Blood component processing system, apparatus, and method

- Gambro, Inc.

A system and method are used in connection with processing of blood components. The processing of blood components may involve centrifugal separation and/or filtering of the blood components. In some examples, at least some blood components are centrifugally separated in a chamber and then filtered via a filter rotating along with a centrifuge rotor, wherein the filter is located closer than the chamber to an axis of rotation of the rotor. The filter may include a porous filtration medium configured to filter leukocytes, platelets, and/or red blood cells. Some examples include a pressure sensor sensing pressure of pumped blood components. The sensed pressure may be used in connection with controlling the pumping of the blood products and/or in connection with determining the location of an interface associated with the blood products. Other uses of the sensed pressure are also possible.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application claims the benefit of priority under 35 U.S.C. § 119(e) of the following U.S. provisional patent applications: No. 60/373,083, filed Apr. 16, 2002, and No. 60/405,667, filed Aug. 23, 2002.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a system, apparatus, and method for processing components of blood. In particular, some aspects of the invention relate to processing blood components through the use of centrifugal separation, filtration, and/or any other form of processing.

2. Description of the Related Art

Whole blood consists of various liquid components and particle components. The liquid portion of blood is largely made up of plasma, and the particle components include red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). While these constituents have similar densities, their average density relationship, in order of decreasing density, is as follows: red blood cells, white blood cells, platelets, and plasma. In terms of size, the particle constituents are related, in order of decreasing size, as follows: white blood cells, red blood cells, and platelets. Most current separation devices rely on density and size differences or surface chemistry characteristics to separate blood components.

Separation of certain blood components is often required for certain therapeutic treatments involving infusion of particular blood components into a patient. For example, in a number of treatments involving infusion of platelets, there is sometimes a desire to separate out at least some leukocytes and/or red blood cells before infusing a platelet-rich blood component collection into a patient.

For these and other reasons, there is a need to adopt approaches to processing components of blood.

SUMMARY

In the following description, certain aspects and embodiments of the present invention will become evident. It should be understood that the invention, in its broadest sense, could be practiced without having one or more features of these aspects and embodiments. It should also be understood that these aspects and embodiments are merely exemplary.

One aspect of the invention relates to a system for processing blood components. The system may comprise a separation chamber including a chamber interior in which blood components are centrifugally separated and an outlet port for passing at least some centrifugally separated blood components from the chamber interior. A flow path may be in flow communication with the outlet port of the separation chamber. The apparatus may further comprise a filter including a filter inlet in flow communication with the flow path, a porous filtration medium configured to filter at least some of at least one blood component (e.g., leukocytes, platelets, and/or red blood cells) from centrifugally separated blood components passed to the filter via the flow path, and a filter outlet for filtered blood components. The system may further comprise a rotor configured to be rotated about an axis of rotation. The rotor may comprise a first portion configured to receive the separation chamber and a second portion configured to receive the filter, wherein the first and second portions may be positioned with respect to one another so that when the separation chamber is received in the first portion and the filter is received in the second portion, the filter is closer than the interior of the separation chamber to the axis of rotation. The system may be configured so that the rotor rotates during filtering of at least one blood component via the filter.

In another aspect, the system may be configured so that when the filter is received in the second portion, the filter is eccentric with respect to the axis of rotation. For example, the system may be configured so that the filter is at least close to the axis of rotation (i.e., close to the axis of rotation or intersecting the axis of rotation at least partially) and so that the axis of rotation does not intersect an interior flow path defined by the filter. In some examples, when the filter is received in the second portion, the filter may be offset from the axis of rotation so that the axis of rotation does not intersect the filter. In some examples, the filter is eccentrically positioned so that blood components exit a housing of the filter (and/or enter the filter itself) at a location that is at least close to the rotor's axis of rotation, as compared to the location where the blood components enter the filter housing (and/or where the blood components exit the filter itself).

In a further aspect, the system may be configured so that when the filter is received in the second portion, a filter housing outflow port is located closer than a filter housing inflow port and/or the porous filtration medium to the axis of rotation. In another aspect, the filter housing outflow port may be above the filter housing inflow port.

In an additional aspect, the filter may comprise a filter housing defining an interior space containing the porous filtration medium, wherein the filter inlet and filter outlet may be in flow communication with the interior space, and wherein the system may be configured so that when the filter is received in the second portion, the filter is positioned so that blood components flow in the interior space in a direction facing generally toward the axis of rotation. In some examples, the filter housing defines a filter housing inflow port for passing blood components to the interior space and a filter housing outflow port for passing blood components from the interior space. The system may be configured so that when the filter is received in the second portion, the filter housing outflow port is closer than the filter housing inflow port (and/or the porous filtration medium) to the axis of rotation. In an exemplary arrangement, the filter housing outflow port is above the filter housing inflow port.

In a further aspect, the second portion may comprise at least one of a ledge and a slot configured to receive the filter, the at least one of a ledge and a slot being positioned under a top surface of the rotor. Alternatively (or additionally), the rotor may comprise a holder configured to hold the filter with respect to the rotor.

There are many possible arrangements for the flow path. In some examples, the flow path may include tubing. For example, the flow path may include a first tubing portion having one end coupled to the outlet port of the separation chamber and another end coupled to the filter inlet. In addition, the apparatus may also include a second tubing portion having an end coupled to the filter outlet, wherein the second tubing portion extends in a direction facing generally away from the axis of rotation. Further, the system may include a third tubing portion downstream from the second tubing portion, wherein the third tubing portion extends in a direction facing generally toward the axis of rotation.

In one more aspect, the rotor may comprise a groove configured to receive at least some of the tubing (e.g., at least some of the second and third tubing portions).

One other aspect relates to an apparatus for use with a centrifuge for processing blood components. The apparatus could be configured in a number of different ways. According to one aspect, the apparatus may comprise the separation chamber, the flow path, and the filter. In some embodiments, the apparatus is configured to be disposed after being used for processing of blood components.

In some embodiments, the rotor's axis of rotation may extend through the second portion of the rotor.

In another aspect, the system may comprise at least one valving member on the centrifuge rotor, the valving member being configured to control flow of at least some of the blood components during rotation of the rotor. In some examples, the valving member may comprise a tubing clamp.

In a further aspect, the system may comprise at least one sealing member on the centrifuge rotor, the sealing member being configured to create a seal during rotation of the rotor. For example, the sealing member may comprise a tubing welder.

In one further aspect, the rotor may comprise at least one support member configured to support the chamber, wherein the at least one support member may comprise a guide groove configured to receive a portion of the tubing line and a controllable clamp and/or welder associated with the groove. For example, the clamp may be configured to controllably occlude flow of blood components through the tubing line. In some examples, the chamber may comprise at least one guide hole configured to receive the at least one support member.

In some embodiments, the rotor may comprise a plurality of support members located in an asymmetric fashion with respect to the axis of rotation, and the chamber may comprise a plurality of guide holes, each of the guide holes being configured to receive a respective one of the support members.

According to another aspect, the system may further comprise a pump configured to pump at least some blood components from the chamber. The system may also comprise a pressure sensor configured to sense pressure of the pumped blood components, wherein the system may be configured to control the pump based on at least the pressure sensed by the pressure sensor.

A further aspect relates to a system comprising a chamber (e.g., a blood separation chamber) that may comprise an interior configured to contain separated blood components, and an outlet port for passing at least some of the separated blood components from the interior. A flow path may be in flow communication with the outlet port of the chamber. The system may further comprise a filter comprising a filter inlet in flow communication with the flow path, a porous filtration medium configured to filter at least some of at least one blood component from separated blood components passed to the filter via the flow path, and a filter outlet for filtered blood components. In addition, the system may also comprise a pump configured to pump at least some of the separated blood components from the chamber to the filter via the flow path, and a pressure sensor configured to sense pressure of blood components pumped to the filter. The system may be configured to control the pump based on at least the pressure sensed by the pressure sensor.

In some embodiments, the pump may comprise a portion of a centrifuge and/or at least a portion of a blood component expressor.

According to another aspect, the system may be configured such that the system calculates a difference between pressures sensed by the pressure sensor in at least one time interval, determines when the calculated difference is at least a predetermined amount, and controls the pump in response to at least the determination that the calculated difference is at least the predetermined amount.

