FIN CUT FOR TIGHT FIN PITCH BY TWO DIFFERENT SIT HARD MASK MATERIALS ON FIN
Methods that enable fin cut at very tight pitch are provided. After forming a first set of paired sidewall image transfer (SIT) spacers and a second set of paired SIT spacers composed of different materials, portions of the first set of the paired SIT spacers can be selectively removed without adversely affecting the second set of the paired SIT spacers, even portions of both sets of the paired SIT spacers are exposed by the cut mask due to the different etching characteristics of the different materials.
The present application relates to semiconductor device fabrication. More particularly, the present application relates to semiconductor fin formation by using two sets of spacers having different etching characteristics in a sidewall image transfer (SIT) process.
As integrated circuits continue to scale downward in size, fin field effect transistors (FinFETs) are becoming increasingly attractive to be used in smaller nodes, e.g., the 22 nm node and beyond. FinFETs can achieve higher drive currents with increasingly smaller dimensions as compared to conventional planar FETs. In order to meet the density targets of advanced nodes, semiconductor fins are typically formed utilizing a sidewall image transfer (SIT) process since the same provides sub-lithographic line widths (i.e., less than 40 nm). In a typical SIT process, spacers are formed on each sidewall of a mandrel structure that is formed on a topmost semiconductor material of a substrate. The mandrel structure is removed and the remaining spacers are used as an etch mask to etch the topmost semiconductor material of the substrate. The spacers are then removed after each semiconductor fin has been formed.
One problem that is associated with forming semiconductor fins at tight pitch is that the process window for cutting of unwanted semiconductor fins is quite narrow. More specifically, the space available between fins at a tight pitch decreases the process window for placement of a fin cut mask edge in between fins. As the pitch of the semiconductor fins decreases, it becomes difficult to remove unwanted semiconductor fins without adversely affecting adjacent device fins due to the process variation and small process margin of lithographic processes. As such, a method is needed that is capable of forming semiconductor fins in which the process window for cutting unwanted semiconductor fins is improved.
SUMMARYThe present application provides methods that enable fin cut at very tight pitch. After forming a first set of paired SIT spacers and a second set of paired SIT spacers composed of different materials, portions of the first set of the paired SIT spacers can be selectively removed without adversely affecting the second set of the paired SIT spacers, even portions of both sets of the paired SIT spacers are exposed by the cut mask due to the different etching characteristics of the different materials.
In one aspect of the present application, a method of forming a semiconductor structure is provided. The method includes first forming a plurality of mandrel structures on a substrate, and then forming first spacers on sidewalls of the plurality of mandrel structures. Next, sacrificial spacers are formed on sidewalls of the first spacers. After forming second spacers on sidewalls of the sacrificial spacers, the plurality of mandrel structures and the sacrificial spacers are removed selective to the first spacers and the second spacers. Next, a cut mask including at least one opening therein is formed over the first spacers, the second spacers and exposed surfaces of the substrate. The at least one opening in the cut mask exposes portions of the first spacers and portions of the second spacers. Next, exposed portions of the first spacers are removed selective to exposed portions of the second spacers.
In another aspect of the present application, a semiconductor structure is provided. The semiconductor structure includes a plurality of semiconductor fins located on a substrate and arranged in pairs. Each pair of the plurality of semiconductor fins has a first pitch. Adjacent semiconductor fins in the plurality of semiconductor fins have a pitch the same as or 3n times the first pitch, and n is an integer greater than 0.
The present application will now be described in greater detail by referring to the following discussion and drawings that accompany the present disclosure. It is noted that the drawings of the present application are provided for illustrative purposes only and, as such, the drawings are not drawn to scale. It is also noted that like and corresponding elements are referred to by like reference numerals.
In the following description, numerous specific details are set forth, such as particular structures, components, materials, dimensions, processing steps and techniques, in order to provide an understanding of the various embodiments of the present application. However, it will be appreciated by one of ordinary skill in the art that the various embodiments of the present application may be practiced without these specific details. In other instances, well-known structures or processing steps have not been described in detail in order to avoid obscuring the present application.
Although the following description and drawings of the present application disclose utilizing the methods of the present application for forming semiconductor fins, the present application is not limited to only the formation of semiconductor Fins. Instead, the present application can be used in forming other types of structures.
