TGF-B AS A THERAPEUTIC TARGET FOR INTRACRANIAL ANEURYSM

Disclosed here are metal coils conjugated to TGF-beta ligand(s) or TGF-beta activator(s) to improve the outcome of existing surgical treatments on intracranial aneurysm patients and methods for using the same.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE

The present application claims priority to U.S. Provisional Application Ser. No. 63/296,817, filed Jan. 5, 2022; U.S. Provisional Application Ser. No. 63/296,820, filed Jan. 5, 2022; U.S. Provisional Application Ser. No. 63/296,821, filed Jan. 5, 2022; and U.S. Provisional Application Ser. No. 63/296,825, filed Jan. 5, 2022, the contents of each being hereby incorporated by reference in their entirety.

FIELD OF THE INVENTION

The present disclosure relates to the characterization of molecular targets for treating intracranial aneurysms (IA). Intracranial aneurysm (IA) is a cerebrovascular disease that predominantly occurs in the cerebral artery and is characterized by pathologic dilatation of blood vessels. Each intracranial aneurysm (IA) is a weakened area in a cerebral artery wall that leads to abnormal dilatation and rupture causing subarachnoid hemorrhage (SAH), a major cause of hemorrhagic stroke. A rupture of IA induces a subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke that frequently leads to death or severe disability. Due to early age of onset and high mortality, SAH accounts for >25% of years lost for all stroke victims under the age of 65 years. Despite treatment advances, SAH mortality rate is 40% and only half of survivors return to independent life.

There is a critical unmet need for understanding the genetic and molecular basis for IA to improve clinical outcomes through early therapeutic intervention.

SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other features, details, utilities, and advantages of the claimed subject matter will be apparent from the following written Detailed Description including those aspects illustrated in the accompanying drawings and defined in the appended claims.

In some aspects, the present disclosure demonstrates that the IA-causing gene THSD1 positively regulates TGFβ signaling. This raises a novel concept that IA disease can be contributed by downregulation of TGFβ signaling, which is in contrast to the previous fibrillin hypothesis in which upregulation of TGFβ signaling plays a pathogenic role in IA development. The present disclosure thus contemplate that overexpression of THSD1 in circle of Willis provides beneficial effects on IA disease by activating endothelial TGFβ signaling. In some aspects, the disclosure proposes metal coils generated by adding TGF-β ligand or other TGF-β activators to coiling materials to improve the outcome of existing surgical treatments on intracranial aneurysm patients. In other aspects, the disclosure contemplates coating metal coils with other proteins that activate latent TGFβ in cell matrix.

Accordingly, disclosed herein are a metal coil conjugated to a TGFβ activator configured for use in an endovascular coiling procedure. In some cases, the TGFβ activator is a TGFβ ligand, such as TGF-β1, TGF-β2, TGF-β3. In other cases the TGFβ activator is a TGFβ signaling activator, such as Plasmin, MMP2, MMP9, Thrombospondin-1. In some instances, a metal in the metal coil is selected from the group consisting of platinum, tungsten, titanium, silver, stainless steel, zirconium, or an alloy thereof. In preferred cases, a metal in the metal coil is platinum. The metal coil ca have a thicknesses ranging from 0.005 mm to 1.0 mm, from 0.010 mm to 1.0 mm, from 0.020 mm to 1.0 mm, from 0.030 mm to 1.0 mm, from 0.040 mm to 1.0 mm, from 0.050 mm to 1.0 mm, from 0.060 mm to 1.0 mm, from 0.070 mm to 1.0 mm, from 0.080 mm to 1.0 mm, from 0.090 mm to 1.0 mm, from 0.1 mm to 1.0 mm, from 0.2 mm to 1.0 mm, from 0.3 mm to 1.0 mm, from 0.4 mm to 1.0 mm, or from 0.5 mm to 1.0 mm. In some instances the metal coil is used to treat a subject at risk of suffering from an aneurysm. In some instances the aneurysm is an intracranial aneurysm. In other instances the aneurysm is an aortic aneurysm. In some instances the subject carries a variant affecting the expression of a Thrombospondin Type 1 Domain Containing 1 (THSD1) gene. Such variants can be in a coding region, in a non-coding region, or in a control sequence of the Thrombospondin Type 1 Domain Containing 1 (THSD1) gene. In some instances, the variant in the THSD1 gene is a single codon substitution in at least one THSD1 allele, specific variants contemplated with the invention have been associated with a phenotype that affects the function of the THSD1 gene and lead to aneurysms such as LSF, R460W, E466G, G600E, P639L, T6531, or S775P. In some instances the subject is a Shuman.

In some aspects the disclosure provides a method for treating a subject at risk of suffering from an aneurysm comprised of inserting into the subject a catheter for delivering a metal coil conjugated to a TGFβ activator configured for use in an endovascular coiling procedure. In some instances, the method further comprises calculating an estimate of an aneurysm volume prior to inserting into the subject the catheter. In some instances, the method further comprises releasing the metal coil conjugated to the TGFβ activator into the aneurysm. In some cases, the TGFβ activator is a TGFβ ligand, such as TGF-β1, TGF-β2, TGF-β3. In other cases the TGFβ activator is a TGFβ signaling activator, such as Plasmin, MMP2, MMP9, Thrombospondin-1. In some instances, a metal in the metal coil is selected from the group consisting of platinum, tungsten, titanium, silver, stainless steel, zirconium, or an alloy thereof. In preferred cases, a metal in the metal coil is platinum. The metal coil ca have a thicknesses ranging from 0.005 mm to 1.0 mm, from 0.010 mm to 1.0 mm, from 0.020 mm to 1.0 mm, from 0.030 mm to 1.0 mm, from 0.040 mm to 1.0 mm, from 0.050 mm to 1.0 mm, from 0.060 mm to 1.0 mm, from 0.070 mm to 1.0 mm, from 0.080 mm to 1.0 mm, from 0.090 mm to 1.0 mm, from 0.1 mm to 1.0 mm, from 0.2 mm to 1.0 mm, from 0.3 mm to 1.0 mm, from 0.4 mm to 1.0 mm, or from 0.5 mm to 1.0 mm. In some instances the metal coil is used to treat a subject at risk of suffering from an aneurysm. In some instances the aneurysm is an intracranial aneurysm. In other instances the aneurysm is an aortic aneurysm. In some instances the subject carries a variant affecting the expression of a Thrombospondin Type 1 Domain Containing 1 (THSD1) gene. Such variants can be in a coding region, in a non-coding region, or in a control sequence of the Thrombospondin Type 1 Domain Containing 1 (THSD1) gene. In some instances, the variant in the THSD1 gene is a single codon substitution in at least one THSD1 allele, specific variants contemplated with the invention have been associated with a phenotype that affects the function of the THSD1 gene and lead to aneurysms such as LSF, R460W, E466G, G600E, P639L, T6531, or S775P. In some instances the subject is a human.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the present invention will be more fully understood from the following detailed description of illustrative embodiments taken in conjunction with the accompanying drawings in which:

FIG. 1A (FIG. 1A) illustrates simplified pedigrees of three IA families (NR4748, NR4931, and NR5704). Specifically, FIG. 1A illustrates Intracranial Aneurysm (IA) affected (black), aortic aneurysm (AA) affected (half black), unaffected individuals >45 (white), and individuals with unknown/unclear status (gray symbols).

FIG. 1B (FIG. 1B) depicts patient-identified THSD1 variants identified in the pedigrees of the families from FIG. 1B. The black bar represents the 853 amino acids of the WT version of the THSD1 gene. The diagram lists 8 variants found in patients affected by IA and AA, namely LSF, R450X, R460W, E466G, G600E, P639L, T6531, S775P. The back boxes illustrate the relative position of the signal peptide (SP), thrombospondin type 1 domain (TSP1), and transmembrane (TM) domains of THSD1.

FIG. 2 (FIG. 2) is a drawing depicting an intracranial aneurysm.

FIG. 3 (FIG. 3) is a drawing depicting a representative model of the TGFβ pathway.

FIG. 4a through FIG. 4b (FIG. 4a-4b) are experimental results depicting that gain-of-function of THSD1 promotes TGFβ signaling.

FIG. 5a through FIG. 5d (FIG. 5a-5d) are experimental results depicting that loss-of-function of THSD1 inhibits TGFβ signaling.

FIG. 6a through FIG. 6b (FIG. 6a-6b) are experimental results depicting that knockdown of THSD1 blocks TGFβ1 induced phosphorylation of Samd2.

FIG. 7 (FIG. 7) is a schematic illustrating that THSD1 has a thrombospondin domain (TSP1) that interacts with mature TGFβ ligand.

FIG. 8 (FIG. 8) are experimental results depicting that loss-of-function of Thsd1 promotes IA formation in circle of Willis in mice.

FIG. 9 (FIG. 9) illustrates an exemplary drawing of a prototype of a metal coil conjugated to a TGFβ activator.

It should be understood that the drawings are not necessarily to scale, and that like reference numbers refer to like features.

INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

DETAILED DESCRIPTIONS

In the following description, numerous specific details are set forth to provide a more thorough understanding of the present invention. However, it will be apparent to one of skill in the art that the present invention may be practiced without one or more of these specific details. In other instances, features and procedures well known to those skilled in the art have not been described in order to avoid obscuring the invention. The terms used herein are intended to have the plain and ordinary meaning as understood by those of ordinary skill in the art.

The rupture of an intracranial aneurysm frequently causes a subarachnoid hemorrhage (SAH), a type of stroke characterized by high morbidity and mortality. Specifically, the present disclosure demonstrates with data from three large IA/SAH families with at least 4 affected individuals where whole exome sequencing has been performed to identify rare variants that segregate with disease. For each family, whole exome sequencing has been performed on at least 15 family members, irrespective of their IA status.

Previously, it has been reported that deleterious Thrombospondin-type 1 domain-containing protein 1 (THSD1) rare variants caused disease in both familial and sporadic cases with supporting evidence from animal models. Of note, whole exome sequencing of large IA families identified (some members of the affected family are shown in the pedigree of FIG. 1A) a THSD1 nonsense mutation that segregated in all nine (9) affected and was absent in 13 unaffected family members. It was further discovered that eight (8) THSD1 rare missense variants in 507 unrelated patients/probands where each perturbed THSD1 cell adhesion activity.

These rare variants were highly enriched in case-control studies in comparison to ethnically matched controls. It was found that Thsd1 loss-of-function leads to brain hemorrhage and premature death in both zebrafish and mice. Further, Thsd1 heterozygous and null mice developed IA and suffered SAH. The study further demonstrated that THSD1 is highly expressed in endothelial cells of the cerebrovasculature, is important for cell adhesion, promotes nascent focal adhesion assembly via Talin interactions, and potentially regulates downstream signaling. For further description of this work see. Z. Xu, D. Kim, et al., NeuroMolecular Medicine (2019) 21:325-343; T. Santiago-Sim, D. Kim, et al., Stroke. 2016; 47:3005-3013. DOI: 10.1161/STROKEAHA.116.014161); Yan-Ning Rui and D. Kim, et al., Cell Physiol Biochem 2017; 43:2200-2211; each of which incorporated by reference in their entireties). However the study did not provide any insights on the THSD1 molecular pathways.

To further study the role of THSD1 in IA/SAH, additional analysis of whole exome sequencing of the IA families described in FIG. 1 was conducted. The detailed analysis identified a THSD1 nonsense mutation that segregated in all 9 affected and was absent in 13 unaffected family members. Notably, the exome sequencing analysis uncovered multiple signaling pathways that appeared to be affected by THSD1 expression: Integrin, Src, PI3/AKT/mTor, and Rho signaling that are functionally linked to Focal Adhesion Kinase (FAK) signaling as well as TGFβ signaling (see Table 1, discussed in Example 1). The present disclosure contemplates that THSD1 regulated genes may contribute to IA pathogenesis and that modulating their function may be beneficial as an IA treatment or in other diseases with aberrant THSD1 expression.

The present disclosure considered the differentially expressed genes and characterized autophagy pathways as contributors to IA development and potential targets for therapy. The present disclosure also contemplates that mutations in genes other than THSD1 that affect the TGFβ pathway could render a subject at risk of suffering an IA. The present disclosure characterizes the TGFβ pathway as a novel molecular target for the treatment of subjects at risk of developing an aneurysm.

Transforming growth factor β (TGFβ) is an important mediator of a number of cellular processes, including skeletal, ocular, pulmonary, and vascular systems. Aneurysms often result in aortic dissection or rupture of vasculature, which is the leading cause of sudden death in subjects prone to vasculature ruptures and aneurysms. However, there is currently no genotype-specific medical treatment. The common paradigm proposes that increased TGF-β signaling contributes to the complicated pathogenesis of aneurysm formation, particular aortic aneurysm, but a comprehensive understanding of governing molecular mechanisms remained admittedly lacking. See, TGF-β Signaling-Related Genes and Thoracic Aortic Aneurysms and Dissections. Int J Mol Sci. 2018 July; 19(7): 2125.