In yet another aspect, there is a system that may comprises a separation chamber comprising a chamber interior in which blood components are centrifugally separated, and an outlet port for passing at least some of the centrifugally separated blood components from the chamber interior. A flow path may be in flow communication with the outlet port of the separation chamber. The system also may comprise a pump configured to pump at least some of the centrifugally separated blood components from the chamber and through the flow path, and a pressure sensor configured to sense pressure of blood components pumped by the pump. In addition, the system may comprise a centrifuge rotor configured to be rotated about an axis of rotation, the rotor comprising a portion configured to receive the separation chamber. The system may be configured such that the system calculates a difference between pressures sensed by the pressure sensor in at least one time interval, determines when the calculated difference is at least a predetermined amount, and controls the pump in response to at least the determination that the calculated difference is at least the predetermined amount.

Many different types of chambers are possible. In some embodiments, the chamber may have a ring shape.

According to another aspect, the chamber may comprise a bag (e.g., a blood component separation bag). For example, at least a portion of the bag may be formed of at least one of flexible and semi-rigid material so that the chamber interior has a variable volume. In some embodiments, the bag may have a generally annular ring shape defining a central opening.

In another aspect, the chamber interior may include a tapered portion leading to the outlet port.

In a further aspect, the chamber may be configured so that the chamber has a variable volume, and the pump may be configured to reduce the volume of the chamber interior. In one example, the pump may be configured to apply pressure to the chamber via hydraulic fluid. Such an example may also include a sensor configured to sense pressure of pumped blood products, wherein the sensor may be configured to sense pressure of the hydraulic fluid. Certain aspects of the invention could be practiced with or without a pump and/or pressure sensor, and when such structure is present, there are many possible forms of pumping and sensing configurations that could be used.

In an even further aspect, the system may further comprise an optical sensor, and the system may be configured to control the pump based on at least one of information sensed by the optical sensor and pressure sensed by the pressure sensor. In one example, an optical sensor may be positioned to sense blood components in the chamber, and/or an optical sensor may be positioned to sense blood components at another location, such as a location associated with the flow path (e.g., at a tubing line in flow communication with the filter).

In another aspect, the system may be configured so that the pump pumps blood components from the chamber during rotation of the centrifuge rotor.

In a further aspect, the apparatus may further comprise a collection container comprising an inlet in flow communication with the filter outlet and/or the flow path, and/or a portion of the rotor may further comprise a cavity configured to receive the collection container and possibly also the filter. In some examples, there may be more than one collection container and/or at least one collection container may be located outside of a centrifugal field during blood component processing.

One more aspect of the invention relates to a method of processing blood components.

Some exemplary methods may include providing a system disclosed herein. The term “providing” is used in a broad sense, and refers to, but is not limited to, making available for use, manufacturing, enabling usage, giving, supplying, obtaining, getting a hold of, acquiring, purchasing, selling, distributing, possessing, making ready for use, forming and/or obtaining intermediate product(s), and/or placing in a position ready for use.

In one more aspect, a method may comprise placing a separation chamber in a first portion of a centrifuge rotor and a filter in a second portion of the rotor, wherein the filter is located closer than an interior of the separation chamber to the axis of rotation of the rotor, and wherein the filter comprises a porous filtration medium. The method may further comprise rotating the centrifuge rotor, the separation chamber, and the filter about the axis of rotation of the centrifuge rotor, wherein the blood components are centrifugally separated in the chamber interior. In addition, the method may comprise removing at least some of the centrifugally separated blood components from the separation chamber, and filtering the removed blood components with the filter so as to filter at least some of at least one blood component (e.g., leukocytes, platelets, and/or red blood cells) from the removed blood-components, wherein at least a portion of the filtering occurs during said rotating.

In another aspect, the method may further comprise pumping at least some of the centrifugally separated blood components from the chamber to the filter. A further aspect may include sensing pressure of pumped blood components, and controlling the pumping based on at least the sensed pressure.

In yet another aspect, there is a method comprising pumping at least some separated blood components from a chamber (e.g., a blood separation chamber or any other type of chamber structure), filtering the pumped blood components with a filter so as to filter at least some of at least one blood component from the pumped blood components, sensing pressure of blood components pumped to the filter, and controlling the pumping based on at least the pressure sensed by the pressure sensor. In some examples, the chamber may be rotated (e.g., via a centrifuge) and separated blood components may be pumped from the chamber while the chamber is received on a centrifuge rotor and/or after the chamber is removed from a centrifuge rotor.

A further aspect relates to a method of determining a location of at least one interface during processing of blood components, wherein the method comprises pumping at least some centrifugally separated blood components from a chamber, sensing pressure of the pumped blood components, and determining a location of at least one interface based on the sensed pressure, wherein the interface is associated with the pumped blood components. For example, the interface may be an interface between blood components and air, and/or an interface between differing blood components.

In another aspect, the method may comprise calculating a difference between pressures sensed in at least one time interval, determining when the calculated difference is at least a predetermined amount, and controlling the pumping in response to at least the determination that the calculated difference is at least the predetermined amount.

According to another aspect, there is a method of processing blood components, comprising rotating a chamber about an axis of rotation, wherein blood components are centrifugally separated in the chamber, pumping at least some separated blood components from the chamber, sensing pressure of pumped blood components, calculating a difference between pressures sensed in at least one time interval, determining when the calculated difference is at least a predetermined amount, and controlling the pumping in response to at least the determination that the calculated difference is at least the predetermined amount.

In another aspect, the method may further comprise passing blood components (e.g., filtered blood components) into at least one collection bag.

In a further aspect, the blood components in the chamber may be blood components of a buffy coat. Buffy coat blood components are generally blood components that result from a procedure where platelets and leukocytes along with some amount of red blood cells and plasma have been separated from whole blood. Alternatively, any other substance containing one or more blood components could be processed.

In some examples, whole blood may be processed in the method. For example, whole blood may be introduced into the chamber (e.g., from one/or more donors, and/or from one or more containers containing blood donated by one or more donors). In the processing of whole blood, any number of blood components may be centrifugally separated, filtered, and/or processed in any other way. For example, components of whole blood may be separated and pumped into separate, respective containers (optionally while being filtered via one or more filters).

In one more aspect, when blood components are pumped, the pumping may comprise reducing the volume of an interior of the chamber. For example, the method may comprise applying pressure to the chamber via hydraulic fluid.

In another aspect, the pumping may occur during rotation of a centrifuge rotor.

In yet another aspect, the method may comprise optically sensing pumped blood products, and controlling the pumping based on at least one of optically sensed information and sensed pressure. For example, the optically sensing may comprise optically sensing blood components in the chamber and/or optically sensing blood components in a tubing line (e.g., a tubing line in flow communication with a filter).

In another aspect, the method may further comprise causing at least one valving member on the centrifuge rotor to control flow of at least some of the blood components during rotation of the rotor. As mentioned above, the valving member may comprise a tubing clamp.

In a further aspect, the method may further comprise causing at least one sealing member on the centrifuge rotor to create a seal during rotation of the rotor. As mentioned above, the sealing member may comprise a tubing welder.

Aside from the structural and procedural arrangements set forth above, the invention could include a number of other arrangements such as those explained hereinafter. It is to be understood that both the foregoing description and the following description are exemplary only.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments and, together with the description, serve to explain some principles of the invention. In the drawings,

FIG. 1 is a schematic cross-section view of an embodiment of a system in accordance with the present invention;

FIG. 1A is a view similar to that of FIG. 1 showing an alternate embodiment of the system;

FIG. 1B is a top plan view of another alternative embodiment of the system;

FIG. 2 is a top plan view of a portion of an apparatus including a chamber and filter for use with the systems of FIGS. 1, 1A, and 1B, wherein line I—I of FIG. 2 represents the plane for the cross-section views of the chamber portion shown in FIGS. 1 and 1A;

FIG. 3 is partially schematic view of an embodiment of an apparatus including the chamber and filter of FIG. 2;

FIG. 4 is an isometric view of a system including the apparatus of FIG. 3;

FIG. 5 is a graph showing pressure plotted over time in connection with an example involving the embodiment of FIG. 1B;

FIG. 6 is a top, partially schematic view of an alternative embodiment of a separation chamber;

FIG. 7 is a schematic view of an example of a controller communicating with various possible system components;

FIG. 8 is a schematic, partial cross-section view illustrating the configuration of a filter and separation chamber associated with the system embodiment of FIG. 1B;

FIG. 8a is a schematic, partial cross-section view of an alternative filter configuration;

FIG. 8b is a schematic, partial cross-section view of another alternative filter configuration;

FIG. 9 is a schematic view of a hydraulically operated pump and pressure sensor associated with the system embodiments of FIGS. 1, 1A, and 1B;

FIG. 10 is a schematic view of an alternative embodiment of a system associated with a centrifuge;

FIG. 11 is a schematic view of an alternative embodiment of a system associated with a blood component expresser;

FIG. 12 is a schematic view of an alternative embodiment of a system associated with a blood component expressor; and

FIG. 13 is a schematic view of an embodiment of a system configured to process whole blood.

