refer to the solutions described herein for use in an electrodeposition process. All other solutions used for depositing the present materials onto the substrate (e.g., molten metal bath) will generally be referred to herein as “chemical solutions.”
Exemplary embodiments implementing the present techniques for continuous-line fabrication of thin film solar cells are now described by way of reference to
As shown in
The pressure applied to the workpiece by the rollers 302 may be based on the weight of the top roller 302 pressing down on the workpiece against the bottom roller 302. Thus, as shown in
As shown in
As described in conjunction with the description of step 106 of
As provided above, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above. These alternative embodiments are described in detail below.
As described in conjunction with the description of step 108 of
As described above, the pressure applied to the workpiece by the rollers 306 may be based on the weight of the top roller 306 pressing down on the workpiece against the bottom roller 306. Accordingly, as provided above, the rollers 306 may not be the same size as one another.
While not explicitly shown in
As described in conjunction with the description of step 110 of
Again, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above.
As described in conjunction with the description of step 112 of
As described above, the pressure applied to the workpiece by the rollers 310 may be based on the weight of the top roller 310 pressing down on the workpiece against the bottom roller 310. Accordingly, as provided above, the rollers 310 may not be the same size as one another.
While not explicitly shown in
As described in conjunction with the description of step 114 of
As described in conjunction with the description of step 116 of
Again, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above.
As described in conjunction with the description of step 118 of
While not explicitly shown in
Again, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above.
As described in conjunction with the description of step 120 of
As described in conjunction with the description of step 122 of
As shown in
It is notable that the thin film compositions described above, and elsewhere herein are merely examples intended to illustrate the present techniques, and a variety of other film compositions can be achieved in the manner described herein. One would need only to vary the composition of the materials deposited in one or more of the steps and/or the order in which the materials are deposited in order to achieve different thin film compositions. In addition to the CIGS example provided above, by way of example only, one may adapt the present techniques to produce any of the following thin film solar cell compositions: CZTS (Cu2ZnSn(Se,S)4), FeS2, Zn2P3, CdSe, CdS, ZnSe, WSe2, MoSe2, BhS3, Ag2S, Cu2Zn(Fe,Sn)(Se,S)4, CuxS, CdTe, ZnTe, PbSe, PdS, NiS, NiSeS, InP, ZnO, GaAs. An example involving a I-III-IV2 material is provided below.
Another exemplary embodiment implementing the present techniques for continuous-line fabrication of thin film solar cells is now described by way of reference to
As shown in
As described in conjunction with the description of step 104 of
As shown in
As described in conjunction with the description of step 106 of
As provided above, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above.
As described in conjunction with the description of step 108 of
As described above, the pressure applied to the workpiece by the rollers 406 may be based on the weight of the top roller 406 pressing down on the workpiece against the bottom roller 406. Accordingly, as provided above, the rollers 406 may not be the same size as one another.
While not explicitly shown in
Again, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above.
As described in conjunction with the description of step 110 of
As described in conjunction with the description of step 112 of
As described above, the pressure applied to the workpiece by the rollers 410 may be based on the weight of the top roller 410 pressing down on the workpiece against the bottom roller 410. Accordingly, as provided above, the rollers 410 may not be the same size as one another.
While not explicitly shown in
Again, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above.
As described in conjunction with the description of step 114 of
As described in conjunction with the description of step 116 of
As described in conjunction with the description of step 118 of
As described above, the pressure applied to the workpiece by the rollers 416 may be based on the weight of the top roller 416 pressing down on the workpiece against the bottom roller 416. Accordingly, as provided above, the rollers 416 may not be the same size as one another.
While not explicitly shown in
Again, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above.
As described in conjunction with the description of step 120 of
As described in conjunction with the description of step 122 of
As shown in
Yet another exemplary embodiment implementing the present techniques for continuous-line fabrication of thin film solar cells is now described by way of reference to
As shown in
As described in conjunction with the description of step 204 of
As shown in
As provided above, electrodeposition is only one exemplary process that may be employed herein for depositing the material onto the substrate. For instance, another suitable deposition process (such as sputtering) may be used to deposit the material onto the rollers, which then apply the material to the substrate in the manner described above. Alternatively, the material may be deposited directly onto the substrate with pressure and/or heat being supplied via the rollers as described above.
As described in conjunction with the description of step 206 of
As described in conjunction with the description of step 208 of
As described above, the pressure applied to the workpiece by the rollers 506 may be based on the weight of the top roller 506 pressing down on the workpiece against the bottom roller 506. Accordingly, as provided above, the rollers 506 may not be the same size as one another. As shown in
As described in conjunction with the description of step 210 of
As described in conjunction with the description of step 212 of
As described above, the pressure applied to the workpiece by the rollers 510 may be based on the weight of the top roller 510 pressing down on the workpiece against the bottom roller 510. Accordingly, as provided above, the rollers 510 may not be the same size as one another. As shown in
As described in conjunction with the description of step 214 of
As described in conjunction with the description of step 216 of
As described in conjunction with the description of step 218 of
As described above, the pressure applied to the workpiece by the rollers 516 may be based on the weight of the top roller S16 pressing down on the workpiece against the bottom roller 516. Accordingly, as provided above, the rollers 516 may not be the same size as one another. As shown in
As described in conjunction with the description of step 220 of
As described in conjunction with the description of step 222 of
As shown in
According to one exemplary embodiment, the rollers are constructed of metal and the pressure applied to the workpiece is supplied based on the weight of the roller on the workpiece. For instance, in the example shown in
It is notable that while the drive system shown in
In the examples provided above, deposition of the thin film materials (e.g., Cu, In, Ga, S/Se, etc.) onto the rollers occurs via electrodeposition and/or passage through a molten bath. Other deposition processes may however be employed in accordance with the present techniques. For instance, as shown in
Alternatively, as shown in
The thin film materials described above are examples provided merely to illustrate the present techniques, and a variety of other film compositions can be achieved in the same manner described herein. One would need only to vary the composition of the materials deposited in one or more of the steps and/or the order in which the materials are deposited in order to achieve different solar cell (or any other device) configurations. By way of example only, one may adapt the present techniques to produce any of the following thin film solar cell compositions: CIGS, CZTS (Cu2ZnSn(Se,S)4), FeS2, Zn2P3, CdSe, CdS, ZnSe, WSe2, MoSe2, Bi2S3, Ag2S, Cu2Zn(Fe,Sn)(Se,S)4, CuxS, CdTe, ZnTe, PbSe, PdS, NiS, NiSeS, InP, ZnO, GaAs.