Referring first to
In one embodiment of the present application and as illustrated in the drawings of the present application, the substrate 10 is a semiconductor-on-insulator (SOI) substrate that includes, from bottom to top, a handle substrate 12, an insulator layer 14 and a top semiconductor layer 16. In some embodiments, the handle substrate 12 is optional and can be omitted. In another embodiment of the present application, the substrate 10 can be comprised of a bulk semiconductor substrate. By “bulk semiconductor substrate” it is meant a semiconductor material that is comprised entirely of a semiconductor material. For example, the substrate 10 shown in
When present, the handle substrate 12 can include a semiconductor material, a conductive material, and/or a dielectric material. The handle substrate 12 can provide mechanical support to the insulator layer 14, and the top semiconductor layer 16 of an SOI substrate. The thickness of the handle substrate 12 can be from 30 microns to 2 mm, although lesser and greater thicknesses can also be employed.
When present, the insulator layer 14 may be a crystalline, or non-crystalline, oxide or nitride. In one embodiment, the insulator layer 14 is an oxide such as, for example, silicon oxide. The insulator layer 14 may be a single continuous layer that spans the entirety of the handle substrate 12 or it may be discontinuous. When a discontinuous insulator region is present, the insulator region exists as an isolated island that is surrounded by semiconductor material. The thickness of the insulator layer 14 can be from 50 nm to 5 microns, although lesser and greater thicknesses can also be employed.
The top semiconductor layer 16 (or the bulk semiconductor substrate) can include a single crystalline semiconductor material or a polycrystalline material. In one embodiment, the top semiconductor layer 16 (or the bulk semiconductor substrate) can include an elemental semiconductor material such as Si or Ge, a semiconductor material primarily composed of Group IV elements such as a silicon-germanium alloy or a silicon-carbon alloy, a III-V compound semiconductor material, a II-VI compound semiconductor material, or an organic semiconductor material. In one embodiment, the top semiconductor layer 16 (or the bulk semiconductor substrate) can include a single crystalline elemental semiconductor material, a single crystalline semiconductor material primarily composed of Group IV elements, a single crystalline III-V compound semiconductor material, a single crystalline II-VI compound semiconductor material, or a single crystalline organic semiconductor material. In another embodiment, the top semiconductor layer 16 (or the bulk semiconductor substrate) can consist essentially of undoped single crystalline silicon or single crystalline silicon doped with p-type dopant atoms or n-type dopant atoms.
The mandrel structures 18 can include any material (semiconductor, dielectric or conductive) that can be selectively removed from the structure during a subsequently performed etching process. In one embodiment, the mandrel structures 18 may be composed of amorphous silicon, polysilicon, amorphous or polycrystalline germanium, an amorphous or polycrystalline silicon-germanium alloy material, amorphous carbon, diamond-like carbon, or organosilicate glass. In another embodiment, the mandrel structures 18 may be composed of a metal such as, for example, Al, W, or Cu.
The mandrel structures 18 can be formed by first depositing a blanket layer of a mandrel material on the entire topmost surface of substrate 10 (not shown). The mandrel material layer can be formed, for example, by chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD). The thickness of the mandrel material layer can be from 50 nm to 300 nm, although lesser and greater thicknesses can also be employed. Following deposition of the mandrel material layer, the mandrel material layer can be patterned by lithography and etching. The patterning of the mandrel material layer can be performed, for example, by applying a photoresist layer (not shown) above the mandrel material layer, lithographically patterning the photoresist layer to define a set of areas covered by the patterned photoresist layer, and transferring the pattern in the photoresist layer into the mandrel material layer by an anisotropic etch. The anisotropic etch can be selective to the semiconductor materials of the top semiconductor layer 16 of the substrate 10. The patterned portions of the mandrel material layer constitute the plurality of mandrel structures 18.
Each mandrel structure 18 that is formed may have a rectangular shape in cross-section with a constant width. In one embodiment, the width of each mandrel structure 18 is from 10 nm to 50 nm, although lesser and greater widths can also be employed. The height of each mandrel structure 18 that is formed is from 50 nm to 300 nm, although lesser and greater heights can also be employed. In the embodiment that is illustrated in
Optionally, a pad layer which may be comprised of silicon nitride or a bilayer comprised of a silicon nitride layer and an underlying silicon dioxide layer can be deposited on the top semiconductor layer 16 before the deposition of the mandrel layer. The pad layer, when present, protects the top semiconductor layer 16 during the subsequent patterning processes.