DESCRIPTION OF A FEW EXEMPLARY EMBODIMENTS

Reference will now be made in detail to a few exemplary embodiments of the invention. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.

FIG. 1 shows an embodiment of a system for processing blood components. The system includes a centrifuge 34 in combination with an apparatus including a filter 31 and a chamber 4 in the form of a blood component separation bag having a ring shape. The centrifuge 34 has a rotor 1 including a first rotor portion defining a ring-shaped area 3 receiving the chamber 4 and a second rotor portion defining a center cavity 2 where the filter 31 and possibly also a collection container 33 (e.g., a bag used to contain blood components processed by the system) may be located during a blood component processing operation.

The chamber 4 has an interior 8 in which blood components are centrifugally separated during rotation of the rotor 34 about an axis of rotation X. As described in more detail below, at least some of the blood components centrifugally separated in the chamber 4 are passed via a tubing line 21 to a filter 31 where at least some of at least one blood component (e.g., leukocytes, platelets, and/or red blood cells) is filtered before passing the filtered blood component(s) to the collection container 33.

As described in more detail below, hydraulic fluid in a space 5 located beneath the chamber 4 exposes the chamber 4 to an external pressure that causes at least some centrifugally separated blood components to be pumped from the chamber 4. The centrifuge rotor 1 also has an inner lid 6 adapted to rotate along with a remainder of the rotor 1 and the separation chamber 4. The lid 6 is optionally configured to at least partially secure the chamber 4, for example, in a clamping fashion along a line 7 shown in FIG. 2. This may be an effective way to fix the position of the chamber 4 in the centrifuge rotor 1 and limit the stresses on the inner edge of the bag 1. The centrifuge lid 6 optionally defines a central opening 53 possibly allowing center cavity 2 to be accessible externally even when the inner lid 6 is in a closed position.

The centrifuge rotor 1 may include one or more supports 9, 10, 11 shown in FIGS. 1B, 2, and 4 (for example, three to five supports). (The view of FIG. 1 shows only support 9.) Optionally, the supports extend wholly or partially in the center cavity 2 and thus may define the cavity 2. The above-mentioned clamping of the chamber 4 by the inner lid 6 may limit, through its greater contact area, the load on the inner edge of the chamber 4 and assist in preventing it from slipping over or being released in some other way from supports 8, 9, and 10 during centrifuge rotor rotation. As shown in FIGS. 1B and 2, e.g., the respective supports 911 are optionally somewhat asymmetric (e.g., about the rotational axis X), and may thus assist in defining the position of the chamber 4 and its associated tubes in the rotor 1 while holding the chamber 4 in position during centrifuging.

Each of the support members 911 may define a respective guide groove, such as groove 12 shown in FIG. 1, which is defined in support 9. The groove may be shaped to receive one or more different tubes passing blood components or other fluids in the system. One or more of the supports 911 may be configured so that the guide grooves may be selectively reduced (and/or increased) in size to clamp (and/or unclamp) tubing placed in the grooves, and thereby accomplish valving for regulating the flow of fluids in the apparatus. For example, a portion of the support 9 could be configured to move in a clamping/unclamping fashion in the direction of arrow 13 shown in FIG. 1 so as to function as a clamp valve for tubing 21 in guide groove 12.

One or more of the supports 911 may be configured to weld and/or cut tubes extending in grooves defined in the supports 911. For example, electric power to perform welding via supports 911 may be passed to the supports 911 via an electrical contact between the rotor 34 and a centrifuge stand. Various different components of the centrifuge may also be supplied with power via contact(s). In the embodiment of FIG. 1, the electric power is conveyed via electrical slip ring connectors 14, 15 between the rotor and stand portions of the centrifuge, wherein connector 14 is a rotating part of the centrifuge and connector 15 is a secured part in the centrifuge stand. As shown in FIG. 1, the centrifuge 34 may include a centrifuge motor 16 coupled to the rotor 1 so as to rotate the rotor 1 about the axis of rotation X. For example, the motor 16 may be coupled to the centrifuge rotor 1 by a driving belt 47 disposed in operative communication with a motor driving pulley 48 and a centrifuge driving pulley 49. A centrifuge rotation bearing 50 may cooperate with a rotating guide 51.

As shown schematically in FIG. 1, both the collection container 33 and filter 31 may be received in the center cavity 2. The filter 31 may be disposed in the cavity 2 in any number of different fashions. In one example, shown in FIG. 1, the filter 31 may be arranged in the cavity 2 so that components passing through the filter flow in a direction facing generally toward the axis of rotation X. In the embodiment of FIG. 1A, the filter 31 is oriented to position a filter inlet 31a above a filter outlet 31b. Due to centrifugal forces generated during rotation of the rotor 1, substances flowing through the filter 31 of FIG. 1A may flow in a horizontal direction (as viewed in FIG. 1A) as well as in the vertical direction.

As shown in FIG. 1A, the filter 31 is optionally disposed in a generally lateral orientation on a small ledge 32 extending into the cavity 2. A covering member such as inner lid 6 may be configured to contact and/or otherwise cover and hold filter 31 in place. For example, a projection 66 extending from the lid 6 and the ledge 32 may define a holder for the filter 31. Alternatively, the ledge 32 could be moved upwardly from the position shown in FIG. 1A and/or an inner part of the lid could extend slightly lower. In another alternative arrangement, the filter 31 may be positioned in the cavity 2 without being restrained, such as in the embodiment shown in FIG. 1.

FIG. 1B shows another embodiment including an alternative placement of filter 31. The filter 31 of FIG. 1B is positioned in a generally lateral orientation with the filter 31 being eccentric with respect to the axis of rotation X. In addition, the filter 31 of the embodiment of FIG. B is offset slightly from the rotational axis X so that the axis X does not intersect an interior of the filter 31. The filter 31 is positioned so that substances flowing through the filter 31 flow in a direction 95 generally facing toward the axis of rotation X.

FIG. 8 schematically shows an example of how the filter 31 of FIG. 1B may be configured. (In FIG. 8, the filter 31 and separation 4 are not drawn to scale.) As shown in that figure, the filter 31 has a filter inlet 31a and a filter outlet 31b at the respective ends of L-shaped tubing segments connected to a filter housing 31d defining an interior space containing a porous filtration medium 31c. The filter outlet 31b is located above the filter inlet 31a; and the filter inlet 31a is located closer than both the filter outlet 31b and filtration medium 31c to the axis of rotation X. The filter housing 31d defines a filter housing inflow port 31e and a filter housing outflow port 31f above the inflow port 31e. The filter housing outflow port 31f is closer than the filter housing inflow port 31e to the axis of rotation X. The filter housing outflow port 31f is also closer than the filtration medium 31c to the axis of rotation X.

In some examples, such as that of FIG. 8, the relative positioning of the filter inlet 31a, filter outlet 31b, housing inflow port 31e, housing outflow port 31f, and/or medium 31c, as well as the eccentric (and possibly also offset) positioning of the filter 31, may assist in clearing most (if not all) air from the interior of the filter, as compared to alternative filtering arrangements which might potentially cause air to be “locked” therein.

FIG. 8a shows another example of a filter 31 that could be used in the system. As shown in that figure, filter outlet 31b is located above filter inlet 31a; and filter inlet 31a is closer than both filter outlet 31b and filtration medium 31c to the axis of rotation X. In this example, rather than having the L-shaped tubing segments shown in FIG. 8, filter housing 31d defines flow passages leading to and from filter outlet 31b and filter inlet 31a, respectively, such that filter housing outflow port 31f is located closer than both filter housing inflow port 31e and medium 31c to the axis of rotation x. In addition, outflow port 31f is above inflow port 31e.

FIG. 8b shows a further example of a filter 31 that could be used in the system. For this example, housing inflow port 31e and housing outflow port 31f are at substantially the same relative positions as filter inlet 31a and filter outlet 31b, respectively. In contrast to the filter shown in FIG. 8a, filter housing outflow port 31f is closer than both filter housing inflow port 31e and filtration medium 31c to the axis of rotation X. In addition, the inlet 31a, inflow port 31e, outflow port 31f, and outlet 31b are at substantially the same level. Further, filter outlet 31b is closer than both filter inlet 31a and filtration medium 31c to the axis of rotation X.