For instance, in one exemplary implementation of the present techniques, a I-III-IV2 thin film solar cell is produced. As is known in the art, a I-III-IV2 material includes at least one from group I element, at least one group III element, and at least one group IV element. By way of example only, some I-III-IV2 materials include, but are not limited to, CuAlGe2, CuGaGe2, CuAlSn2, and CuGaSn2. Using CuGaSn2 as an example, the present techniques can be employed to deposit Cu to the substrate, followed by Ga, and finally tin (Sn) all while pressure is applied via the rollers in the manner described above.
Although illustrative embodiments of the present invention have been described herein, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be made by one skilled in the art without departing from the scope of the invention.
Claims
1. An apparatus for fabricating a thin film solar cell, the apparatus comprising:
- a set of rollers (a) configured to, when a substrate passes between the set of rollers (a), deposit a first absorber material as a layer A on the substrate while applying pressure to both the substrate and the layer A;
- a set of rollers (b) configured to, when the substrate with the layer A thereon passes through the set of rollers (b), deposit a second absorber material as a layer B on the layer A while applying pressure to both the substrate and the layer B;
- a set of rollers (c) configured to, when the substrate with the layers A and B thereon passes through the set of rollers (c), deposit a third absorber material as a layer C on the layer B while applying pressure to both the substrate and the layer C;
- a set of rollers (d) configured to, when the substrate with the layers A-C thereon passes through the set of rollers (d), deposit a fourth absorber material as a layer D on the layer C while applying pressure to both the substrate and the layer D; and
- a set of rollers (e) configured to, when the substrate with the layers A-D thereon passes through the set of rollers (e), anneal the layers A-D while applying pressure to both the substrate and the layer D,
- wherein the first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein the apparatus is configured to form a chalcogenide absorber layer on the substrate.
2. The apparatus of claim 1, further comprising:
- a set of rollers (f) configured to, when the substrate with the layers A-C thereon passes through the set of rollers (f), soft anneal the layers A-C while applying pressure to both the substrate and the layer C.
3. The apparatus of claim 1, wherein the set of rollers (a) are configured to deposit the layer A from a chemical or electrochemical solution, the apparatus further comprising:
- a set of rollers (g) which following deposition of the first absorber material on the substrate is configured to, when the substrate with the layer A thereon passes through the set of rollers (g), heat the layer A while applying pressure to both the substrate and the layer A.
4. The apparatus of claim 1, wherein the set of rollers (b) are configured to deposit the layer B from a chemical or electrochemical solution, the apparatus further comprising:
- a set of rollers (h) which following deposition of the layer B on the layer A is configured to, when the substrate with the layers A and B thereon passes through the set of rollers (h), heat the layer B while applying pressure to both the substrate and the layer B.
5. The apparatus of claim 1, wherein the set of rollers (b) are configured to deposit the layer B from a molten bath, the apparatus further comprising:
- a set of rollers (h) which following deposition of the layer B on the layer A is configured to, when the substrate with the layers A and B thereon passes through the set of rollers (h), cool the layer B while applying pressure to both the substrate and the layer B.
6. The apparatus of claim 1, wherein the set of rollers (c) are configured to deposit the layer C from a chemical or electrochemical solution, the apparatus further comprising:
- a set of rollers (i) which following deposition of the layer C on the layer B is configured to, when the substrate with the layers A-C thereon passes through the set of rollers (i), heat the layer C while applying pressure to both the substrate and the layer C.
7. The apparatus of claim 1, wherein the set of rollers (c) are configured to deposit the layer C from a molten bath, the apparatus further comprising:
- a set of rollers (i) which following deposition of the layer C on the layer B is configured to, when the substrate with the layers A-C thereon passes through the set of rollers (i), cool the layer C while applying pressure to both the substrate and the layer C.
8. The apparatus of claim 1, wherein the set of rollers (d) are configured to deposit the layer D from a chemical or electrochemical solution, the apparatus further comprising:
- a set of rollers G) which following deposition of the layer D on the layer C is configured to, when the substrate with the layers A-D thereon passes through the set of rollers G), heat the layer D while applying pressure to both the substrate and the layer D.
9. The apparatus of claim 1, wherein the set of rollers (d) are configured to deposit the layer D from a molten bath, the apparatus further comprising:
- a set of rollers G) which following deposition of the layer D on the layer C is configured to, when the substrate with the layers A-D thereon passes through the set of rollers G), cool the layer D while applying pressure to both the substrate and the layer D.
Type: Application
Filed: Feb 8, 2016
Publication Date: Jun 2, 2016
Inventors: Shafaat Ahmed (Ballston Lake, NY), Hariklia Deligianni (Alpine, NJ), Qiang Huang (Tuscaloosa, AL), Lubomyr T. Romankiw (Briarcliff Manor, NY), Raman Vaidyanathan (Whiteplains, NY)
Application Number: 15/018,398