The present disclosure provides experiments demonstrating that THSD1 positively regulates TGF-β signaling in endothelial cells, thus mechanistically linking a gene associated with aneurysms (THSD1) and the TGF-β pathway.

Methods of Treating Aneurysms

The methods, compositions, and uses of this disclosure may comprise a treatment method to arrest, reverse, or ameliorate an aneurysm, e.g., an intracranial aneurysm. In some cases, the therapeutic effect is achieved by administrating a therapeutically-effective dose of a TGF-β ligand or other TGF-β signaling activator(s) conjugated to a platinum coil. Endovascular coiling is a procedure performed to block blood flow into an aneurysm. Endovascular coiling is a minimally invasive technique, which means an incision in the skull is not required to treat the brain aneurysm. Rather, a catheter is used to reach the aneurysm in the brain.

During endovascular coiling, a microcatheter is inserted through the initial catheter and passed through the groin up into the artery containing the aneurysm. Typically, when the microcatheter has reached the aneurysm and has been inserted into the aneurysm, an electrical current is used to separate the coil from the catheter. Platinum coils are then released, which seal off the opening of the aneurysm. The coils induce clotting (embolization) of the aneurysm and, in this way, prevent blood from getting into it. The coil is left in place permanently in the aneurysm. Depending on the size of the aneurysm, more than one coil may be needed to completely seal off the aneurysm.

In some aspects, provided herein are TGF-β ligands or other TGF-β signaling activator(s) conjugated to a platinum coil. The coils used in a procedure of the disclosure can be made of soft platinum metal, and they can be shaped like a spring, a rod, or another suitable shape. These coils can be very small and thin, ranging in size from about twice the width of a human hair (largest) to less than one hair's width (smallest). Generally, platinum coils of the disclosure can have thicknesses ranging from 0.005 mm to 1.0 mm, coil widths ranging from 0.01 mm to 1.0 mm.

The metal in the coil can comprise a variety of metals, including, but not limited to platinum, tungsten, titanium, silver, stainless steel, zirconium, or an alloy thereof.

The treatment may comprise treating a subject (e.g. a patient at risk of having an intracranial aneurysm due to the presence of a THSD1 genetic variant or an animal with a similar genetic variant). The disease may be a weakness in a blood vessel in the brain that balloons and fills with blood, for example, a brain aneurysm (also called a cerebral aneurysm or an intracranial aneurysm) is a ballooning arising from a weakened area in the wall of a blood vessel in the brain. The subject may be a human.

Treatment may be provided to the subject before clinical onset of disease. For instance, in specific cases, treatment may be provided upon the identification of a THSD1 variant in a subject, before the onset of a disease. Treatment may be provided to the subject after clinical onset of disease. Treatment may be provided to the subject after 1 day, 1 week, 6 months, 12 months, or 2 years after clinical onset of the disease. Treatment may be provided to the subject for more than 1 day, 1 week, 1 month, 6 months, 12 months, 2 years or more after clinical onset of disease. Treatment may be provided to the subject for less than 1 day, 1 week, 1 month, 6 months, 12 months, or 2 years after clinical onset of the disease. Treatment may also include treating a human in a clinical trial. Because of the genetic aspect of IA, treatment may be provided through the lifetime of a subject that is afflicted with a THSD1 variant that may lead to subarachnoid hemorrhage. In some aspects, treatment will be prescribed to prevent IA in a subject that carries a THSD1 variant associated with IA.

A treatment can comprise performing an endovascular coiling procedure where the platinum coil has TGF-β ligands or other TGF-β signaling activator(s) conjugated to the platinum coil. A treatment can comprise modulating the levels of TGF-β in vivo. A treatment may comprise administering a suitable level of TGF-β ligands or other TGF-β signaling activator(s) for reducing bulge's in the wall of a blood vessel and preventing Subarachnoid hemorrhage.

Further, there are many risk factors for the development of intracranial aneurysms, both inherited and acquired. Females are more prone to aneurysm rupture, with SAH times more common in women. The prevalence of aneurysms is increased in certain genetic diseases; the classic example is autosomal dominant polycystic kidney disease (ADPKD), but other diseases such as Ehlers-Danlos syndrome, neurofibromatosis, al-antitrypsin deficiency also demonstrate a link. In ADPKD, 10% to 15% of patients develop intracranial aneurysms. Marfan's Syndrome was once thought to be linked to intracranial aneurysm formation, but recent evidence suggests that this may not be true. A treatment may comprise identifying a subject that is at risk of developing an aneurysm based on a diagnosis of the subject and subsequently treating the subject with TGF-β ligands or other TGF-β signaling activator(s).

Aneurysms also run in families in the absence of an identified genetic disorder, with a prevalence of 7% to 20% in first or second degree relatives of patients who have suffered a SAH. FIG. 1 discloses a large family with variants in the THSD1 gene that have been causally linked to IA.

Definitions

All of the functionalities described in connection with one embodiment of the methods, devices or instruments described herein are intended to be applicable to the additional embodiments of the methods, devices and instruments described herein except where expressly stated or where the feature or function is incompatible with the additional embodiments. For example, where a given feature or function is expressly described in connection with one embodiment but not expressly mentioned in connection with an alternative embodiment, it should be understood that the feature or function may be deployed, utilized, or implemented in connection with the alternative embodiment unless the feature or function is incompatible with the alternative embodiment.

Note that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” refers to one or more cells, and reference to “the system” includes reference to equivalent steps, methods and devices known to those skilled in the art, and so forth. Furthermore, terms such as “first,” “second,” “third,” etc., merely identify one of a number of steps, components, functions, and/or points of reference as disclosed herein, and likewise do not necessarily limit embodiments of the present disclosure to any particular configuration or orientation.

Subjects can be humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like. A subject can be of any age. Subjects can be, for example, elderly adults, adults, adolescents, pre-adolescents, children, toddlers, infants.

As used in the specification and claims of this application, the term “administering” includes any method which is effective to result in delivery of an autophagy inhibitor to the subject.

As used in this specification, the term “aneurysm” refers to broad classes of aneurysm, including aneurysms: abdominal aortic, thoracic aortic, and cerebral.

As used in this specification, the term “cerebral aneurysm” or “intracranial aneurysm” (also known as a brain aneurysm) is a weak or thin spot on an artery in the brain that balloons or bulges out and fills with blood. The bulging aneurysm can put pressure on the nerves or brain tissue. It may also burst or rupture, spilling blood into the surrounding tissue (called a hemorrhage). An unruptured aneurysm usually causes no symptoms. A key symptom of a ruptured aneurysm is a sudden, severe headache. Treatments for an unruptured aneurysm include medications to control blood pressure and procedures to prevent a future rupture.

As used in this specification, the term “abdominal aortic” aneurysm (AAA) is a bulge or swelling in the aorta, the main blood vessel that runs from the heart down through the chest and tummy. An AAA can be dangerous if it is not spotted early on. It can get bigger over time and could burst (rupture), causing life-threatening bleeding.

As used in this specification, the term “abdominal aortic” aneurysm (AAA) is a bulge or swelling in the aorta, the main blood vessel that runs from the heart down through the chest and tummy. An AAA can be dangerous if it is not spotted early on. It can get bigger over time and could burst (rupture), causing life-threatening bleeding.

As used in this specification, the term “thoracic aortic” aneurysm is an abnormal widening or ballooning of a portion of an artery due to weakness in the wall of the blood vessel. A thoracic aortic aneurysm occurs in the part of the body's largest artery (the aorta) that passes through the chest.

As used herein the term “coil” can be any type of coil known in the art, such as, for example, a Guglielmi detachable coil (GDC). A metal coil is fabricated with metal. A metal coil can be coated with an absorbable polymeric material to improve long-term anatomic results in the endovascular treatment of intracranial aneurysms. The coil can further be coated to decrease friction to decrease the granulation tissue formation around the coils. In one embodiment, the coating facilitated attachment of TGF-β ligand(s) or TGF-β activator(s) to itself and is used to better deliver therapeutic doses of TGF-β ligand(s) or TGF-β activator(s) to aneurysms.

As used herein, the term TGF-β ligand include TGF-β1, TGF-β2, TGF-β3.

As used herein, the term TGF-β activator include Plasmin, MMP2, MMP9, Thrombospondin-1. These protein or enzymes can cleave the latent form of TGF-β in the extracellular matrix and release active TGF-β from nearby microenvironment.

As used in the specification and claims of this application, the term “at risk” or more specifically a “subject at risk of developing an intracranial aneurysm” is a subject afflicted with a genetic variant, e.g., THSD1 variant, that causes the subarachnoid hemorrhage seen when an aneurysm ruptures.

The term DNA “control sequences” refers collectively to promoter sequences, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites, nuclear localization sequences, enhancers, and the like, which collectively provide for the replication, transcription and translation of a coding sequence in a recipient cell.

Where a range of values is provided, it is understood that each intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.

EMBODIMENTS

EMBODIMENT 1. A metal coil conjugated to a TGFβ activator configured for use in an endovascular coiling procedure.

EMBODIMENT 2. The metal coil of embodiment Error! Reference source not found., wherein the TGFβ activator is a TGFβ ligand.

EMBODIMENT 3. The metal coil of embodiment Error! Reference source not found., wherein the TGFβ ligand is selected from the group consisting of TGF-β1, TGF-β2, TGF-β3.

EMBODIMENT 4. The metal coil of embodiment Error! Reference source not found., wherein the TGFβ activator is a TGFβ signaling activator.

EMBODIMENT 5. The metal coil of embodiment Error! Reference source not found., wherein the TGFβ signaling activator is selected from the group consisting of Plasmin, MMP2, MMP9, Thrombospondin-1.

EMBODIMENT 6. The metal coil of embodiment Error! Reference source not found., wherein a metal in the metal coil is selected from the group consisting of platinum, tungsten, titanium, silver, stainless steel, zirconium, or an alloy thereof.

EMBODIMENT 7. The metal coil of embodiment Error! Reference source not found., wherein the metal in the metal coil is platinum.

EMBODIMENT 8. The metal coil of embodiment Error! Reference source not found., wherein the metal coil has a thicknesses ranging from 0.005 mm to 1.0 mm.

EMBODIMENT 9. The metal coil of embodiment Error! Reference source not found., wherein the metal coil has a width ranging from 0.01 mm to 1.0 mm.

EMBODIMENT 10. The metal coil of embodiment Error! Reference source not found., wherein the metal coil is used to treat a subject at risk of suffering from an aneurysm.

EMBODIMENT 11. The metal coil of embodiment Error! Reference source not found., wherein the aneurysm is an intracranial aneurysm.

EMBODIMENT 12. The metal coil of embodiment Error! Reference source not found., wherein the aneurysm is an aortic aneurysm.

EMBODIMENT 13. The metal coil of embodiment Error! Reference source not found., wherein the subject carries a variant affecting the expression of a Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

EMBODIMENT 14. The metal coil of embodiment Error! Reference source not found., wherein the variant is in a coding region of the Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

EMBODIMENT 15. The metal coil of embodiment Error! Reference source not found., wherein the variant is in a control sequence of a non-coding region of the Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

EMBODIMENT 16. The metal coil of embodiment Error! Reference source not found., wherein the variant in the THSD1 gene is a single codon substitution in at least one THSD1 allele.

EMBODIMENT 17. The metal coil of embodiment Error! Reference source not found., wherein the single codon substitution is LSF, R460W, E466G, G600E, P639L, T6531, or S775P.

EMBODIMENT 18. The metal coil of embodiment Error! Reference source not found., wherein the subject is a human.

EMBODIMENT 19. A method for treating a subject at risk of suffering from an aneurysm comprised of inserting into the subject a catheter for delivering a metal coil conjugated to a TGFβ activator configured for use in an endovascular coiling procedure.

EMBODIMENT 20. The method of embodiment 19, further comprising calculating an estimate of an aneurysm volume prior to inserting into the subject the catheter.

EMBODIMENT 21. The method of embodiment Error! Reference source not found., further comprising releasing the metal coil conjugated to the TGFβ activator into the aneurysm.

EMBODIMENT 22. The method of embodiment Error! Reference source not found., wherein the TGFβ activator is a TGFβ ligand.

EMBODIMENT 23. The method of embodiment 22, wherein the TGFβ ligand is selected from the group consisting of TGF-β1, TGF-β2, TGF-β3.

EMBODIMENT 24. The method of embodiment Error! Reference source not found., method of claim Error! Reference source not found., wherein the TGFβ activator is a TGFβ signaling activator.