One feature in common with the filter examples of FIGS. 8, 8a, and 8b is that blood components flowing in an interior space containing filtration medium 31c flow in a direction 95 facing generally toward the axis of rotation X.

As partially shown in FIG. 1B, the filter 31 may be positioned at least partially in a slot 57 offset from the axis of rotation X. The slot 57 may be wholly or partially defined in lid 6. Alternatively, the slot 57 could be defined using a shelf and projection similar to those shown in FIG. 1A.

Although the embodiments of FIGS. 1, 1A, and 1B show the filter positioned beneath the top surface of the rotor 34, the filter 31 could alternatively be arranged partially or completely above the rotor's top surface. In some alternate embodiments, the filter may even be positioned at a location that is not within the centrifugal field generated by rotation of the rotor 1.

In the embodiments of FIGS. 1, 1A, and 1B, the portion of the centrifuge rotor defining the ring-shaped area 3 and the portion of the centrifuge rotor defining the center cavity 2 are positioned with respect to one another so that when the chamber 4 is received in the area 3 and the filter 31 is received in the cavity 2, the filter 31 is closer than the chamber interior 8 to the axis of rotation X, as schematically illustrated in FIG. 8. Such a positioning may avoid the filter 31 from being subjected to relatively high centrifugal forces while permitting substances being centrifugally separated in the chamber interior 8 to be subjected to such high forces. In some instances, it may be desired for such a reduced amount of centrifugal force to be applied to the filter 31. For example, in certain filter arrangements, exposure to relatively high centrifugal forces might cause certain potential problems associated with bursting of the filter housing, or perhaps negatively affect the filtration efficacy. For some filters, such as those that might not be significantly impacted by centrifugal forces, alternative positioning of the filter might be possible.

The filtration medium 31c shown in FIGS. 1A, 8, 8a, and 8b may be any form of porous medium, such as fibers combined together in a woven or unwoven form, loose fibers, foam, and/or one or more membranes, for example. The filtration medium 31c may be configured to filter leukocytes, platelets, and/or red blood cells.

The filter 31 could be configured in any known form. In some embodiments, the filter 31 may be a leukoreduction filter configured to filter leukocytes from blood components including a concentration of platelets. One example of such a filter is the LRP6 leukoreduction filter marketed by the Pall Corporation of Glen Cove, N.Y. Another example is the Sepacell PLS-10A leukocyte reduction filter marketed by Baxter Healthcare Corp. of Deerfield, Ill. A further example is the IMUGARD filter marketed by Terumo of Japan. It should be understood that other known leukoreduction filters could also be used and such filters optionally may be selected depending upon the process being undertaken.

As shown in FIG. 1B, the inner lid 6 includes one or more grooves 60 defined therein for receiving one or more tubing lines. A first tubing portion 21a places the blood component separation chamber (not shown in FIG. 1B) and filter 31 in flow communication with one another. Tubing 21 is flow coupled to the outlet of filter 31. The tubing 21 includes a second tubing potion 21b coupled to an outlet of the filter 31 and extending in a direction facing generally away from the rotation axis X. The tubing 21 also includes a third downstream portion 21c extending in a direction generally facing the axis of rotation X. The groove(s) 60 may be configured to receive at least some of the second and third tubing portions 21b and 21c.

In some embodiments, there may be lids (not shown) other than the lid 6 to account for a plurality of processes which may alternatively be performed by the system. As shown in FIG. 1B, the groove(s) 60 may be arranged to associate the tubing 21 with one or more other features of the embodiment. For example, the groove(s) 60 may be arranged to place the tubing 21 in cooperation/communication with the groove 12 of member 9 (and/or with an optical sensor 55 described below), among other things.

As shown in FIG. 2, the chamber 4 is optionally in the form of a bag defined by two sheets of a suitable plastic material (e.g., flexible and/or semi-rigid plastic material) joined together by circumferentially welding radially inner and outer edges 17 and 18. Between the welded edges 17 and 18, there is an open, ring-shaped chamber interior in which blood components are separated. The chamber 4 includes a central opening (e.g., aperture) 19 which primarily corresponds to the center cavity 2 opening. Such a structure may simplify access to the center cavity 2. The chamber 4 shown in FIG. 2 has respective guide holes 109, 110, and 111 for receiving supports 911, respectively, and thus positioning the chamber 4 with respect to the supports 911. The bag material surrounding the guide holes 109, 110, and 111 may be welded to strengthen the material around the holes. The guide holes 109, 110, and 111 optionally have an asymmetric arrangement (about rotational axis X) that is like that of the optional asymmetric orientation of the supports 9, 10, and 11 so as to facilitate orienting the chamber 4.

At least a portion of the chamber 4 may be formed of flexible and/or semi-rigid material so that the interior of the chamber 4 has a variable inner volume. For example, the chamber 4 may be formed of material permitting external pressure to be applied to the chamber so as to reduce the inner volume of the chamber 4. In some exemplary arrangements, the chamber 4 and possibly the other parts of the apparatus 100 may be formed of material comprising inert plastic.

The chamber 4 includes an inlet port 4a for passing blood components to the interior of the chamber 4 and an outlet port 4b for passing at least some centrifugally separated blood components from the chamber interior. Inflow tubing 20 and outflow tubing 21 are placed in flow communication with the ports 4a and 4b, respectively, on opposite facing sides of the chamber 4 via welded sleeve couplings 24. Each sleeve coupling 24 may be a securing part in the form of a short piece of tubing with a diagonally arranged flat securing collar which may be welded to the chamber 4, while permitting the respective tubing 20 and 21 to be welded to the coupling 24. Instead of being secured via such a sleeve coupling, the tubing could alternatively be secured to (and/or in) each respective welded edge, i.e. within welded edges 17 and 18.

An alternative embodiment of a chamber 4 is shown in FIG. 6, wherein, a sort of bay 75 is positioned at the outlet port leading to tube 21. This bay 75 is defined by a gradually tapered portion formed by weld portions 61 and 62 extending in a generally radial direction from the outlet port. (The chamber 4 shown in FIG. 2 may have a similar bay.) This type of arrangement may enable platelets to be received in a relatively non-abrupt or otherwise non-disruptive process. This may enhance the quality of the harvested platelets.

Referring again to FIG. 6, an inlet area 65 in the region of an inlet port leading from tube 20 does not have a tapered portion defined by weld portions 63, 64. This configuration may alleviate any potential capture of platelets (or some other desired product) so as to permit platelets to be available for harvesting at the outlet area 75.

When the chamber 4 is formed in a ring shape, as shown in the drawings, the chamber 4 and at least certain aspects of the centrifuge 34 may be configured like the separation chambers and associated centrifuges disclosed in one or more of the following patent documents: WO 87/06857, U.S. Pat. No. 5,114,396, U.S. Pat. No. 5,723,050, WO 97/30715, and WO 98/35757, for example. Many alternative arrangements are also possible.

Although the embodiments shown in the drawings include a separation chamber in the form of a ring-shaped bag, it should be understood that there are many alternative forms of separation chamber configurations that could be used. For example, the separation chamber could be in the form of a bag other than a ring-shaped bag. Alternatively, the separation chamber could be in other non-bag forms, such as, for example, in the form of one of the separation vessels disclosed in U.S. Pat. No. 6,334,842.

In one alternative embodiment (not shown), a filter similar to (or identical to) filter 31 could be positioned in tubing 20 to filter at least some blood components (e.g., leukocytes, platelets, and/or red blood cells) from substances being passing into the chamber 4.

FIG. 3 shows an embodiment of an apparatus 100 including the chamber 4 and filter 31 shown in FIG. 2. This exemplary apparatus 100 is in the form of a bag set for producing platelets from a buffy coat collection. The apparatus 100 further includes a bag 23 containing diluting solution, a solution tube 30, four connecting tubes 2528 intended to be coupled (e.g., via welding) to respective bags containing previously prepared buffy coat products (not shown), and a multi-way connector 29 connecting the tubes 2528 and 30 to the inflow tubing 20 coupled to the inlet port of chamber 4. From the chamber 4, the tubing 21 having filter 31 in-line is coupled to an inlet 33a of collection container 33, which is in the form of a bag. In an area where the solution tube 30 is coupled to the solution bag 23, there may be a blocking switch 45 (e.g., frangible member) capable of being placed in an open, flow-permitting position by bending the tube 30 and breaking open the connection so as to initiate the addition of diluting solution to bags (not shown in FIG. 3) connected to tubing lines 2528. Before the blocking switch 45 is opened, solution tube 30 may be arranged in a guide groove 12 defined by one of the supports 911 so as to provide a clamp valve intended for controlling the addition of diluting fluid to buffy coat bags associated with lines 2528

Although four connecting tubes 2528 are shown in FIG. 3, any number of tubes may be used. For example, the number of connecting tubes may be between four and six or between four and eight.