Referring now to
The first spacer material layer 20L may include any dielectric material that has a different etching characteristics comparing to the material of the mandrel structures 18 in embodiments in which the mandrel structures 18 comprise a dielectric material, so that the mandrel structures 18 can be selectively removed with respect to the first spacer subsequently formed.
In one embodiment of the present application, the first spacer material layer 20L may include a nitride such as silicon nitride or an oxide such as silicon dioxide.
In another embodiment of the present application, the dielectric material that is used in providing the first spacer material layer 20L may be a dielectric material having a dielectric constant of less than silicon dioxide (such dielectric materials may be referred to herein as low k). Examples of dielectric materials having a low dielectric constant include, but are not limited to, silsesquioxanes, C-doped oxides (i.e., organic silicates) that include atoms of Si, C, 0 and H, and thermosetting polyarylene ethers. The term “polyarylene” is used throughout the present application to denote aryl moieties or inertly substituted aryl moieties which are linked together by bonds, fused rings, or inert linking groups such as, for example, oxygen, sulfur, sulfone, sulfoxide, carbonyl and the like.
In yet another embodiment of the present application, the dielectric material that is used in providing the first spacer material layer 20L may be a dielectric material having a dielectric constant that is equal to or even greater than that of silicon dioxide (such dielectric materials may be referred to herein as high k). Examples of high k dielectric materials include, for example, a dielectric metal oxide such as, for example, HfO2, ZrO2, La2O3, Al2O3, TiO2, SrTiO3, LaAlO3, Y2O3, HfOxNy, ZrOxNy, La2OxNy, Al2OxNy, TiOxNy, SrTiOxNy, LaAlOxNy, Y2OxNy, SiON, SiNx, a silicate thereof, and an alloy thereof. Each value of x is independently from 0.5 to 3 and each value of y is independently from 0 to 2.
Referring now to
After removal of the horizontal portions of the first spacer material layer 20L, a topmost surface of each mandrel structure 18 is exposed and is coplanar with a topmost surface of each first spacer 20. A width of each first spacer, as measured at its base, can be from 5 nm to 10 nm, although lesser and greater thicknesses can also be employed.
Referring now to
The sacrificial spacers 22 can be formed by conformally depositing a sacrificial spacer material over the mandrel structures 18, the first spacers 20 and exposed surfaces of substrate 10 utilizing a conformal deposition process such as, for example, CVD, PECVD, or ALD. After depositing the sacrificial spacer material to provide a sacrificial spacer material layer (not shown), the sacrificial spacer material layer is anisotropically etched to remove horizontal portions of the sacrificial spacer layer. After removal of the horizontal portions of the sacrificial spacer material layer, the topmost surface of each mandrel structure 18 and each first spacer 20 is exposed and is coplanar with a topmost surface of each sacrificial spacer 22. The remaining vertical portions of the sacrificial spacer layer present on sidewalls of the first spacer 20 constitute the sacrificial spacers 22. A width of each sacrificial spacer 22 that is formed can be from 10 nm to 50 nm, although lesser and greater thicknesses can also be employed. In one embodiment and as shown in
Referring now to
The second spacer 24 can be formed by conformally depositing a second spacer material over the mandrel structures 18, the first spacer 20, the sacrificial spacer 22 and exposed surfaces of substrate 10 utilizing a conformal deposition process such as, for example, CVD, PECVD, or ALD to provide a second spacer material layer (not shown). As shown in
Subsequently, horizontal portions of the second spacer material layer are removed utilizing an anisotropic etch forming the second spacers 24 on sidewalls of the sacrificial spacers 22. After removal of the horizontal portions of the second spacer material layer, the topmost surface of each mandrel structure 18, each first spacer 20 and each sacrificial spacer 22 is exposed and is coplanar with a topmost surface of each second spacer 24.
The width of each second spacer 24, as measured from its base, can be from 5 nm to 10 nm, although lesser and greater thicknesses can also be employed. In one embodiment and as shown in
Referring now to
Referring now to
Referring now to
In one embodiment and as shown in
Subsequently, the first cut mask 28 is removed selective to the first and the second spacers 20, 24. In one embodiment and when the first cut mask 28 is a patterned photoresist layer, the first cut mask 28 can be removed by ashing.