EMBODIMENT 25. The method of embodiment 24, wherein the TGFβ signaling activator is selected from the group consisting of Plasmin, MMP2, MMP9, Thrombospondin-1.

EMBODIMENT 26. The method of embodiment Error! Reference source not found., wherein a metal in the metal coil is selected from the group consisting of platinum, tungsten, titanium, silver, stainless steel, zirconium, or an alloy thereof.

EMBODIMENT 27. The method of embodiment 26, wherein the metal in the metal coil is platinum.

EMBODIMENT 28. The method of embodiment Error! Reference source not found., wherein the metal coil has a thicknesses ranging from 0.005 mm to 1.0 mm.

EMBODIMENT 29. The method of embodiment Error! Reference source not found., wherein the metal coil has a width ranging from 0.01 mm to 1.0 mm.

EMBODIMENT 30. The method of embodiment Error! Reference source not found., wherein the metal coil is used to treat a subject at risk of suffering from an aneurysm.

EMBODIMENT 31. The method of embodiment Error! Reference source not found., wherein the aneurysm is an intracranial aneurysm.

EMBODIMENT 32. The method of embodiment Error! Reference source not found., wherein the aneurysm is an aortic aneurysm.

EMBODIMENT 33. The method of embodiment Error! Reference source not found., wherein the subject carries a variant affecting the expression of a Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

EMBODIMENT 34. The method of embodiment 33, wherein the variant is in a coding region of the Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

EMBODIMENT 35. The method of embodiment 33, wherein the variant is in a control sequence of a non-coding region of the Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

EMBODIMENT 36. The method of embodiment 33, wherein the variant in the THSD1 gene is a single codon substitution in at least one THSD1 allele.

EMBODIMENT 37. The method of embodiment 36, wherein the single codon substitution is LSF, R460W, E466G, G600E, P639L, T6531, or S775P.

EMBODIMENT 38. The method of embodiment Error! Reference source not found., wherein the subject is a human.

EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention, nor are they intended to represent or imply that the experiments below are all of or the only experiments performed. It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific aspects without departing from the spirit or scope of the invention as broadly described. The present aspects are, therefore, to be considered in all respects as illustrative and not restrictive.

The practice of some molecular techniques described herein may employ, unless otherwise indicated, techniques and descriptions of molecular biology (including recombinant techniques), cell biology, biochemistry, and genetic engineering technology, which are within the skill of those who practice in the art. Such techniques and descriptions can be found in standard laboratory manuals such as Westerfield, M. (2000). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed., Univ. of Oregon Press, Eugene.; all of which are herein incorporated in their entirety by reference for all purposes.

EXAMPLE 1: Molecular Dissection of THSD1 Function in Vascular Endothelial Cells from Global Transcriptomics

Genetic factors play a significant role in IA pathogenesis as illustrated by family studies and several IA predisposing syndromes. 7%-20% of all patients have a known family history and a family history is the strongest risk factor for disease. Excluding syndromes that account for less than 1% of all IA cases, candidate IA genes have been primarily identified by genome-wide association studies and more recently, by whole exome sequencing in affected families. Yet, little is known about the genetic causes of IA providing minimum insight for the understanding and development of therapeutic targets that could treat the disease.

Single-family genetic studies are a powerful tool to identify candidate high-risk genetic variants. FIG. 1 illustrates a large family pedigree studied as part of the present disclosure to identify novel candidate genes whose rare variants cause intracranial aneurysm. Specifically, we studied three large IA/SAH families with at least 4 affected individuals where whole exome sequencing has been performed to identify rare variants that segregate with disease. For each family, whole exome sequencing has been performed on at least 15 family members, irrespective of their IA status.

Deleterious Thrombospondin-type 1 domain-containing protein 1 (THSD1) rare variants cause disease in both familial and sporadic cases with supporting evidence from animal models. THSD1 is predominantly expressed in vascular endothelial cells. The work identified deleterious variants in thrombospondin-type 1 domain-containing protein 1 (THSD1) that can cause IA and SAH. Initial characterization of Thsd1 in two vertebrate models including zebrafish and mice lead to the discovery that THSD1 mediated cerebral hemorrhage is located in subarachnoid space in mice. For further description of this work see. Z. Xu, D. Kim, et al., NeuroMolecular Medicine (2019) 21:325-343; T. Santiago-Sim, D. Kim, et al., Stroke. 2016; 47:3005-3013. DOI: 10.1161/STROKEAHA.116.014161); Yan-Ning Rui and D. Kim, et al., Cell Physiol Biochem 2017; 43:2200-2211; each of which incorporated by reference).

However, the mechanism of action utilized by the discovered THSD1 variants to drive disease remained elusive. Further, there was little information describing genes and pathways regulated by THSD1 using global transcriptomics that could be used to inform the mechanism of action of THSD1. Thus, on its own the identification of THSD1 in the context of AI was not sufficient to inform a therapeutic strategy.

The present disclosure contemplated that THSD1 regulated genes may contribute to IA pathogenesis and that modulating their function may be beneficial as an IA treatment or in other diseases with aberrant THSD1 expression. The present disclosure provides results from global transcriptome profiling in human vascular endothelial cells upon THSD1 knockdown that identifies THSD1-regulated specific genes and pathways that are critical for mediating its function, providing potential targets for therapeutic intervention in IA.

The instant disclosure provides RNAseq experiments in two THSD1 knock-down endothelial cell lines. The RNAseq results from both cell lines support the evidence that THSD1 regulates multiple signaling pathways: Integrin, Src, PI3/AKT/mTor, and Rho signaling that are functionally linked to Focal Adhesion Kinase (FAK) signaling. A few of these pathways were selected for further analysis and characterization.

Materials and Methods

Cell Culture

HEK293T cells were maintained in DMEM medium (Corning, 10-013-CV) containing 10% fetal bovine serum (Invitrogen, 10082147), 100 IU penicillin, and 100 μg/ml streptomycin. Transfections of small interfering RNAs and plasmid DNA were performed using lipofectamine 2000 (Life Technologies, 11668027) according to the manufacturer's instructions. Alternatively, for cells such as endothelial cells that are hard to transfect, we will utilize lentiviral system to generate stable cell lines.

Knock-down Experiments

Knockdown experiments in human vascular endothelial cells were performed using two distinct cell lines [HUVECs and Human brain microvascular endothelial cells(HBMECs)] using four siRNAs (two control siRNAs and two THSD1-specific siRNAs) to minimize erroneous findings due to off-target effects.

Transcriptome Profiling

Bioinformatic analyses of the global transcriptome were performed on rRNA-depleted RNA samples by RNA-Seq. Table 1 illustrates results of the analysis. As shown on Table 1, THSD1 regulates multiple signaling pathways: Integrin, Src, PI3/AKT/mTor, and Rho signaling that are functionally linked to Focal Adhesion Kinase (FAK) signaling) as well as TGFβ signaling.

TABLE 1 Statistically Significant THSD1-Regulated Pathways (p-value < 0.005; Efron-Tibshirani's GSA test) Description Integrin Signaling PI3K/Akt/mTOR Signaling Src Signaling Rho Signaling Tgfβ

We identified a number of genes that are affected by the lack of THSD1 in the knock-down cell lines and are likely regulated by THSD1. A subset of these genes likely contributes to disease pathobiology and may be targets for therapeutic intervention. Table 2. Describes genes differentially expressed in THSD1 knockdowns.

TABLE 2 Genes differentially expressed in THSD1 knockdowns; human brain microvascular endothelial cells and HUVECs, combined Description Genes Differential Expression ALOX5AP, ARL17B, CTSS, GUK1, upon THSD1 Loss IFNAR2, LAMC2, NHLRC4, NISCH, Upregulated genes OLFML3, PSMD11, PUM2, SLC37A1, SMAP1, SNORA27, TMEM50B, UBAP2, ZNF780A Differential Expression ABCG2, ADAMTS1, AQP1, BCAP31, upon THSD1 Loss CDC45, CHCHD7, DMD, ENOX2, Downregulated genes FAM219A, FGF2, FGFR1OP2, G0S2, GJA4, IGFBP3, INAFM1, MAP2, MGP, NOL3, NPR1, NVL, PPHLN1, SERPINB2, SETBP1, (THSD1), TMEM107, ZNF185

Table 3. lists genes differentially expressed in THSD1 knockdown HUVECs.