The system embodiments of FIGS. 1, 1A, and 1B include a pump configured to pump at least some centrifugally separated blood components from the chamber 4 to the filter 31, and those embodiments also include a pressure sensor configured to sense pressure of the pumped blood components. As shown schematically in FIG. 9, a pump 80 may include a hydraulic fluid flow passage 88 passing through centrifuge rotor 1. One end of the hydraulic fluid flow passage 88 is in flow communication with a portion of ring-shaped area 3 positioned beneath the chamber 4 and separated from the chamber 4 via a flexible membrane 22. Another end of the hydraulic fluid flow passage 88 is in flow communication with a hydraulic fluid pressurizer 84 including a piston movable in a hydraulic fluid cylinder via a driver motor 82 (e.g., a stepper motor that moves a lead screw). Optionally, a hydraulic fluid reservoir 86 and associated hydraulic fluid valve 90 may be used to introduce and/or remove hydraulic fluid to/from the hydraulic fluid flow passage 88.

In response to a control signal from a controller 68, the driver motor 82 drives the piston of pressurizer 84 so as to pressurize or depressurize hydraulic fluid in the flow passage 88 (e.g., depending on the direction of travel of the pressurizer piston). The pressurization of the hydraulic fluid causes pressure to be applied to the chamber 4 via the hydraulic fluid pressing against membrane 22. The pressure applied to the chamber 4 causes the interior volume of the chamber 4 to become reduced and thereby pump centrifugally separated blood components from the chamber 4. Increasing the pressure of the hydraulic fluid causes an increase in the flow rate of the blood components pumped from the chamber 4. Conversely, a decrease of the hydraulic fluid pressure causes a decrease (or halting) of the pumped flow of blood components from the chamber 4.

The pressure of the hydraulic fluid is related to the pressure of blood components being pumped from the chamber 4. As shown in FIG. 9, a pressure sensor 70 is configured to monitor the pressure of the hydraulic fluid in the hydraulic fluid flow passage 88. Due to the relationship between the pressure of the hydraulic fluid and the pressure of the pumped blood components, the hydraulic fluid pressure sensed by the pressure sensor 70 reflects the pressure of the blood components pumped from the chamber 4. In other words, the pressure sensed by the pressure sensor 70 of FIG. 9 is essentially the same as (or at least proportional to) the pressure of the pumped blood components.

The hydraulic fluid may be any suitable substance. For example, the hydraulic fluid may be a fluid having a density slightly greater than that of packed red blood cells. One example of such a substance is Glycol. The hydraulic fluid may alternatively comprise oil.

A number of different pumping and/or blood component pressure sensing arrangements other than those shown in FIG. 9 are possible. For example, the amount of current needed to drive the driver motor 82 associated with the hydraulic fluid pressurizer 84 may indicate the pressure of both the hydraulic fluid and the blood components. In other examples, the pressure of the blood components could be sensed more directly (e.g., not via hydraulic fluid) using any type of pressure sensor.

The pump 80 may be controlled based at least partially on the pressure sensed by the pressure sensor 70. In the embodiment of FIG. 9, the controller 68 could be configured to control the driver motor 82 based at least partially on the pressure sensed by the pressure sensor 70. For example, the controller 68 could be configured such that the controller 68 calculates a difference between pressures sensed by the pressure sensor 70 in at least one time interval while blood components are pumped by the pump 80, determines when the calculated difference is at least a predetermined amount, and controls the pump 80 in response to at least the determination that the calculated difference is at least the predetermined amount. Such an arrangement could enable a feedback control of the pump 80, for example, when the pump is initially operated via a volume flow rate command.

As explained in more detail below, in a procedure attempting to collect a maximum number of platelets and a minimum number of white and red blood cells, the control of the pump 80 based at least partially on the sensed pressure may be used to stop the pumping of the blood components from the chamber 4 in response to an increased pressure reflecting that relatively viscous red blood cells are entering the filter 31 and causing an occlusion of flow through the filter 31.

The pressure sensed by the pressure sensor 70 could enable a determination of the location of one or more interfaces associated with separated blood components being pumped from the chamber 4. For example, the pressure sensed by the pressure sensor 70 could indicate the location of an interface between blood components and air present in the system at the start-up of a blood component processing procedure. In such an example, an increase in pressure might reflect that an air-blood component interface is near (or at) a radially outward portion of a fluid flow path (e.g., in FIG. 1B, the location F0). In another example, the pressure could provide an indication of the location of an interface between blood components having differing viscosities. For example, an increase of the pressure sensed by the pressure sensor 80 during the filtering of at least some blood components via the filter 31 could provide an indication that a blood component interface (e.g., between a first phase including primarily liquid (i.e., plasma and possibly one or more liquid additives) and platelets, and a second phase including primarily red blood cells and white blood cells) is located near (or at) the filter 31, and/or a particular location in the flow path leading to or from the filter 31, and/or a particular location in the chamber 4.

The pressure sensed by the pressure sensor 70 could reflect a “fingerprint” of the operation of the system. For example, the sensed pressure could reflect one or more of the following: a kinking of fluid flow lines; a leak (e.g., rupture) of the membrane 22, chamber 4, and/or flow path leading to and from the filter; an increased likelihood of platelet activation (e.g., a high pressure might reflect forcing of platelets through the filter 31); a defect and/or clogging associated with the filter 31; and/or a possible need for maintenance (e.g., an indication that the membrane 22 is worn).

The pressure sensed by the pressure sensor 70 could also be used to optimize (e.g., reduce) the time for processing (e.g., separation) of blood components. For example, when the pressure sensed by the pressure sensor 70 indicates a location of particular blood components, the pump 80 could be controlled to use differing flow rates for differing blood components (e.g., use a faster flow rate for pumping certain blood components, such as plasma).

In addition to pressure sensor 70, embodiments of the system may also include one or more optical sensors for optically sensing blood components, and the pumping of the blood components may also be controlled based on at least information sensed by the optical sensor(s). As shown schematically in FIGS. 1 and 1A, a first optical sensor 52 is positioned in the centrifuge rotor 1 adjacent the chamber 4 to optically sense blood components in the chamber 4. (Although not shown in FIG. 1B, the embodiment of FIG. 1B also includes such a sensor.) In addition, as shown in FIG. 1B, the system also may include a second optical sensor 55 positioned to optically sense blood components flowing through the tubing line 21 at the second tubing portion 21b, located downstream from the filter 31.

The optical sensors could be configured in the form of any type of optical sensor used in association with blood components. One example of an optical sensor may include a photocell. The first and second optical sensors 52 and 55 may be configured to detect a change of color of blood components. Such a change of color may be indicative of the location of an interface between differing blood component phases, such as an interface where one of the phases that defines the interface includes red blood cells.

The first optical sensor 52 may be located at a particular radial position on the centrifuge rotor 1 so as to sense when an interface has moved to that location in the chamber 4. For example, the pumping of blood components from the chamber 4 could be slowed 9 (e.g., via a reduction of hydraulic pressure with the arrangement of FIG. 9) in response to the first optical sensor 52 detecting an interface (e.g., an interface partially defined by red blood cells) approaching a radially inward location. Similarly, the second optical sensor 55 may detect the presence of an interface (e.g., an interface partially defined by red blood cells) along the flow path leading from the chamber 4. In some examples, the controller 68 could be configured so as to halt pumping of blood components from the chamber 4 in response to the second sensor 55 sensing an interface (e.g., an interface partially defined by red blood cells) and/or in response to a determination that the difference between pressures sensed by the pressure sensor 70 is at least a predetermined amount.