Unwanted pairs of the second spacers 24 can also be removed by performing the processing steps described above with respect to the first spacers 20. Referring now to
Referring now to
In one embodiment and as shown
Subsequently, the second cut mask 30 is removed selective to the first and the second spacers 20, 24. In one embodiment and when the second cut mask 28 is a patterned photoresist layer, the second patterned mask layer 28 can be removed by ashing.
Referring now to
As used herein, a “semiconductor fin” refers to a semiconductor structure including a portion having a shape of a rectangular parallelepiped. The direction along which a semiconductor fin laterally extends the most is herein referred to as a “lengthwise direction” of the semiconductor fin. The height of each first semiconductor fin 32 and each second semiconductor fin 34 can be in a range from 5 nm to 300 nm, although lesser and greater heights can also be employed. The width of each first semiconductor fin 32 and each second semiconductor fin can be in a range from 5 nm to 50 nm, although lesser and greater widths can also be employed. The width of each first semiconductor fin 32 can be the same or different than the width of each second semiconductor fin 34. Multiple first semiconductor fins 32 and multiple second semiconductor fins 34 may be arranged such that each semiconductor fin has the same lengthwise direction, and is laterally spaced from each other along a horizontal direction that is perpendicular to the lengthwise direction. In this case, the horizontal direction that is perpendicular to the common lengthwise direction is referred to as a “widthwise direction”. Each semiconductor fin (32, 34) includes a pair of parallel sidewalls along the lengthwise direction and a pair of parallel sidewalls along the widthwise direction and at each end segment of the semiconductor fin (32, 34).
Referring now to
At this point of the present application, a functional gate structure utilizing a gate first or a gate last process can be performed to provide FinFET structures. It is noted that while the above describes a method of forming semiconductor fins from a semiconductor substrate, the method of the present application can be applied to pattern any other type substrate.
While the present application has been particularly shown and described with respect to various embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present application. It is therefore intended that the present application not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.
Claims
1. A semiconductor structure comprising:
- a first set of semiconductor fins having a first pitch located in a first region of a substrate; and
- a second set of semiconductor fins having a first pitch located in a second region of the substrate,
- wherein an outermost semiconductor fin in the second set of semiconductor fins and an adjacent outermost semiconductor fin in the first set of semiconductor fins has a second pitch that is at least 3n times the first pitch, wherein n is an integer greater than 0.
2. The semiconductor structure of claim 1, the second pitch is 3 times the first pitch.
3. The semiconductor structure of claim 1, the second pitch is 6 times the first pitch.
4. The semiconductor structure of claim 1, wherein each of the semiconductor fins in the first set has a width the same as each of the semiconductor fins in the second set.
5. The semiconductor structure of claim 4, wherein each of the semiconductor fins in the first set and the semiconductor fins in the second set has a width ranging from 5 to 10 nm.
6. The semiconductor structure of claim 1, wherein the first pitch is from 10 to 50 nm.
7. The semiconductor structure of claim 1, wherein the semiconductor fins in the first set and the semiconductor fins in the second set are oriented parallel to one another.
8. The semiconductor structure of claim 1, further comprising a third set of semiconductor fins having the first pitch located in a third region of the substrate adjacent to the second region, wherein an outermost semiconductor fin in the third set of semiconductor fins and an adjacent outermost semiconductor fin in the second set of semiconductor fins has a third pitch that is at least 3n times the first pitch, wherein n is an integer greater than 0.
9. The semiconductor structure of claim 8, wherein the second pitch is 6 times the first pitch, and the third pitch is 3 times the first pitch.
10. The semiconductor structure of claim 8, wherein each of the semiconductor fins in the third set has a width the same as each of the semiconductor fins in the first set and the semiconductor fins in the second set.
11. The semiconductor structure of claim 8, wherein the semiconductor fins in the first set, the semiconductor fins in the second set and the semiconductor fins in the third set are oriented parallel to one another.
12. The semiconductor structure of claim 1, wherein the substrate comprises a handle substrate and an insulator layer overlying the handle substrate.
13. The semiconductor structure of claim 12, wherein the handle substrate comprises a semiconductor material, a conductive material or a dielectric material.
14. The semiconductor structure of claim 12, wherein the insulator layer comprises silicon oxide.
Type: Application
Filed: Jul 20, 2016
Publication Date: Nov 10, 2016
Inventors: Kangguo Cheng (Schenectady, NY), Ali Khakifirooz (Los Altos, CA), Alexander Reznicek (Troy, NY), Tenko Yamashita (Schenectady, NY)
Application Number: 15/214,875