TABLE 3 Differentially Expressed Genes in THSD1 Knockdown HUVECs Ensembl Gene Gene Name logEC logCPM LR P Value FDR ENSG00000136114 THSD1 −2.07 4.85 141.12 1.52E−32 2.15E−28 ENSG00000265107 GJA5 −3.81 3.42 137.13 1.13E−31 8.01E−28 ENSG00000130066 SAT1 −1.74 8.37 128.15 1.04E−29 4.92E−26 ENSG00000111341 MGP −1.46 6.50 112.09 3.42E−26 1.21E−22 ENSG00000187513 GJA4 −2.29 4.32 102.47 4.39E−24 1.25E−20 ENSG00000284057 AP001273.2 8.67 −0.99 71.34 3.00E−17 7.11E−14 ENSG00000170323 FABP4 −2.09 6.36 66.29 3.90E−16 7.91E−13 ENSG00000125266 EFNB2 −1.28 7.77 63.28 1.79E−15 3.18E−12 ENSG00000113389 NPR3 −3.16 1.25 56.87 4.65E−17 7.35E−11 ENSG00000134668 SPOCD1 1.16 5.45 54.03 1.97E−13 2.80E−10 ENSG00000118777 ABCG2 −2.38 4.92 51.45 7.36E−13 9.50E−10 ENSG00000203812 HIST2H2AA3 4.21 0.20 50.59 1.14E−12 1.35E−09 ENSG00000272921 AC005832.4 −8.85 −0.72 48.91 2.69E−12 2.93E−09 ENSG00000078018 MAP2 −1.06 4.84 48.51 3.29E−12 3.34E−09 ENSG00000115884 SDC1 −1.53 3.23 48.33 3.61E−12 3.42E−09 ENSG00000139278 GLIPR1 1.13 6.53 47.73 4.89E−12 4.34E−09 ENSG00000101335 MYL9 1.09 4.76 47.07 6.83E−12 5.71E−09 ENSG00000181634 TNFSF15 1.64 5.10 45.62 1.43E−11 1.13E−08 ENSG00000122861 PLAU 1.03 5.58 43.85 3.55E−11 2.65E−08 ENSG00000107551 RASSF4 −1.10 5.07 43.68 3.86E−11 2.74E−08 ENSG00000274611 TBC1D3 −7.97 −1.52 43.13 5.12E−11 3.46E−08 ENSG00000149591 TAGLN 1.81 2.54 42.71 6.35E−11 4.10E−08 ENSG00000171435 KSR2 1.18 3.90 38.39 5.80E−10 3.58E−07 ENSG00000153165 RGPD3 4.26 −1.48 37.47 9.26E−10 5.48E−07 ENSG00000251569 AC093899.2 7.32 −2.20 34.85 3.55E−09 2.02E−06 ENSG00000163083 INHBB −2.57 2.18 34.75 3.75E−09 2.05E−06 ENSG00000272949 AC093668.2 −7.24 −2.15 33.67 6.51E−09 3.43E−06 ENSG00000152217 SETBP1 −1.78 3.75 33.17 8.42E−09 4.27E−06 ENSG00000119900 OGFRL1 0.85 6.59 32.79 1.03E−08 5.02E−06 ENSG00000082684 SEMA5B −4.57 −1.62 32.23 1.37E−08 6.26E−06 ENSG00000169604 ANTXR1 0.98 5.91 32.24 1.36E−08 6.26E−06 ENSG00000137573 SULF1 −1.27 5.03 31.88 1.64E−08 7.29E−06 ENSG00000115232 ITGA4 1.35 3.29 30.82 2.83E−08 1.22E−05 ENSG00000058085 LAMC2 1.06 5.71 30.05 4.21E−08 1.76E−05 ENSG00000022567 SLC45A4 −1.35 3.07 29.70 5.04E−08 1.99E−05 ENSG00000172602 RND1 −1.74 1.64 29.71 5.03E−08 1.99E−05 ENSG00000103426 CORO7-PAM16 4.38 −1.48 29.02 7.16E−08 2.75E−05 ENSG00000120217 CD274 1.35 4.21 28.77 8.14E−08 3.04E−05 ENSG00000116667 C1orf21 −0.99 4.42 27.88 1.29E−07 4.70E−05 ENSG00000169129 AFAP1L2 −2.16 3.16 27.67 1.44E−07 5.10E−05 ENSG00000138646 HERC5 −1.85 1.47 27.51 1.56E−07 5.29E−05 ENSG00000197646 PDCD1LG2 1.07 3.58 27.55 1.53E−07 5.29E−05 ENSG00000064651 SLC12A2 0.73 7.05 26.91 2.13E−07 7.03E−05 ENSG00000171388 APLN 0.85 9.85 26.02 3.39E−07 0.000109 ENSG00000175426 PCSK1 1.51 2.68 25.80 3.79E−07 0.00012 ENSG00000057019 DCBLD2 0.91 6.78 25.67 4.05E−07 0.000125 ENSG00000008517 IL32 0.69 6.11 25.52 4.37E−07 0.000132 ENSG00000138685 FGF2 −1.20 5.72 25.21 5.15E−07 0.000152 ENSG00000065308 TRAM2 0.67 8.10 25.04 5.60E−07 0.000162 ENSG00000137507 LRRC32 −0.87 7.22 24.74 6.57E−07 0.000187 ENSG00000129116 PALLD 0.69 6.27 24.56 7.22E−07 0.000201 ENSG00000129521 EGLN3 −1.85 0.09 24.44 7.66E−07 0.000209 ENSG00000125954 CHURC1-FNTB −6.59 −2.67 24.25 8.46E−07 0.000227 ENSG00000152402 GUCY1A2 1.90 1.31 24.20 8.68E−07 0.000228 ENSG00000169429 CXCL8 1.22 4.62 23.66 1.15E−06 0.000297 ENSG00000164683 HEY1 −1.25 3.49 23.30 1.38E−06 0.000345 ENSG00000176907 TCIM 0.95 3.77 23.31 1.38E−06 0.000345 ENSG00000082126 MPP4 0.76 4.76 23.08 1.56E−06 0.000379 ENSG00000163637 PRICKLE2 −0.99 3.76 23.06 1.57E−06 0.000379 ENSG00000148143 ZNF462 0.72 4.95 22.92 1.69E−06 0.0004 ENSG00000139289 PHLDA1 0.63 7.00 22.22 2.43E−06 0.000566 ENSG00000028137 TNFRSF1B −0.99 6.14 22.02 2.69E−06 0.000617 ENSG00000139629 GALNT6 0.66 5.98 21.94 2.82E−06 0.000635 ENSG00000117586 TNFSF4 0.66 7.43 21.80 3.03E−06 0.000672 ENSG00000256514 AP003419.1 1.68 0.91 21.47 3.60E−06 0.000787 ENSG00000240583 AQP1 −1.84 3.43 21.27 3.99E−06 0.000858 ENSG00000115252 PDE1A −2.04 0.57 21.17 4.20E−06 0.00089 ENSG00000178695 KCTD12 −0.71 8.94 20.99 4.62E−06 0.000965 ENSG00000173535 TNFRSF10C −0.65 6.69 20.89 4.87E−06 0.001002 ENSG00000156298 TSPAN7 −1.50 3.22 20.81 5.08E−06 0.001031 ENSG00000037280 FLT4 −0.95 6.22 20.66 5.48E−06 0.001066 ENSG00000118515 SGK1 1.02 6.19 20.70 5.37E−06 0.001066 ENSG00000171105 INSR −0.82 5.20 20.67 5.47E−06 0.001066 ENSG00000128917 DLL4 −1.06 6.99 20.55 5.81E−06 0.001116 ENSG00000164284 GRPEL2 0.71 5.83 20.28 6.70E−06 0.001268 ENSG00000130449 ZSWIM6 0.84 6.22 20.20 6.96E−06 0.0013 ENSG00000165029 ABCA1 −1.20 4.86 20.18 7.06E−06 0.001303 ENSG00000143127 ITGA10 −0.95 4.84 20.08 7.43E−06 0.001336 ENSG00000187720 THSD4 0.77 5.68 20.08 7.43E−06 0.001336 ENSG00000073008 PVR 0.69 7.34 19.90 8.14E−06 0.001422 ENSG00000107731 UNC5B −1.58 3.90 19.93 8.03E−06 0.001422 ENSG00000122786 CALD1 0.71 9.31 19.89 8.21E−06 0.001422 ENSG00000110092 CCND1 0.77 8.26 19.76 8.76E−06 0.0015 ENSG00000154734 ADAMTS1 −1.32 3.65 19.66 9.23E−06 0.001561 ENSG00000142178 SIK1 1.16 2.11 19.62 9.46E−06 0.001581 ENSG00000168843 FSTL5 1.55 0.35 19.53 9.92E−06 0.001638 ENSG00000121858 TNFSF10 −0.94 4.92 19.41 1.05E−05 0.001722 ENSG00000169213 RAB3B 0.71 5.47 19.35 1.09E−05 0.001754 ENSG00000166670 MMP10 1.61 6.00 19.29 1.12E−05 0.00179 ENSG00000138347 MYPN 2.35 −1.12 19.03 1.29E−05 0.002029 ENSG00000145247 OCIAD2 0.76 5.62 18.90 1.38E−05 0.002126 ENSG00000160801 PTH1R −2.70 −1.67 18.89 1.38E−05 0.002126 ENSG00000184113 CLDN5 −0.91 7.73 18.88 1.39E−05 0.002126 ENSG00000152518 ZFP36L2 −0.62 6.87 18.76 1.48E−05 0.002235 ENSG00000171617 ENC1 0.87 6.92 18.56 1.64E−05 0.002457 ENSG00000166833 NAV2 0.61 5.37 18.42 1.77E−05 0.00262 ENSG00000177076 ACER2 −1.05 3.11 18.28 1.91E−05 0.002793 ENSG00000154928 EPHB1 1.07 2.28 18.16 2.03E−05 0.002915 ENSG00000162407 PLPP3 −0.99 5.19 18.16 2.03E−05 0.002915 ENSG00000099204 ABLIM1 −0.73 8.31 18.11 2.09E−05 0.002957 ENSG00000177606 JUN 0.68 7.59 18.09 2.10E−05 0.002957 ENSG00000170006 TMEM154 0.74 5.48 18.03 2.17E−05 0.003026 ENSG00000118762 PKD2 −0.61 5.46 17.91 2.32E−05 0.003197 ENSG00000108387 ‘SEPT4 −1.64 −0.22 17.45 2.96E−05 0.004038 ENSG00000170891 CYTL1 0.91 3.83 17.25 3.28E−05 0.004439 ENSG00000175040 CHST2 0.88 4.58 17.17 3.42E−05 0.004583 ENSG00000167037 SGSM1 −1.41 1.33 17.15 3.45E−05 0.004587 ENSG00000185070 FLRT2 0.70 7.60 17.09 3.57E−05 0.004694 ENSG00000180304 OAZ2 −0.56 6.82 16.78 4.20E−05 0.005473 ENSG00000257093 KIAA1147 −0.59 7.24 16.71 4.36E−05 0.005628 ENSG00000184897 H1FX −0.58 6.28 16.64 4.53E−05 0.005794 ENSG00000075426 FOSL2 0.57 6.66 16.52 4.80E−05 0.006094 ENSG00000105825 TFPI2 0.57 7.14 16.40 5.13E−05 0.006449 ENSG00000135318 NT5E 0.61 7.62 16.38 5.18E−05 0.00645 ENSG00000127533 F2RL3 1.23 1.06 16.34 5.30E−05 0.006492 ENSG00000205683 DPF3 1.21 2.98 16.34 5.30E−05 0.006492 ENSG00000105499 PLA2G4C 0.76 3.68 16.29 5.44E−05 0.006599 ENSG00000167984 NLRC3 0.99 2.82 16.02 6.26E−05 0.007507 ENSG00000168685 IL7R 1.30 1.79 16.00 6.32E−05 0.007507 ENSG00000172985 SH3RF3 0.64 5.05 16.00 6.34E−05 0.007507 ENSG00000108551 RASD1 1.21 2.55 15.95 6.49E−05 0.00762 ENSG00000081087 OSTM1 0.67 5.66 15.81 6.99E−05 0.008139 ENSG00000128849 CGNL1 −0.78 6.46 15.61 7.78E−05 0.008985 ENSG00000133816 MICAL2 0.69 7.58 15.59 7.87E−05 0.009013 ENSG00000132965 ALOX5AP 2.25 −1.61 15.55 8.04E−05 0.009132 ENSG00000084734 GCKR −2.84 −1.71 15.36 8.89E−05 0.009794 ENSG00000108854 SMURF2 0.53 7.94 15.38 8.81E−05 0.009794 ENSG00000111859 NEDD9 0.52 6.27 15.36 8.89E−05 0.009794 ENSG00000154678 PDE1C 0.89 3.99 15.37 8.84E−05 0.009794 ENSG00000033867 SLC4A7 0.58 7.03 15.33 9.05E−05 0.009889 ENSG00000152207 CYSLTR2 −2.45 −0.56 15.25 9.42E−05 0.010156 ENSG00000188452 CERKL 1.26 0.91 15.25 9.44E−05 0.010156 ENSG00000105357 MYH14 1.43 0.19 15.20 9.66E−05 0.010323 ENSG00000185432 METTL7A −1.01 3.66 15.17 9.83E−05 0.010418 ENSG00000004799 PDK4 −1.18 2.61 15.12 0.000101 0.010639 ENSG00000122694 GLIPR2 0.65 4.88 15.10 0.000102 0.010655 ENSG00000213402 PTPRCAP −3.20 −2.40 15.08 0.000103 0.010665 ENSG00000115902 SLC1A4 −0.69 4.85 14.96 0.00011 0.011119 ENSG00000169248 CXCL11 1.35 0.90 14.97 0.000109 0.011119 ENSG00000189367 KIAA0408 1.83 −0.79 14.96 0.00011 0.011119 ENSG00000102755 FLT1 −0.77 8.53 14.90 0.000114 0.011449 ENSG00000135905 DOCK10 0.62 5.30 14.86 0.000116 0.01158 ENSG00000079102 RUNX1T1 −0.82 4.50 14.83 0.000118 0.011588 ENSG00000153208 MERTK 0.58 5.53 14.83 0.000118 0.011588 ENSG00000198435 NRARP −0.63 5.05 