FIG. 7 shows a schematic view of an example of the controller 68 that may be used to at least partially control certain features of the system. The controller 68 communicates with various system components. For example, the controller 68 could communicate with the pump 80, centrifuge motor 16, pressure sensor 70, first optical sensor 52, second optical sensor 55, valving structure 72 (e.g., the valves defined by supports 9, 10, 11), and a control panel 36. The controller 68 may be configured to cause rotation of the centrifuge rotor 1 during filtering of at least some blood components (e.g., leukocytes, platelets, and/or red blood cells) via the filter 31 received in the cavity 2. In some embodiments, this may enable centrifugal separation in the chamber 4 and filtering via the filter 31 to occur at least partially simultaneously in a somewhat on-line fashion, as compared to some other approaches where filtering takes place a period of time after initial centrifugal separation and removal of a separation chamber and possibly also a filter from a centrifuge rotor. Alternatively (or additionally), the controller 68 may be configured so that filtering via the filter 31 takes place at least some time after at least an initial separation of blood components in the chamber 4.

The controller 68 may control the rotational speed of the rotor 1. In addition, the controller 68 may control the pump 80 and/or valving structure 72 to control the pumping of substances flowing to and from the chamber 4 and the filter 31. The controller 68 may include a processor having programmed instructions provided by a ROM and/or RAM, as is commonly known in the art. Although a single controller 68 having multiple operations is schematically depicted in the embodiment shown in FIG. 7, the controlling may be accomplished by any number of individual controllers, each for performing a single function or a number of functions.

The controller 68 may be configured to pump hydraulic fluid at a specified flow rate. This flow rate may cause a blood component flow rate with a resultant pressure. The controller 68 may then take readings from the pressure sensor 70 and change the flow rate based on those reading so to control flow rate as a function of pressure measured.

A number of different pumping and/or blood component pressure sensing arrangements other than those shown in FIG. 9 are possible. In addition, there are a number of alternative ways in which the pumping of blood components from the chamber 4 could be controlled.

FIG. 10 schematically illustrates an embodiment where blood components are pumped from chamber 4 via a pump 80 positioned downstream from the filter 31 at a location outside of the centrifugal field generated by rotation of centrifuge rotor 1. Such a pump 80 could be configured in the form of a peristaltic pump or any other type of pump suitable for pumping blood components.

As shown schematically in FIG. 10, the pressure sensor 70 could directly sense the pressure of pumped blood components (rather than via hydraulic fluid) from a location on the centrifuge rotor 1. Alternatively (or additionally) the pressure of the blood components could be sensed directly by a pressure sensor 70′ located outside of the centrifugal field caused by rotation of the rotor 1. Similarly, a filter 31′ in place of (or in addition to) filter 31 could be located at a location outside of the centrifugal field of the rotor 1. Additionally, the collection container 33 may be located outside of the centrifugal field. In a further modification, the system might be modified so that there is no filter.

In other embodiments, at least some structural features might not be part of a centrifuge structure. For example, FIG. 11 schematically shows an embodiment in the form a blood component expressor including a pump 80 configured to pump blood components from a chamber 4. The pump 80 of FIG. 11 includes a pair of clamping plates 92 and 94 that apply pressure to chamber 4 when a clamp driver 96 moves the clamping plates 92 and 94 together. A controller 68 controls the pump 80 based at least partially on pressure of pumped blood products sensed directly via the sensor 70. The chamber 4 could be a chamber that has been removed from a centrifuge rotor after blood components in the chamber 4 have been previously stratified in a centrifuging procedure.

FIG. 12 schematically shows an embodiment similar to that of FIG. 11, but substituting a pump 80 like that shown in FIG. 10.

The following provides a discussion of an exemplary blood processing method that could be practiced using the system embodiments shown in FIGS. 1, 1A, 1B, 24, and 69. Although the exemplary method is discussed in connection with the structure shown in those figures, it should be understood that the exemplary method could be practiced using alternative structure. (In addition, the structure shown in those figures could be used in alternative methods.)

FIG. 4 shows certain components of the apparatus shown in FIG. 3, but some of those components are drawn to a smaller scale or are not visible in FIG. 4. As shown in FIG. 4, centrifuge 34 is shown standing with its outer lid 35 completely open and locked in that position. The centrifuge inner lid 6 (see FIGS. 1 and 1A) has been omitted to show other parts more clearly. Also, the centrifuge rotor 1 and chamber 4 have, to a certain extent, been drawn in a simplified manner. The centrifuge control panel 36 is also shown schematically.

FIG. 4 illustrates four blood bags 3740 containing buffy coat suspended in a cassette 41, which is mounted on the inside of the centrifuge outer lid 35. Buffy coat bags 3740 have individual output lines connected by sterile welding to tube connectors 2528 (see FIG. 3). The fluid content of the bags is introduced into the chamber 4 via the tubes 2528 and connecting tube 20. After (or before) that, the buffy coat bags 3740 may be supplied with washing fluid and/or diluting solution from diluting solution bag 23 suspended from a holder 44. The diluting solution contained in the bag 23 may be plasma or any other standard diluting solution. An example of a conventional diluting solution is a PAS (platelet additive solution), such as, e.g., T-Sol. Diluting solution bag 23 is suspended sufficiently high above bags 3740 to allow the diluting solution to be added in sufficient amounts to these bags as soon as blocking switch 45 in tube 30 and a clamp valve in support 11, through which tube 30 is passed, are opened. Communication between bags 3740 and chamber 4 proceeds via tube 20 which in turn passes through a clamp valve in support 10, for example, for controlling fluid communication. After the addition of diluting solution in sufficient amounts to bags 3740, a motor (not shown) connected with the cassette 41 may be started and operated to move the cassette 41 back and forth in a curved pendulum movement 42 (or alternatively a complete (or substantially complete) rotational movement) until all the concentrate substance in the buffy coat bags 3740 is resuspended.

Various arrangements may cause the agitation movement of the cassette 41. For example, the motor driving the cassette movement may be associated with a gear box, or there may be a crank function or control of the motor. It may also be theoretically possible to use a hydraulic motor, but it might have a slower shaking speed and longer mixing time.

Then, the built-in clamp valve in the support member 10 may be opened so as to cause flow of substantially all of the substance from the bags 3740 to the chamber 4 via the tubing 20. The tube 20 in support 10 may then be sealed by sterile welding provided by the support 10 so as to block fluid communication through the tube 20, and thereafter (or substantially simultaneously therewith) the support 10 may cut the tube 20, so that the empty bags 3740 and bag 23 with any possible solution and/or concentrates from the buffy coat diluting solution mixture may be disposed. If desired, the flushing out of the buffy coat bags 3740 could be carried out in one, two, or several consecutive flushing operations. After flushing out the buffy coat bags, cassette 41 and holder 44 may then be removed from the centrifuge lid 35 and thereafter the centrifuge lid 35 may then be closed and a centrifuging operation may be carried out.

Before centrifuging, the chamber 4 is placed in the ring-shaped area 3 (see FIGS. 1 and 1A) and the collection container 33 (see FIGS. 1, 1A and 3) and filter 31 are placed in the center cavity 2 (see FIGS. 1, 1A, and 1B). During centrifuging, the centrifuge rotor 1 is rotated about the axis of rotation X, thereby causing the blood platelet product to be separated from the other buffy coat components (e.g., red and white blood cells) in the chamber 4. Then, after (or in some embodiments, during) that separation, at least some of the platelet product may be pumped to the collection container 33 by increasing the pressure of hydraulic fluid passed into the ring-shaped area 3 under the membrane 22 shown in FIG. 9, and thereby applying external pressure to the chamber 4 that causes a reduction of the volume of an interior of the chamber 4. As is understood in the art, such a pressure applied by hydraulic fluid may occur during continued centrifugation (continued rotor spinning). It otherwise may be applied before rotor rotation has begun or even after rotation has halted.

The pumped blood components are removed from the chamber 4, optionally filtered by the filter 31, and then conveyed to collection container 33. As shown in FIG. 1B, arrows F show flow through portions of the filter 31 and the tubing line 21 (which passes through the second sensor 55 and support member 9) and thence into collection container 33. The flow path of material out of chamber 4 begins through first tubing portion 21a upstream from filter 31. Flow through tubing portion 21a emanates first from chamber 4, then travels through or near the axis of rotation X where the centrifugal forces are the lowest (zero or very near thereto) of any point in the system. The application of hydraulic pressure (and/or the centrifugal force) continues to then push the flow into the filter 31. As shown in FIGS. 1B and 8, the blood components may flow in an interior space of the filter housing 31d in a direction 95 facing generally toward the axis of rotation X. After exiting the filter housing, the blood components flow in a direction generally facing away from the axis of rotation X, through the second tubing line portion 21b, radially outwardly and through the second optical sensor 55. Then, the flow reaches its radially outermost point of travel, here indicated as point F0, relative to the axis of rotation X. Flow then proceeds roughly inward via third tubing portion 21c, while passing through the support member 9, and the valving and/or sealing mechanism therein. The flow then proceeds to the container 33 disposed in the central cavity 2.