14.82 0.000118 0.011588 ENSG00000141682 PMAIP1 1.02 4.25 14.80 0.00012 0.01165 ENSG00000011347 SYT7 −1.86 −0.09 14.71 0.000126 0.012144 ENSG00000135842 FAM129A −1.24 1.66 14.52 0.000139 0.013339 ENSG00000020577 SAMD4A 0.62 5.94 14.47 0.000143 0.013504 ENSG00000143153 ATP1B1 0.74 5.54 14.47 0.000142 0.013504 ENSG00000177666 PNPLA2 −0.55 6.36 14.43 0.000145 0.013671 ENSG00000085276 MECOM −0.53 7.33 14.39 0.000148 0.013802 ENSG00000111145 ELK3 −0.64 8.64 14.39 0.000149 0.013802 ENSG00000140675 SLC5A2 −5.88 −3.18 14.34 0.000152 0.014056 ENSG00000005108 THSD7A −0.61 5.99 14.27 0.000159 0.014543 ENSG00000157613 CREB3L1 1.04 1.76 14.23 0.000162 0.014743 ENSG00000163584 RPL22L1 −0.61 5.30 14.18 0.000166 0.015011 ENSG00000169418 NPR1 −1.45 3.01 14.12 0.000171 0.015403 ENSG00000131016 AKAP12 0.59 10.29 14.07 0.000176 0.015751 ENSG00000141298 SSH2 0.55 6.75 13.98 0.000184 0.016299 ENSG00000163131 CTSS 0.96 2.75 13.98 0.000185 0.016299 ENSG00000026508 CD44 0.69 5.54 13.94 0.000189 0.016335 ENSG00000136404 TM6SF1 0.69 4.25 13.92 0.00019 0.016335 ENSG00000144583 ‘MARCH4 0.82 5.53 13.95 0.000188 0.016335 ENSG00000175899 A2M −1.56 2.41 13.92 0.000191 0.016335 ENSG00000176749 CDK5R1 1.01 2.89 13.94 0.000189 0.016335 ENSG00000258984 UBE2F-SCLY 3.28 −1.94 13.88 0.000194 0.016538 ENSG00000136960 ENPP2 −1.14 1.35 13.86 0.000197 0.016639 ENSG00000140416 TPM1 0.61 8.65 13.81 0.000202 0.016977 ENSG00000112541 PDE10A −0.92 3.09 13.76 0.000208 0.017288 ENSG00000198286 CARD11 0.59 5.90 13.76 0.000208 0.017288 ENSG00000108825 PTGES3L- 1.90 −0.91 13.67 0.000218 0.017886 AARSD1 ENSG00000185650 ZFP36L1 0.51 6.82 13.66 0.000219 0.017886 ENSG00000188290 HES4 −1.30 2.20 13.66 0.000219 0.017886 ENSG00000114631 PODXL2 0.66 4.05 13.62 0.000224 0.018189 ENSG00000106852 LHX6 0.94 4.20 13.59 0.000227 0.018332 ENSG00000171115 GIMAP8 −0.63 7.66 13.56 0.000231 0.018514 ENSG00000189120 SP6 1.04 1.77 13.54 0.000234 0.018568 ENSG00000265972 TXNIP −1.35 3.74 13.54 0.000234 0.018568 ENSG00000154639 CXADR 0.57 4.98 13.51 0.000237 0.018606 ENSG00000169242 EFNA1 −0.75 6.23 13.52 0.000237 0.018606 ENSG00000204304 PBX2 −0.72 5.80 13.49 0.00024 0.018755 ENSG00000157557 ETS2 0.56 6.59 13.45 0.000244 0.018975 ENSG00000105855 ITGB8 1.01 3.67 13.44 0.000246 0.018999 ENSG00000144802 NFKBIZ 0.88 4.33 13.37 0.000255 0.01961 ENSG00000204262 COL5A2 0.51 8.22 13.33 0.000262 0.019978 ENSG00000163092 XIRP2 2.56 −0.54 13.31 0.000264 0.020085 ENSG00000049540 ELN −2.37 −1.72 13.23 0.000275 0.020704 ENSG00000166341 DCHS1 0.50 7.06 13.24 0.000274 0.020704 ENSG00000115414 FN1 0.69 12.30 13.17 0.000284 0.021259 ENSG00000094880 CDC23 −0.63 5.49 13.10 0.000295 0.021903 ENSG00000164647 STEAP1 −0.67 4.33 13.10 0.000296 0.021903 ENSG00000119681 LTBP2 0.48 9.54 13.03 0.000306 0.022511 ENSG00000107562 CXCL12 2.40 −1.46 12.98 0.000314 0.022927 ENSG00000138448 ITGAV 0.55 8.76 12.96 0.000318 0.022927 ENSG00000160223 ICOSLG −0.72 3.61 12.95 0.00032 0.022927 ENSG00000163644 PPM1K −0.64 3.93 12.96 0.000318 0.022927 ENSG00000186575 NF2 0.58 6.53 12.95 0.000319 0.022927 ENSG00000109906 ZBTB16 −1.08 1.12 12.94 0.000322 0.022986 ENSG00000144476 ACKR3 −0.77 4.06 12.89 0.00033 0.023468 ENSG00000136011 STAB2 −3.99 −2.80 12.86 0.000335 0.023698 ENSG00000074181 NOTCH3 −1.01 1.47 12.84 0.000338 0.023798 ENSG00000168916 ZNF608 −0.63 5.15 12.72 0.000362 0.025298 ENSG00000076351 SLC46A1 0.82 2.77 12.71 0.000364 0.025315 ENSG00000151474 FRMD4A 0.53 7.31 12.66 0.000374 0.025951 ENSG00000139508 SLC46A3 −1.45 4.08 12.58 0.00039 0.026876 ENSG00000131386 GALNT15 −1.70 0.16 12.53 0.000401 0.027499 ENSG00000101017 CD40 −0.65 4.42 12.49 0.000409 0.027854 ENSG00000270316 BORCS7-ASMT −6.14 −3.00 12.49 0.00041 0.027854 ENSG00000141668 CBLN2 2.75 0.19 12.48 0.000412 0.027879 ENSG00000146072 TNFRSF21 0.47 6.64 12.44 0.000419 0.028234 ENSG00000183287 CCBE1 1.06 1.39 12.39 0.000432 0.028931 ENSG00000029534 ANK1 −1.37 0.01 12.37 0.000436 0.029068 ENSG00000124593 AL365205.1 −0.90 3.18 12.35 0.00044 0.029134 ENSG00000281028 AC104662.2 −6.09 −3.04 12.35 0.000441 0.029134 ENSG00000187942 LDLRAD2 −0.76 3.41 12.33 0.000446 0.029332 ENSG00000071246 VASH1 −0.66 7.76 12.30 0.000453 0.029655 ENSG00000269307 AC010463.1 −6.06 −3.06 12.27 0.000461 0.030027 ENSG00000050405 LIMA1 0.47 7.26 12.26 0.000463 0.030037 ENSG00000259171 AL163636.2 −1.37 1.58 12.25 0.000465 0.030049 ENSG00000048740 CELF2 0.49 6.23 12.18 0.000483 0.030936 ENSG00000116774 OLFML3 0.99 1.45 12.18 0.000482 0.030936 ENSG00000182240 BACE2 −0.56 7.52 12.17 0.000486 0.030971 ENSG00000204767 FAM196B 0.77 3.39 12.15 0.00049 0.031102 ENSG00000211448 DIO2 2.26 −1.84 12.14 0.000494 0.031198 ENSG00000151468 CCDC3 −1.17 0.72 12.11 0.000501 0.031481 ENSG00000196498 NCOR2 0.52 7.49 12.09 0.000506 0.03165 ENSG00000049130 KITLG 0.70 5.16 12.07 0.000512 0.031901 ENSG00000137033 IL33 −1.94 4.40 12.06 0.000516 0.031997 ENSG00000130635 COL5A1 0.52 8.58 12.03 0.000524 0.032215 ENSG00000133056 PIK3C2B −0.67 5.90 12.03 0.000522 0.032215 ENSG00000116741 RGS2 0.79 3.02 12.02 0.000528 0.0323 ENSG00000129757 CDKN1C −0.95 2.05 11.98 0.000536 0.032564 ENSG00000179195 ZNF664 −0.66 6.99 11.99 0.000535 0.032564 ENSG00000185924 RTN4RL1 −2.85 −2.54 11.97 0.000542 0.032704 ENSG00000189060 H1F0 −0.50 6.44 11.96 0.000543 0.032704 ENSG00000255767 AC108488.2 5.64 −3.35 11.95 0.000548 0.032834 ENSG00000108691 CCL2 0.56 5.05 11.89 0.000566 0.033765 ENSG00000106069 CHN2 0.83 2.52 11.87 0.000571 0.033914 ENSG00000132702 HAPLN2 1.07 3.28 11.85 0.000575 0.033914 ENSG00000183691 NOG 1.96 0.87 11.85 0.000575 0.033914 ENSG00000105738 SIPA1L3 0.53 5.37 11.84 0.000578 0.033924 ENSG00000154096 THY1 −1.73 0.37 11.84 0.00058 0.033924 ENSG00000140937 CDH11 0.58 5.50 11.80 0.000592 0.034495 ENSG00000127241 MASP1 −1.60 −0.50 11.77 0.000601 0.034815 ENSG00000164574 GALNT10 0.47 7.18 11.77 0.000603 0.034815 ENSG00000259112 NDUFC2- 5.59 −3.38 11.75 0.000609 0.035044 KCTD14 ENSG00000109046 WSB1 −0.57 8.59 11.72 0.000619 0.035055 ENSG00000130054 FAM155B 1.73 −1.28 11.72 0.000619 0.035055 ENSG00000133401 PDZD2 −0.68 3.72 11.72 0.000618 0.035055 ENSG00000284041 AC073111.3 −5.87 −3.18 11.72 0.000619 0.035055 ENSG00000115008 IL1A 1.56 1.13 11.67 0.000634 0.035722 ENSG00000185737 NRG3 −0.86 2.50 11.66 0.000638 0.035834 ENSG00000196923 PDLIM7 0.57 7.15 11.64 0.000644 0.036026 ENSG00000187583 PLEKHN1 1.60 −1.07 11.62 0.000652 0.036337 ENSG00000135324 MRAP2 −0.97 3.21 11.57 0.000672 0.037286 ENSG00000158186 MRAS 0.56 4.27 11.55 0.000678 0.037503 ENSG00000092969 TGFB2 1.40 3.41 11.54 0.000682 0.037523 ENSG00000158373 HIST1H2BD 1.95 0.56 11.53 0.000684 0.037523 ENSG00000118946 PCDH17 1.00 3.06 11.49 0.0007 0.038238 ENSG00000067798 NAV3 0.64 5.24 11.48 0.000705 0.038357 ENSG00000143344 RGL1 0.81 6.48 11.46 0.00071 0.03848 ENSG00000188042 ARL4C 0.65 3.97 11.43 0.000723 0.039053 ENSG00000162772 ATF3 0.98 1.96 11.41 0.000731 0.039331 ENSG00000164104 HMGB2 −0.50 7.51 11.38 0.000742 0.039771 ENSG00000138411 HECW2 0.47 7.31 11.36 0.000749 0.03998 ENSG00000142627 EPHA2 0.49 7.57 11.33 0.000763 0.040464 ENSG00000258947 TUBB3 0.62 7.55 11.33 0.000761 0.040464 ENSG00000183775 KCTD16 1.30 −0.12 11.30 0.000773 0.040837 ENSG00000114948 ADAM23 0.55 5.15 11.26 0.000793 0.041703 ENSG00000114315 HES1 −0.49 5.56 11.22 0.000811 0.042315 ENSG00000138772 ANXA3 0.65 5.85 11.22 0.000808 0.042315 ENSG00000270276 HIST2H4B −1.49 −0.13 11.21 0.000813 0.042315 ENSG00000213694 S1PR3 0.71 4.78 11.16 0.000835 0.043284 ENSG00000150687 PRSS23 0.44 9.70 11.15 0.000841 0.043462 ENSG00000095303 PTGS1 0.62 4.28 11.12 0.000852 0.043854 ENSG00000146674 IGFBP3 −0.93 1.59 11.11 0.00086 0.04411 ENSG00000109436 TBC1D9 0.45 6.66 11.09 0.000868 0.044376 ENSG00000274933 TBC1D3I 3.01 −2.32 11.07 0.000879 0.044738 ENSG00000116678 LEPR −0.62 4.60 11.04 0.000893 0.044947 ENSG00000156642 NPTN −0.65 6.37 11.04 0.000892 0.044947 ENSG00000198720 ANKRD13B 0.53 4.45 11.03 0.000895 0.044947 ENSG00000228144 AC078927.1 5.57 −3.50 11.04 0.000891 0.044947 ENSG00000256966 AL513165.2 2.50 −2.24 11.01 0.000907 0.045379 ENSG00000156920 ADGRG4 3.17 −2.89 10.97 0.000926 0.046138 ENSG00000171877 FRMD5 0.66 4.15 10.92 0.00095 0.047183 ENSG00000164946 FREM1 1.21 0.17 10.87 0.000975 0.048254 ENSG00000159640 ACE −0.99 5.64 10.86 0.000982 0.048417 ENSG00000176771 NCKAP5 1.30 0.36 10.84 0.000993 0.048822 ENSG00000198513 ATL1 1.00 3.22 10.83 0.000999 0.048924 ENSG00000100234 TIMP3 −0.98 3.13 10.82 0.001006 0.049108

Table 4 lists genes differentially expressed in THSD1 knockdown HUVECs

TABLE 3 Differentially Expressed Genes in THSD1 Knockdown HBMECs Ensembl Gene Gene Symbol logEC logCPM LR PValue FDR ENSG00000117152 RGS4 −1.59 6.07 88.46 5.18E−21 7.37E−17 ENSG00000272949 AC093668.2 8.74 −0.80 64.63 9.02E−16 6.40E−12 ENSG00000283088 AC010487.3 −8.71 −0.85 60.76 6.45E−15 3.05E−11 ENSG00000136114 THSD1 −1.51 4.73 58.41 2.13E−14 7.56E−11 ENSG00000146674 IGFBP3 −2.59 2.50 54.84 1.31E−13 3.72E−10 ENSG00000284057 AP001273.2 8.19 −1.30 52.15 5.15E−13 1.22E−09 ENSG00000133101 CCNA1 −1.31 4.76 45.04 1.93E−11 3.92E−08 ENSG00000078018 MAP2 −1.31 4.98 43.56 4.11E−11 7.29E−08 ENSG00000240583 AQP1 −2.37 3.93 41.78 1.02E−10 1.61E−07 ENSG00000008517 IL32 1.06 6.45 39.73 2.92E−10 4.15E−07 ENSG00000154734 ADAMTS1 −1.55 3.82 38.76 4.78E−10 6.18E−07 ENSG00000068489 PRR11 −1.00 6.19 37.14 1.10E−09 1.30E−06 ENSG00000118777 ABCG2 −1.75 3.44 36.14 1.84E−09 1.87E−06 ENSG00000168542 COL3A1 2.68 1.64 36.27 1.72E−09 1.87E−06 ENSG00000138180 CEP55 −0.99 6.19 35.71 2.30E−09 2.17E−06 ENSG00000272414 FAM47E- 4.42 −1.05 35.52 2.52E−09 2.24E−06 STBD1 ENSG00000264187 AC055811.2 7.52 −1.89 35.39 2.70E−09 2.26E−06 ENSG00000072571 HMMR −1.09 5.70 34.95 3.39E−09 2.67E−06 ENSG00000112984 KIF20A −1.03 6.21 34.59 4.07E−09 3.05E−06 ENSG00000126787 DLGAP5 −0.96 6.86 34.15 5.09E−09 3.62E−06 ENSG00000081087 OSTM1 1.10 5.56 33.06 8.93E−09 6.04E−06 ENSG00000117399 CDC20 −1.02 6.40 32.40 1.25E−08 8.08E−06 ENSG00000100292 HMOX1 0.94 6.83 31.53 1.96E−08 1.21E−05 ENSG00000134057 CCNB1 −0.94 6.95 31.40 2.10E−08 1.24E−05 ENSG00000143228 NUF2 −1.06 5.01 30.90 2.71E−08 1.48E−05 ENSG00000166851 PLK1 −1.03 6.17 30.91 2.70E−08 1.48E−05 ENSG00000108691 CCL2 1.38 5.33 29.45 5.74E−08 2.86E−05 ENSG00000132470 ITGB4 −1.94 3.69 29.41 5.84E−08 2.86E−05 ENSG00000164104 HMGB2 −0.86 7.35 29.54 5.47E−08 2.86E−05 ENSG00000163661 PTX3 −1.01 7.71 29.11 6.85E−08 3.24E−05 ENSG00000145386 CCNA2 −1.01 6.45 29.03 7.12E−08 3.26E−05 ENSG00000142945 KIF2C −0.95 5.36 28.79 8.07E−08 3.58E−05 ENSG00000146678 IGFBP1 −2.51 0.45 28.44 9.65E−08 4.15E−05 ENSG00000137812 KNL1 −1.09 5.81 28.26 1.06E−07 4.44E−05 ENSG00000138182 KIF20B −1.01 5.81 28.10 1.15E−07 4.67E−05 ENSG00000080986 NDC80 −1.05 5.15 27.56 1.52E−07 5.90E−05 ENSG00000136928 GABBR2 −0.95 6.03 27.44 1.62E−07 5.90E−05 ENSG00000137804 NUSAP1 −0.95 6.08 27.46 1.60E−07 5.90E−05 ENSG00000273294 C1QTNF3- 7.05 −2.28 27.45 1.62E−07 5.90E−05 AMACR ENSG00000131747 TOP2A −0.97 8.09 26.97 2.07E−07 7.35E−05 ENSG00000087586 AURKA −0.86 5.67 26.90 2.14E−07 7.42E−05 ENSG00000094880 CDC23 −0.93 5.49 26.82 2.24E−07 7.43E−05 ENSG00000161888 SPC24 −1.08 4.35 26.81 2.25E−07 7.43E−05 ENSG00000066279 ASPM −1.18 6.89 26.71 2.36E−07 7.62E−05 ENSG00000198901 PRC1 −0.91 6.85 26.11 3.23E−07 0.000102 ENSG00000088325 TPX2 −0.86 7.28 25.96 3.49E−07 0.000108 ENSG00000138778 CENPE −1.03 6.40 25.44 4.58E−07 0.000136 ENSG00000140525 FANCI −0.85 5.87 25.43 4.60E−07 0.000136 ENSG00000111206 FOXM1 −0.80 6.61 25.29 4.94E−07 0.000143 ENSG00000076382 SPAG5 −0.83 5.81 25.10 5.46E−07 0.000155 ENSG00000170312 CDK1 −0.95 6.03 25.05 5.59E−07 0.000156 ENSG00000161800 RACGAP1 −0.88 5.47 24.90 6.04E−07 0.000162 ENSG00000168078 PBK −0.93 5.37 24.91 6.02E−07 0.000162 ENSG00000146072 TNFRSF21 0.88 6.42 24.77 6.45E−07 0.00017 ENSG00000134690 CDCA8 −1.05 5.25 24.59 7.11E−07 0.000184 ENSG00000148773 MKI67 −1.17 7.99 24.06 9.33E−07 0.000237 ENSG00000102575 ACP5 −3.55 2.81 24.03 9.50E−07 0.000237 ENSG00000024526 DEPDC1 −0.99 5.61 23.90 1.02E−06 0.000249 ENSG00000099937 SERPIND1 −1.85 2.87 23.80 1.07E−06 0.000258 ENSG00000276612 FP565260.2 −6.67 −2.61 23.74 1.10E−06 0.000261 ENSG00000118193 KIF14 −1.04 5.04 23.64 1.16E−06 0.000266 ENSG00000175063 UBE2C −1.03 5.18 23.65 1.16E−06 0.000266 ENSG00000123485 HJURP −0.92 4.98 23.46 1.28E−06 0.000286 ENSG00000157456 CCNB2 −0.84 5.61 23.41 1.31E−06 0.000286 ENSG00000163584 RPL22L1 −0.90 5.95 23.41 1.31E−06 0.000286 ENSG00000117724 CENPF −0.96 7.44 22.28 2.35E−06 0.000506 ENSG00000100297 MCM5 −0.86 6.30 22.12 2.56E−06 0.000535 ENSG00000105357 MYH14 4.21 −0.61 22.15 2.53E−06 0.000535 ENSG00000138160 KIF11 −0.95 6.34 22.01 2.71E−06 0.000558 ENSG00000093009 CDC45 −1.00 4.55 21.97 2.77E−06 0.000562 ENSG00000185070 FLRT2 0.76 8.29 21.87 2.92E−06 0.000584 ENSG00000116774 OLFML3 1.52 2.30 21.78 3.06E−06 0.000603 ENSG00000123689 G0S2 −1.97 2.29 21.72 3.15E−06 0.000613 ENSG00000167900 TK1 −0.76 5.68 21.56 3.43E−06 0.000655 ENSG00000184661 CDCA2 −0.93 4.87 21.54 3.46E−06 0.000655 ENSG00000013810 TACC3 −0.76 6.36 21.52 3.50E−06 0.000655 ENSG00000101057 MYBL2 −0.78 6.00 21.42 3.70E−06 0.000682 ENSG00000112742 TTK −1.03 5.14 21.29 3.95E−06 0.000719 ENSG00000163808 KIF15 −1.04 4.74 21.00 4.59E−06 0.000826 ENSG00000011426 ANLN −1.01 7.23 20.77 5.19E−06 0.00091 ENSG00000265107 GJA5 −6.45 −2.77 20.77 5.19E−06 0.00091 ENSG00000121152 NCAPH −0.96 4.79 20.73 5.28E−06 0.000915 ENSG00000114631 PODXL2 1.26 3.20 20.67 5.44E−06 0.000932 ENSG00000129173 E2F8 −1.04 4.57 20.50 5.97E−06 0.00101 ENSG00000101335 MYL9 0.82 5.36 20.46 6.10E−06 0.00102 ENSG00000164109 MAD2L1 −0.92 5.54 20.32 6.55E−06 0.001082 ENSG00000104738 MCM4 −0.92 6.63 20.27 6.74E−06 0.0011 ENSG00000169679 BUB1 −0.99 5.93 20.11 7.32E−06 0.001182 ENSG00000073111 MCM2 −0.82 5.76 19.94 7.98E−06 0.00126 ENSG00000165480 SKA3 −0.99 4.57 19.95 7.95E−06 0.00126 ENSG00000075218 GTSE1 −0.89 5.40 19.81 8.54E−06 0.001333 ENSG00000267618 AC004223.3 6.30 −2.86 19.78 8.70E−06 0.001344 ENSG00000163131 CTSS 1.44 3.29 19.60 9.54E−06 0.001458 ENSG00000089685 BIRC5 −0.77 6.29 19.52 9.98E−06 0.001508 ENSG00000178999 AURKB −0.98 4.85 19.36 1.08E−05 0.001618 ENSG00000186193 SAPCD2 −0.87 4.80 19.32 1.10E−05 0.001632 ENSG00000071539 TRIP13 −0.84 5.48 19.22 1.17E−05 0.001707 ENSG00000156504 FAM122B −0.84 4.71 19.18 1.19E−05 0.001722 ENSG00000165092 ALDH1A1 0.69 6.16 19.14 1.21E−05 0.001741 ENSG00000123975 CKS2 −0.80 5.71 19.02 1.29E−05 0.001764 ENSG00000135476 ESPL1 −0.97 4.76 19.09 1.25E−05 0.001764 ENSG00000173597 SULT1B1 −0.97 7.01 19.02 1.29E−05 0.001764 ENSG00000189431 RASSF10 −3.28 −1.94 19.03 1.29E−05 0.001764 ENSG00000237649 KIFC1 −0.93 5.31 19.05 1.27E−05 0.001764 ENSG00000122966 CIT −0.81 5.46 18.93 1.36E−05 0.001836 ENSG00000117650 NEK2 −0.85 4.48 18.90 1.38E−05 0.001846 ENSG00000100526 CDKN3 −0.93 4.10 18.77 1.47E−05 0.001954 ENSG00000156970 BUB1B −0.93 5.84 18.68 1.55E−05 0.002039 ENSG00000284041 AC073111.3 −6.19 −2.96 18.66 1.57E−05 0.002041 ENSG00000115163 CENPA −1.06 3.87 18.25 1.94E−05 0.002507 ENSG00000269891 ARHGAPI9- 6.14 −2.97 18.05 2.15E−05 0.002751 SLIT1 ENSG00000065328 MCM10 −1.01 4.18 17.99 2.22E−05 0.002822 ENSG00000125378 BMP4 0.74 6.11 17.97 2.25E−05 0.002823 ENSG00000079616 KIF22 −0.75 5.65 17.89 2.35E−05 0.002915 ENSG00000151640 DPYSL4 0.98 4.09 17.87 2.36E−05 0.002915 ENSG00000053747 LAMA3 −0.87 4.23 17.67 2.62E−05 0.003214 ENSG00000154175 ABI3BP −0.84 5.18 17.65 2.65E−05 0.003219 ENSG00000183856 IQGAP3 −0.81 5.10 17.63 2.68E−05 0.003226 ENSG00000198826 ARHGAP11A −0.92 6.08 17.48 2.91E−05 0.003475 ENSG00000228716 DHFR −0.74 6.16 17.44 2.97E−05 0.003512 ENSG00000076003 MCM6 −0.84 6.10 17.39 3.05E−05 0.003576 ENSG00000173166 RAPH1 −0.94 5.58 17.28 3.22E−05 0.003754 ENSG00000123473 STIL −0.90 4.92 17.23 3.31E−05 0.003819 ENSG00000117595 IRF6 1.52 3.34 17.10 3.55E−05 0.004062 ENSG00000146918 NCAPG2 −0.77 5.94 17.06 3.63E−05 0.004089 ENSG00000164647 STEAP1 −0.83 5.07 17.07 3.61E−05 0.004089 ENSG00000196878 LAMB3 −0.85 4.47 17.03 3.67E−05 0.004108 ENSG00000171241 SHCBP1 −0.86 5.58 17.01 3.72E−05 0.004126 ENSG00000150630 VEGFC −0.96 4.78 16.89 3.95E−05 0.004353 ENSG00000090889 KIF4A −0.77 5.75 16.62 4.56E−05 0.004974 ENSG00000121621 KIF18A −0.92 4.27 16.61 4.59E−05 0.004974 ENSG00000101447 FAM83D −0.88 5.40 16.54 4.77E−05 0.005136 ENSG00000169604 ANTXR1 1.03 4.62 16.47 4.93E−05 0.005267 ENSG00000096060 FKBP5 −0.68 6.90 16.31 5.38E−05 0.005672 ENSG00000167434 CA4 −4.19 −2.69 16.31 5.39E−05 0.005672 ENSG00000163092 XIRP2 1.93 1.44 16.29 5.43E−05 0.005675 ENSG00000104147 OIP5 −1.14 2.91 16.25 5.56E−05 0.005762 ENSG00000119403 PHF19 −0.64 6.01 16.19 5.74E−05 0.005868 ENSG00000211448 DIO2 1.64 0.55 16.20 5.71E−05 0.005868 ENSG00000185432 METTL7A −0.90 5.20 16.11 5.99E−05 0.006078 