The filter 31 (e.g., a leukoreduction filter) may be configured to filter at least some undesired components. For example, where the desired product is platelets, the filter 31 may filter leukocytes and/or red blood cells. The filtration may occur substantially simultaneously with the removal (e.g., pumping) of components from the chamber 4, and also may be performed at least partially during rotation of the centrifuge rotor 1.

The exemplary method further includes optical sensing of blood components via the first and second optical sensors 52 and 55. In the exemplary method, the flow rate at which blood components are pumped from the chamber 4 may be reduced when the first optical sensor 52 senses that an interface (e.g., an interface between desired lighter substance (e.g., platelets) and a darker non-desired concentrate product (e.g., red blood cells and/or leukocytes)) is approaching a radially inward location (e.g., a location at or near the tubing 21). For example, such a reduction of the flow rate might be achieved by reducing the hydraulic pressure applied to the membrane 22 shown in FIG. 9.

The pumping of blood components from the chamber 4 may be interrupted or halted when the second optical sensor 55 senses an interface (e.g., an interface defined at least partially by red blood cells).

The exemplary method also includes sensing the pressure of blood components pumped from the chamber 4. In the embodiment shown in FIG. 9, the pressure of the pumped blood components is sensed via sensing of the pressure of the hydraulic fluid used to pump the blood components from the chamber 4.

FIG. 5 illustrates an exemplary graph showing pressure sensed by the pressure sensor 70 of FIG. 9 relative to time during the processing of blood components in the exemplary method. Prior to a time T0, there is relatively little (or no) sensed pressure because there is some initial time that may be dedicated to mere centrifugation/rotation of the centrifuge rotor 1 to effect the separation of the blood components into stratified layers before much hydraulic pressure is added to pump the blood products (in some alternative examples, pressure may be added sooner (or later) and perhaps even from the beginning of the rotation). At time T0, the pressure of the hydraulic fluid is increased to begin pumping of blood components from the chamber 4. In some examples, the controller 68 could provide a relatively constant volume flow rate of hydraulic fluid, and, as described below, the hydraulic fluid flow could be altered based on sensed pressure feedback.

The initial pumping of blood components from the chamber 4 pushes an interface defined by the blood components and air initially present in the system at the beginning of the centrifugation. An increased amount of hydraulic pressure (and corresponding increase in pressure of the pumped blood components) occurs up until there is a peak of pressure P1 at a time T1. The pressure peak at time T1 provides an indication that the air-blood component interface (e.g., interface between air and platelet rich plasma) has reached a particular location in the flow path defined by the system. For example, the pressure peak at time T1 may represent that the air-blood component interface is located in the filter 31. Alternatively, the pressure peak at time T1 may represent a form of “siphon” effect associated with pumping the air-blood component interface to the radially outermost flow path point F0 shown in FIG. 1B. After reaching the point F0, substances may encounter a bit of resistance due to centrifugal forces (which also contribute to keeping heavier phase materials at further radii from the axis of rotation) encountered when flowing back inwardly toward a lesser radius (which describes all points in the flow other than point F0). Thus, a sort of back pressure may be built up.

After the air-blood component interface has been pumped past the location identified by the pressure peak at time T1, the pressure reaches a reduced pressure level P2 at time T2. In a time period from T2 to T3, the pressure remains substantially constant at level P2 while blood components (e.g., plasma, possible additive solution(s), and platelets) are pumped from the chamber 4, through the filter 31, and into the collection container 33. In the example represented by the graph of FIG. 5, the controller 68 has reduced the hydraulic pressure level to P3 at time T3 in response to the first optical sensor 52 sensing an interface defined at least partially by red blood cells in the chamber 4. The reduction of the hydraulic pressure causes a corresponding reduction of the pressure of the pumped blood components as well as a reduction of the flow rate of the pumped blood components (as compared to that in the time interval from T2 to T3). The reduction of the flow rate of the pumped blood components may reduce the likelihood that a substantial number of red and white blood cells will pass into the collection container 33. Additional flow rate reductions may also be possible for alternative examples.

The sensed pressure remains relatively constant at pressure P3 immediately after time T3 and then the sensed pressure increases somewhat rapidly. The increased pressure represents that an interface defined between a phase of relatively low viscosity blood components (e.g., primarily liquid (i.e., plasma and possible liquid additive(s)) and platelets) and a phase of relatively high viscosity blood components (e.g., primarily red blood cells and white blood cells) is beginning to enter the filter 31. The relatively high viscosity blood cells (e.g., red blood cells) are unable to pass through the filter 31 as easily as liquids and other relatively low-viscosity components. As the relatively viscous blood components continue to enter the filter 31, they become “packed” in the filter 31 and cause an increasing back pressure sensed by the pressure sensor 70.

The controller 68 receives signals indicative of the pressure sensed by the pressure sensor 70. In the exemplary time interval from T3 to T4, the controller 70 calculates the difference between maximum and minimum pressures sensed by the pressure sensor 70, and the controller 70 determines when that calculated difference exceeds a predetermined amount. Then, in response to such a determination, the controller 70 controls the system so as to cause a significant erection of hydraulic pressure and corresponding halting or ending of the pumping of blood components from the chamber 4 (e.g., the piston of pressurizer 84 could be retracted and/or valve 90 shown in FIG. 9 could be opened).

In the example shown in FIG. 5, at time T4, the pressure reaches a peak at P4 sufficient to cause a pressure difference ΔP (the difference between P4 and P3) indicating that the location of the interface defined by the viscous blood components has been pumped to (and possibly slightly beyond) the filter 31. In response to that pressure difference ΔP being determined by the controller 68, the controller 68 discontinues the pumping of blood components from the chamber 4 so that an excessive number of the viscous blood components will not be passed to the collection container 33. Accordingly, the pressure after T4 reflects that hydraulic pressure is no longer applied to the chamber 4.

In some alternative examples, the system may be configured so that in response to a sufficient pressure difference, the pressure of the hydraulic flow may be altered (increased or decreased) to continue pumping of blood components at a different flow rate. This could happen multiple times during a single processing procedure.

For the example shown in FIG. 5, the pressure difference ΔP may be about 0.2 bar. Many other differentials could be used depending on a number of factors.

The generally flat portions of the pressure diagram (e.g., between T2 and T3 or between T3 and T4) indicate that there are no significant discrete phases of blood components passing from the chamber 4. Those flat portions might be interpreted as an indication of a desired flow rate. Such a flow rate may be determined in advance of a blood processing procedure and used as a form of feedback control so that when the desired flow rate is reached (as measurable by a discrete sensor (not shown)), the pressure may be leveled as shown and maintained, before encountering a pressure difference indicating a possible condition where it might be desire to cease (or otherwise alter) hydraulic pressure.

In some instances, the actual level of relatively steady pressure sensing (e.g., e.g., between T2 and T3 or between T3 and T4) might not be the same or even nearly the same value from one run to another. Thus, the interpretation of the pressure difference may not be determined by any particular pressure point, but rather may be expressed as and/or be dependent upon a certain minimum change in pressure regardless of the starting or ending pressure level.

The sensing of the pressure to determine the location of interfaces between phases could be used even in some blood component processing procedures that do not include centrifugation separation and/or filtration. For example, in a procedure that includes centrifugation, but not filtration, the sensing of pressure might be used to determine when an interface reaches a radially outermost position (similar to the position F0 shown in FIG. 1B.

After an identification of the location of a blood component interface via the pressure sensing and/or the optical sensing (e.g., whichever detects the interface first), there could be a time delay before the pumping of blood components from the chamber 4 is discontinued. For example, in a procedure where platelets are being collected, at least a slight time delay might maximize a platelet collection while presenting a relatively low risk of causing a significant-number of red and white blood cells to be collected along with the platelets.

When the pumping of blood components has been discontinued, the tubing 21 may be clamped shut (via the optional clamp associated with one or more of supports 911) and possibly also sealed and cut via sterile welding supplied by one or more of the supports 911 (e.g., support 9). Thereafter, the chamber 4 containing non-desired concentrates of particular blood components (e.g., red blood cells, etc.), may be removed from the centrifuge and disposed.