ENSG00000105499 PLA2G4C 1.03 3.47 16.09 6.05E−05 0.006091 ENSG00000139734 DIAPH3 −0.80 5.47 16.01 6.30E−05 0.0063 ENSG00000163453 IGFBP7 0.68 7.65 15.92 6.60E−05 0.006561 ENSG00000140416 TPM1 0.64 8.27 15.87 6.77E−05 0.006677 ENSG00000109805 NCAPG −0.77 6.26 15.73 7.30E−05 0.007153 ENSG00000137807 KIF23 −0.78 5.95 15.66 7.59E−05 0.007335 ENSG00000179195 ZNF664 −0.88 6.90 15.66 7.58E−05 0.007335 ENSG00000144554 FANCD2 −0.87 4.59 15.57 7.95E−05 0.007632 ENSG00000101003 GINS1 −0.83 4.79 15.51 8.19E−05 0.007811 ENSG00000137310 TCF19 −0.81 4.92 15.35 8.92E−05 0.008445 ENSG00000115008 IL1A 1.97 0.90 15.32 9.06E−05 0.008525 ENSG00000163751 CPA3 1.34 1.70 15.30 9.18E−05 0.008576 ENSG00000197632 SERPINB2 −1.60 3.06 15.21 9.61E−05 0.008924 ENSG00000133119 RFC3 −0.80 4.52 15.16 9.87E−05 0.009103 ENSG00000140545 MFGE8 0.73 5.90 15.12 0.00010086 0.009244 ENSG00000101188 NTSR1 −1.16 2.79 15.08 0.00010312 0.009391 ENSG00000171848 RRM2 −1.18 6.87 15.06 0.00010394 0.009404 ENSG00000185480 PARPBP −0.79 4.44 15.05 0.00010467 0.009411 ENSG00000140675 SLC5A2 4.89 −2.99 14.82 0.00011808 0.010484 ENSG00000151725 CENPU −0.74 4.67 14.83 0.00011777 0.010484 ENSG00000168243 GNG4 2.60 −1.74 14.78 0.00012062 0.010643 ENSG00000173207 CKS1B −0.73 5.38 14.77 0.0001214 0.010646 ENSG00000010292 NCAPD2 −0.62 7.04 14.64 0.00012988 0.011319 ENSG00000173281 PPP1R3B 0.64 6.98 14.61 0.0001319 0.011425 ENSG00000164611 PTTG1 −0.64 5.60 14.58 0.00013445 0.011569 ENSG00000167261 DPEP2 2.79 −2.01 14.57 0.00013518 0.011569 ENSG00000184445 KNTC1 −0.70 5.37 14.55 0.00013641 0.011604 ENSG00000012048 BRCA1 −0.90 4.77 14.49 0.00014056 0.011791 ENSG00000092853 CLSPN −0.87 4.95 14.49 0.0001411 0.011791 ENSG00000203668 CHML −0.70 5.13 14.49 0.00014087 0.011791 ENSG00000101868 POLAI −0.84 4.68 14.45 0.00014375 0.011893 ENSG00000122694 GLIPR2 0.70 5.12 14.45 0.000144 0.011893 ENSG00000149591 TAGLN 1.24 1.91 14.37 0.00015051 0.012359 ENSG00000280537 AC068946.1 2.14 −1.15 14.35 0.00015184 0.012397 ENSG00000105011 ASF1B −0.91 4.72 14.28 0.00015721 0.012762 ENSG00000105889 STEAP1B −0.83 4.64 14.20 0.00016442 0.013271 ENSG00000124721 DNAH8 1.61 3.82 14.17 0.00016717 0.013341 ENSG00000130816 DNMT1 −0.60 7.04 14.17 0.00016671 0.013341 ENSG00000162645 GBP2 0.60 6.15 14.14 0.00016943 0.013447 ENSG00000058804 NDC1 −0.71 5.97 14.03 0.00018026 0.014227 ENSG00000145604 SKP2 −0.67 5.33 14.00 0.0001825 0.014324 ENSG00000123219 CENPK −0.71 4.81 13.98 0.00018513 0.014341 ENSG00000136824 SMC2 −0.81 6.08 13.97 0.00018575 0.014341 ENSG00000188517 COL25A1 2.38 −1.61 13.97 0.00018564 0.014341 ENSG00000107984 DKK1 −0.63 5.85 13.95 0.00018762 0.01437 ENSG00000204262 COL5A2 0.61 8.73 13.95 0.00018814 0.01437 ENSG00000162063 CCNF −0.67 5.31 13.89 0.00019352 0.014701 ENSG00000258064 AC073612.1 −6.56 −2.69 13.76 0.00020816 0.01573 ENSG00000120802 TMPO −0.66 7.44 13.64 0.00022161 0.016569 ENSG00000163507 CIP2A −0.82 5.14 13.64 0.0002212 0.016569 ENSG00000186185 KIF18B −0.86 4.35 13.61 0.00022501 0.016735 ENSG00000149503 INCENP −0.86 5.22 13.41 0.00025051 0.018535 ENSG00000167601 AXL −0.55 7.33 13.28 0.00026806 0.019731 ENSG00000139618 BRCA2 −0.91 4.49 13.19 0.00028185 0.020639 ENSG00000163554 SPTA1 2.18 −0.67 13.16 0.00028663 0.020881 ENSG00000100311 PDGFB 0.82 6.70 13.08 0.00029782 0.021586 ENSG00000106069 CHN2 0.94 3.27 12.98 0.00031547 0.022542 ENSG00000239389 PCDHA13 6.39 −2.80 12.99 0.00031302 0.022542 ENSG00000258947 TUBB3 0.59 7.10 12.97 0.00031577 0.022542 ENSG00000144354 CDCA7 −0.74 4.99 12.94 0.0003212 0.022815 ENSG00000123080 CDKN2C −0.81 4.00 12.93 0.00032414 0.022909 ENSG00000103489 XYLT1 1.13 2.69 12.83 0.00034094 0.023859 ENSG00000178538 CA8 −1.71 0.71 12.83 0.00034088 0.023859 ENSG00000163535 SGO2 −0.80 5.30 12.81 0.00034481 0.024012 ENSG00000133110 POSTN −1.11 3.05 12.78 0.00035075 0.024306 ENSG00000035499 DEPDC1B −0.85 4.24 12.75 0.00035616 0.024325 ENSG00000150540 HNMT 0.80 4.05 12.75 0.0003557 0.024325 ENSG00000176890 TYMS −0.61 6.99 12.75 0.00035522 0.024325 ENSG00000261459 AC002310.5 −6.20 −2.95 12.71 0.00036311 0.024681 ENSG00000117593 DARS2 −0.67 5.54 12.68 0.00036955 0.024999 ENSG00000111341 MGP −0.57 6.67 12.65 0.00037599 0.025314 ENSG00000058085 LAMC2 0.75 4.73 12.57 0.00039222 0.026282 ENSG00000103257 SLC7A5 −0.71 4.74 12.49 0.00040895 0.027275 ENSG00000214357 NEURL1B −1.41 0.86 12.46 0.0004151 0.027556 ENSG00000258555 SPECC1L- 6.16 −2.96 12.37 0.00043612 0.028683 ADORA2A ENSG00000268643 AC006486.1 −6.10 −3.02 12.37 0.00043584 0.028683 ENSG00000186871 ERCC6L −0.97 3.80 12.31 0.00045156 0.029562 ENSG00000128944 KNSTRN −0.64 5.27 12.26 0.00046273 0.029611 ENSG00000134222 PSRC1 −0.89 3.87 12.28 0.00045803 0.029611 ENSG00000142731 PLK4 −0.89 4.91 12.27 0.00046122 0.029611 ENSG00000147536 GINS4 −0.85 4.14 12.28 0.00045741 0.029611 ENSG00000267022 AC067968.1 −2.73 −1.12 12.26 0.00046177 0.029611 ENSG00000155093 PTPRN2 1.40 0.73 12.23 0.00047029 0.029846 ENSG00000188229 TUBB4B −0.69 8.39 12.23 0.00047061 0.029846 ENSG00000215252 GOLGA8B 0.68 4.46 12.21 0.00047536 0.030013 ENSG00000149573 MPZL2 −0.67 5.40 12.20 0.00047877 0.030095 ENSG00000129195 PIMREG −0.79 4.07 12.18 0.00048388 0.030282 ENSG00000152104 PTPN14 −0.60 7.17 12.16 0.00048777 0.030391 ENSG00000197457 STMN3 2.81 3.31 12.14 0.00049373 0.030629 ENSG00000168874 ATOH8 0.84 3.70 12.13 0.00049593 0.030631 ENSG00000255073 ZFP91-CNTF −5.43 −3.45 12.10 0.00050547 0.031085 ENSG00000188486 H2AFX −0.63 6.27 12.02 0.00052646 0.032209 ENSG00000213297 ZNF625-ZNF20 1.41 0.93 12.01 0.00052828 0.032209 ENSG00000102007 PLP2 −0.55 6.27 11.97 0.00053967 0.032496 ENSG00000135842 FAM129A −1.02 3.29 11.97 0.00053985 0.032496 ENSG00000168843 FSTL5 1.09 3.04 11.98 0.00053834 0.032496 ENSG00000178878 APOLD1 −0.89 3.58 11.94 0.00055082 0.033017 ENSG00000113368 LMNB1 −0.66 6.70 11.92 0.00055512 0.033135 ENSG00000137473 TTC29 1.72 −0.20 11.88 0.0005664 0.033666 ENSG00000148848 ADAM12 1.25 1.79 11.86 0.00057272 0.0339 ENSG00000114346 ECT2 −0.68 5.97 11.84 0.00058063 0.034226 ENSG00000196739 COL27A1 0.57 5.97 11.77 0.00060245 0.03522 ENSG00000258677 AC022826.2 −1.79 −0.91 11.77 0.00060175 0.03522 ENSG00000129810 SGO1 −0.89 3.52 11.75 0.00060846 0.035425 ENSG00000198830 HMGN2 −0.53 8.42 11.73 0.00061337 0.035566 ENSG00000174371 EXO1 −0.93 3.73 11.69 0.00062871 0.036307 ENSG00000127564 PKMYT1 −0.90 3.52 11.66 0.00063706 0.03664 ENSG00000100368 CSF2RB 0.55 5.77 11.64 0.00064394 0.036738 ENSG00000135451 TROAP −0.73 4.10 11.64 0.00064385 0.036738 ENSG00000092470 WDR76 −0.72 4.40 11.60 0.00065967 0.037485 ENSG00000143401 ANP32E −0.56 6.78 11.58 0.00066731 0.037768 ENSG00000257411 AC034102.2 1.93 0.75 11.54 0.0006809 0.038384 ENSG00000146670 CDCA5 −0.72 5.02 11.50 0.00069768 0.039175 ENSG00000167325 RRM1 −0.57 6.89 11.47 0.00070846 0.039623 ENSG00000152253 SPC25 −0.89 3.82 11.46 0.00071221 0.039677 ENSG00000122952 ZWINT −0.71 5.53 11.43 0.00072353 0.04015 ENSG00000121966 CXCR4 1.02 5.44 11.40 0.00073256 0.040493 ENSG00000101224 CDC25B −0.56 6.33 11.38 0.00074161 0.040707 ENSG00000136490 LIMD2 0.60 5.23 11.38 0.00074216 0.040707 ENSG00000127528 KLF2 −0.82 4.46 11.35 0.00075267 0.041125 ENSG00000151388 ADAMTS12 0.85 3.45 11.34 0.00075879 0.041163 ENSG00000154839 SKA1 −0.87 4.20 11.34 0.00075917 0.041163 ENSG00000119969 HELLS −0.65 4.77 11.30 0.00077592 0.041911 ENSG00000108055 SMC3 −0.53 6.68 11.28 0.00078172 0.042065 ENSG00000125695 AC046185.1 5.80 −3.20 11.24 0.00079891 0.042828 ENSG00000146411 SLC2A12 1.26 2.09 11.23 0.00080506 0.042888 ENSG00000159167 STC1 −0.93 4.54 11.23 0.00080607 0.042888 ENSG00000181634 TNFSF15 0.78 5.81 11.19 0.00082212 0.043579 ENSG00000111665 CDCA3 −0.78 3.97 11.16 0.00083518 0.044106 ENSG00000067141 NEO1 −2.49 −2.06 11.10 0.00086297 0.045237 ENSG00000099282 TSPAN15 0.66 6.21 11.10 0.00086289 0.045237 ENSG00000120256 LRP11 0.57 5.86 10.97 0.00092765 0.048365 ENSG00000145990 GFOD1 −0.59 5.47 10.96 0.00093285 0.048365 ENSG00000166250 CLMP −1.02 2.47 10.96 0.00093028 0.048365 ENSG00000072501 SMC1A −0.59 6.94 10.94 0.00093894 0.048504 ENSG00000112378 PERP −0.59 7.18 10.92 0.00095053 0.048925 ENSG00000077152 UBE2T −0.67 4.49 10.90 0.00096365 0.049243 ENSG00000198553 KCNRG 1.57 −0.55 10.90 0.00096042 0.049243 ENSG00000120337 TNFSF18 0.87 4.84 10.87 0.00097964 0.049881

Bioinformatic analyses highlighted a potential role for the TGFβ Signaling pathway, and other pathways, in the pathology of IA. We evaluated the potential link to the TGFβ signaling pathway below.

EXAMPLE 2: THSD1 as a Novel Endothelial-Specific, Type III Co-Receptor for TGFβ Signaling Pathway

THSD1 is required for TGFβ signaling in endothelial cells

Intracranial aneurysm (IA) is a weakened area in the wall of cerebral artery that leads to a bulging in a brain blood vessel. See, e.g., FIG. 2. The rupture of IA causes aneurysmal subarachnoid hemorrhage (SAH), a devastating form of stroke. More than 30% will die due to SAH and more than half of survivors will never return to independent living. Unfortunately, there are no treatments for IA except open or endovascular surgery. Attempts to find new therapeutic avenues are greatly hindered by the lack of knowledge of the gene(s) and pathways responsible for IA development and growth.

TGFβ is a polypeptide that plays diverse roles in cell proliferation and differentiation, apoptosis, and extracellular matrix formation. TGFβ transduces its signals via types I and II receptors, encoded by TGFBR1 and TGFBR2. The ligand-bound type-II receptor phosphorylates the glycine/serine-rich domain of the type-I receptor, which activates signal transduction. The gene that is responsible for most cases of Marfan syndrome which increases the risk for IA, the FBN1 gene encoding fibrillin-1, is required for effective TGFβ activation. The expression of genes normally stimulated by TGFβ, such as collagen and connective tissue growth factor, was upregulated in tissue of Loeys-Dietz syndrome patients who are more predisposed to IA disease. Furthermore, aneurysms that develop in an accepted mouse model of MFS (fbn1C139G/+) are associated with increased TGFβ signaling and can be prevented by TGFβ antagonists.

The present disclosure considered that the IA-causing gene THSD1 positively regulates TGFβ signaling. This raises a novel concept that IA disease can be contributed to by downregulation of TGFβ signaling, which is in contrast to the existing fibrillin hypothesis in which upregulation of TGFβ signaling plays a pathogenic role in IA development.

Materials and Methods

Cell Culture

HEK293T cells were maintained in DMEM medium (Corning, 10-013-CV) containing 10% fetal bovine serum (Invitrogen, 10082147), 100 IU penicillin, and 100 μg/ml streptomycin. Transfections of small interfering RNAs and plasmid DNA were performed using lipofectamine 2000 (Life Technologies, 11668027) according to the manufacturer's instructions. Alternatively, for cells such as endothelial cells that are hard to transfect, we will utilize lentiviral system to generate stable cell lines.

Western Bot

Cells were lysed in 1% Triton lysis buffer and sonicated briefly before centrifuged at 18506 g for 30 min at 4° C. Total cell lysates were added by 2X SDS sample buffer and then subjected to discontinuous SDS-PAGE analysis. Proteins were transferred to nitro-cellulose membranes using a Bio-Rad (Hercules, Calif.) mini transfer apparatus followed by blocking with 5% nonfat milk. Primary antibodies and secondary antibodies were used usually at 1:1000 and 1:10000 dilutions respectively before using an Odyssey system to detect the fluorescence signal.

TGFβ Signaling

FIG. 3 is a drawing depicting a representative model of the TGFβ pathway. As shown in FIG. 3, TGFβ ligand binds to TGFβ receptor II, and then TGFβ receptor binds to ALK5 (TGFβ receptor I) which can in turn phosphorylate Smad2 or 3. phosphorylated Smad2/3 interact with co-Smad Smad4, and translocate into nuclear for activating TGFβ pathway downstream genes. As depicted in FIG. 3, it is possible to monitor the phosphorylation level of Smad2 or Samd3 as a reporter for TGFβ signaling activity.

Gain-of-function of THSD1 promotes TGFβ signaling

To further investigate a potential role for the TGFβ Signaling pathway in the pathology of aneurysms, specifically IA, we treated HEK293T cells with TGFβ1 in different time points. As shown in FIG. 4a, TGFβ gradually increases p-Smad2 and reaches to plateau at 60 mins. Next, we overexpressed all different tagged THSD1 together with non-tagged THSD1 in HEK293T, and we found that all of them further increases TGFβ signaling (FIG. 4b).

Loss-of-function of THSD1 inhibits TGFβ signaling

To further investigate a potential role for the TGFβ Signaling pathway in the pathology of aneurysms, specifically IA, we also tested TGFβ treatment in different endothelial cells including HBMEC and HUVEC. HBMEC is a primary brain endothelial cells and HUVEC is primary umbilical vein endothelial cells. As shown in FIG. 5a, TGFβ treatment induces p-Smad2 to the maximum level around 40 mins. Next, as shown in FIG. 5b, we knockdown THSD1 in HBMEC with or without TGFβ treatment. THSD1 knockdown can block TGFβ signaling. As shown in FIG. 5c, TGFβ treatment induces p-Smad2 to highest level around 40 mins. As shown in FIG. 5d, knockdown of THSD1 block TGFβ signaling.

These data suggest that THSD1 is required for TGFβ signaling in endothelial cells.

EXAMPLE 3: THSD1 is Specifically Required for TGFβ Signaling in Endothelial Cells, but Knockdown of THSD1 has No Effects on Activin Induced Phosphorylation of Samd2

To evaluate the specificity of the requirement for THSD1 for TGFβ signaling in endothelial cells we also tested Activin treatment. As shown in FIG. 6a, in HBMEC cells, around 40 mins, p-smad2 reaches to the highest level. However, knockdown of THSD1 has no effect on activin signaling-induced p-Smad2, as shown in FIG. 6b. These data suggest that although both TGFβ and activin activates smad2/3-mediated signaling, THSD1 only engages in TGFβ but not activin signaling. FIG. 7 is a schematic illustrating that THSD1 has a thrombospondin domain (TSP1) that interacts with mature TGFβ ligand.

EXAMPLE 3: Loss of Function of THSD1 Promotes IA Formation in Circle of Willis in Mice

In-vivo mammalian model

To interrogate the consequence of Thsd1 loss in mammals, we used the Thsd1 knockout mouse that contains a knockin of a fluorescent Venus reporter. Thsd1Venus/+ and Thsd1Venus/Venus mice survived to weaning age in expected Mendelian ratios. However, brain magnetic resonance imaging revealed mild to severe dilatation of cerebral ventricles, consistent with hydrocephalus in a subset of mutant mice as young as 8 weeks (not shown here, previously reported). Mecanistically, the knock-in cassette containing a Venus reporter and a Neo resistant gene with poly-A sequence was inserted right after the first start codon of Thsd1, the splicing between exon 2 and exon 3 of thsd1 was interrupted, leading to the early termination of thsd1 transcription and translation. FIG. 7 illustrates that loss-of-function of Thsd1 promotes IA formation in circle of Willis in mice. FIG. 7 shows that IAs were visualized by Microfil including a PCA (top), a left Pcom (middle), and a right ICA (bottom) as indicated by arrows. n=10.

Materials and Methods

MicroFil® injection in mice

MICROFIL® compounds will fill and opacify microvascular and other spaces of non-surviving animals and postmortem tissue under physiological injection pressure. The continuous, closed vascular system tends itself to flow through injection or perfusion techniques. Following injection, MICROFIL® compounds cure to form a three dimensional cast of the vasculature.

Prepare MicroFil® (Flow Tech, Inc. Carver, Mass.) casting solution according to the manufacturer's instruction: Mix 5 ml of MV diluent with 4 ml of filtered MV-112 compound (yellow). Add 450 μl (5%) of catalyst (MV curing agent). Use 10 ml syringe to inject MicroFil® mixture into the left ventricle after the blood was flushed out by saline. Inject MicroFil® mixture slowly into the left ventricle at approximately 3 ml/min.

Thsd1Venus/+ and Thsd1Venus/Venus mice survived to weaning age in expected Mendelian ratios. However, brain magnetic resonance imaging revealed mild to severe dilatation of cerebral ventricles, consistent with hydrocephalus in a subset of mutant mice as young as 8 weeks (not shown here, previously reported). FIG. 8 illustrates that loss-of-function of Thsd1 promotes IA formation in circle of Willis in mice. FIG. 8 shows that IAs were visualized by Microfil® including a PCA (top), a left Pcom (middle), and a right ICA (bottom) as indicated by arrows. n=10.

EXAMPLE 4: TGFβ Ligand and TGFβ Signaling Activators Conjugated to Platinum Coils

A microcatheter for delivering the metal coil conjugated to the TGFβ ligand or the TGFβ signaling activator is navigated to the location of aneurysm and partially inserted into the aneurysm cavity. The metal coil can be substantially similar to the metal coil prototype conjugated to a TGFβ activator illustrated in FIG. 9. The required length of the coil is calculated before embolization by a suitable system, such as the AngioSuite software when 30%-40% packing density was simulated. The calculated coil length was referred during coiling to ensure that the used length did not exceed the simulated length. After one or more metal coils are released to fill the aneurysmal cavity, a stent is partially released to prevent coil protrusion into the parent artery. Stent is completely released after the coil deployment is discontinued and the coil is isolated. Afterwards, the coil pusher is secured and the microcatheter is slightly withdrawn. This delivers the metal coil conjugated to the TGFβ ligand or the TGFβ signaling activator into the aneurysm.

While this invention is satisfied by embodiments in many different forms, as described in detail in connection with preferred embodiments of the invention, it is understood that the present disclosure is to be considered as exemplary of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated and described herein. Numerous variations may be made by persons skilled in the art without departure from the spirit of the invention. The scope of the invention will be measured by the appended claims and their equivalents. The abstract and the title are not to be construed as limiting the scope of the present invention, as their purpose is to enable the appropriate authorities, as well as the general public, to quickly determine the general nature of the invention. In the claims that follow, unless the term “means” is used, none of the features or elements recited therein should be construed as means-plus-function limitations pursuant to 35 U.S.C. § 112, 6.

Claims

1. A metal coil conjugated to a TGFβ activator configured for use in an endovascular coiling procedure.

2. The metal coil of claim 1, wherein the TGFβ activator is a TGFβ ligand.

3. The metal coil of claim 3, wherein the TGFβ ligand is selected from the group consisting of TGF-β1, TGF-β2, TGF-β3.

4. The metal coil of claim 1, wherein the TGFβ activator is a TGFβ signaling activator.

5. The metal coil of claim 4, wherein the TGFβ signaling activator is selected from the group consisting of Plasmin, MMP2, MMP9, Thrombospondin-1.

6. The metal coil of claim 1, wherein a metal in the metal coil is selected from the group consisting of platinum, tungsten, titanium, silver, stainless steel, zirconium, or an alloy thereof.

7. The metal coil of claim 7, wherein the metal in the metal coil is platinum.

8. The metal coil of claim 1, wherein the metal coil has a thicknesses ranging from 0.005 mm to 1.0 mm.

9. The metal coil of claim 1, wherein the metal coil has a width ranging from 0.01 mm to 1.0 mm.

10. The metal coil of claim 1, wherein the metal coil is used to treat a subject at risk of suffering from an aneurysm.

11. The metal coil of claim 1, wherein the aneurysm is an intracranial aneurysm.

12. The metal coil of claim 1, wherein the aneurysm is an aortic aneurysm.

13. The metal coil of claim 1, wherein the subject carries a variant affecting the expression of a Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

14. The metal coil of claim 13, wherein the variant is in a coding region of the Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

15. The metal coil of claim 13, wherein the variant is in a control sequence of a non-coding region of the Thrombospondin Type 1 Domain Containing 1 (THSD1) gene.

16. The metal coil of claim 13, wherein the variant in the THSD1 gene is a single codon substitution in at least one THSD1 allele.

17. The metal coil of claim 13, wherein the single codon substitution is LSF, R460W, E466G, G600E, P639L, T6531, or S775P.

18. The metal coil of claim 1, wherein the subject is a human.

19. A method for treating a subject at risk of suffering from an aneurysm comprised of inserting into the subject a catheter for delivering a metal coil conjugated to a TGFβ activator according to claim 1 for use in an endovascular coiling procedure.

20. The method of claim 19, further comprising calculating an estimate of an aneurysm volume prior to inserting into the subject the catheter.

Patent History
Publication number: 20230212246
Type: Application
Filed: May 25, 2022
Publication Date: Jul 6, 2023
Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM (Austin, TX)
Inventors: Dong H. Kim (Houston, TX), Zhen Xu (Houston, TX), Yanning Rui (Houston, TX), John Hagan (Houston, TX)
Application Number: 17/824,641
Classifications
International Classification: C07K 14/495 (20060101); A61B 17/12 (20060101);