Systems and methods in accordance with the invention may be used in the processing of whole blood. For example, FIG. 13 schematically illustrates an embodiment of a system configured to process whole blood. As shown in that figure, whole blood from a whole blood source 100 (e.g., one/or more donors, and/or one or more containers containing blood donated by one or more donors) may be introduced into a chamber 4′, which may be configured at least similar to the chamber 4 discussed above. For example, the chamber 4′ may include a variable volume interior that may be reduced via hydraulic pressure so as to pump centrifugally separated blood components from the chamber 4′. As discussed in some of the above examples, alternative pumps may also be used. The pumping may optionally be controlled based on pressure sensing and/or optical sensing in a manner at least similar to that discussed above in connection with FIGS. 1, 1A, 1B, 5, 7, and 912.

The chamber 4′ may include a single outlet or more than one outlet. In the example shown in FIG. 13, separate outlets may be associated with removal of particular blood components from the chamber 4′. In addition, a plurality of collection containers 33′, 33″, and 33′″ may be respectively flow coupled to those outlets so as to collect separate blood components separated in the chamber 4′. For example, the collection container 33′ may be used to collect a platelet product, collection container 33″ may be used to collect a plasma product, and collection container 33′″ may be used to collect a red blood cell product. One or more of the containers 33′, 33″, and 33′″ may be either received in centrifuge rotor 1 or positioned at a location outside of the centrifugal field.

One or more of filters 31′, 31″, and 31′″ may be associated with each of the respective flow paths leading from the chamber 4′ to the containers 33′, 33″, and 33′″. The filters 31′, 31″, and 31′″ may be configured at least similar to filter 31 discussed above. One or more of the filters 31′, 31″. and 31′″ may either be received in a portion of the centrifuge rotor 1 or located outside of the centrifugal field. Although FIG. 13 shows a separate, respective filter 31′, 31″, 31′″ associated with each of the flow paths leading from the chamber 4′, many other arrangements are possible. For example, one or more of the filters 31′, 31″, and/or 31′″ (e.g., filter 31″) may be omitted, and/or the filter outlets may be coupled to more than one collection container, and/or a single filter may be used for multiple flow paths.

In the embodiment of FIG. 13, one or more controllable clamps associated with one or more the supports 9, 10, 11 may be used to control flow of substances to and/or from the chamber 4′. One or more welders associated with one or more of the supports 9, 10, and 11 may be used to seal tubing lines leading to the containers 33′, 33″, and 33′″. For example, such clamps and welders may be operated during rotation of the rotor 1.

In some alternative embodiments, other optional components, accessories and/or methods may be used in addition or in lieu of certain features described hereinabove. An example is a leukoreduction system, involving an LRS® chamber described in numerous publications including various U.S. and foreign patents (e.g., U.S. Pat. No. 5,674,173, among others). Other potential accessory devices may include sampling devices of numerous types including, for example, bacteria screening devices referred to as Bact-T Alert® devices.

In addition, an adapted database associated with a barcode reader may be utilized to make all the blood products processed by the system directly traceable and that database may also contain all control criteria for feasible blood product processing stages of the system.

It will be apparent to those skilled in the art that various modifications and variations can be made to the structure and methodology described herein. Thus, it should be understood that the invention is not limited to the subject matter discussed in the specification. Rather, the present invention is intended to cover modifications and variations.

Claims

1. A system for processing blood components, the system comprising:

a separation chamber comprising
a chamber interior in which blood components are centrifugally separated,
and an outlet port for passing at least some of the centrifugally separated blood components from the chamber interior;
a flow path in flow communication with the outlet port of the separation chamber;
a filter comprising a filter inlet in flow communication with the flow path,
a porous filtration medium configured to filter at least some of at least one blood component from centrifugally separated blood components passed to the filter via the flow path, and
a filter outlet for filtered blood components;
a centrifuge rotor configured to be rotated about an axis of rotation, the rotor comprising
a first portion configured to receive the separation chamber and
a second portion configured to receive the filter, and
wherein the system further comprises a pump configured to pump at least some of the centrifugally separated blood components from the chamber to the filter via the flow path;
wherein the first and second portions are positioned with respect to one another so that when the separation chamber is received in the first portion and the filter is received in the second portion, the filter is closer than the interior of the separation chamber to the axis of rotation, and
wherein the system is configured so that the rotor rotates during filtering of at least some of said at least one blood component via the filter.

2. The system of claim 1, wherein the system is configured so that when the filter is received in the second portion, the filter is eccentric with respect to the axis of rotation.

3. The system of claim 2, wherein the system is configured so that when the filter is received in the second portion, the axis of rotation does not intersect an interior flow path defined by the filter.

4. The system of claim 2, wherein the filter comprises a filter housing inflow port and a filter housing outflow port, and wherein the system is configured so that when the filter is received in the second portion, the filter housing outflow port is located closer than the filter housing inflow port to the axis of rotation.

5. The system of claim 4, wherein the system is configured so that when the filter is received in the second portion, the filter housing outflow port is closer than the porous filtration medium to the axis of rotation.

6. The system of claim 4, wherein the system is configured so that when the filter is received in the second portion, the filter housing outflow port is above the filter housing inflow port.

7. The system of claim 2, wherein the filter comprises a filter housing defining an interior space containing the porous filtration medium, wherein the filter inlet and filter outlet are in flow communication with the interior space, and wherein the system is configured so that when the filter is received in the second portion, the filter is positioned so that blood components flow in the interior space in a direction facing generally toward the axis of rotation.

8. The system of claim 7, wherein the filter housing defines a filter housing inflow port for passing blood components to the interior space and a filter housing outflow port for passing blood components from the interior space, and wherein the system is configured so that when the filter is received in the second portion, the filter housing outflow port is closer than the filter housing inflow port to the axis of rotation.

9. The system of claim 7, wherein the filter housing defines a filter housing inflow port for passing blood components to the interior space and a filter housing outflow port for passing blood components from the interior space, and wherein the system is configured so that when the filter is received in the second portion, the filter housing outflow port is closer than the porous filtration medium to the axis of rotation.

10. The system of claim 7, wherein the filter housing defines a filter housing inflow port for passing blood components to the interior space and a filter housing outflow port for passing blood components from the interior space, and wherein the system is configured so that when the filter is received in the second portion, the filter housing outflow port is above the filter housing inflow port.

11. The system of claim 1, wherein the second portion comprises at least one of a ledge and a slot configured to receive the filter, the at least one of a ledge and a slot being positioned under a top surface of the rotor.

12. The system of claim 1, wherein the rotor comprises a holder configured to hold the filter with respect to the rotor.

13. The system of claim 1, wherein the flow path comprises a first tubing portion having one end coupled to the outlet port of the separation chamber and another end coupled to the filter inlet, and wherein the system further comprises a second tubing portion having an end coupled to the filter outlet, wherein the second tubing portion extends in a direction facing generally away from the axis of rotation.

14. The system of claim 13, further comprising a third tubing portion downstream from the second tubing portion, wherein the third tubing portion extends in a direction facing generally toward the axis of rotation.

15. The system of claim 14, wherein the rotor comprises a groove configured to receive at least some of the second and third tubing portions.

16. The system of claim 1, wherein the system further comprises a collection container comprising an inlet in flow communication with the filter outlet, and wherein the second portion of the rotor comprises a cavity configured to receive the filter and the collection container.

17. The system of claim 1, wherein the axis of rotation extends through the second portion of the rotor.

18. The system of claim 1, wherein the chamber is configured so that the chamber interior has a variable volume.

19. The system of claim 1, wherein the separation chamber comprises a blood component separation bag.

20. The system of claim 19, wherein at least a portion of the blood component separation bag is formed of at least one of flexible and semi-rigid material so that the chamber interior has a variable volume.

21. The system of claim 19, wherein the bag has a generally annular ring shape defining a central opening.

22. The system of claim 19, wherein the chamber interior includes a tapered portion leading to the outlet port.

23. The system of claim 1, wherein the system comprises a tubing line having an end coupled to the filter outlet, and wherein the rotor comprises at least one support member configured to support the separation chamber, wherein the at least one support member comprises a guide groove configured to receive a portion of the tubing line and at least one of a controllable clamp and a welder associated with the groove.

24. The system of claim 23, wherein the separation chamber comprises at least one guide hole configured to receive the at least one support member.

25. The system of claim 1, wherein the rotor comprises a plurality of support members located in an asymmetric fashion with respect to the axis of rotation, and wherein the separation chamber comprises a plurality of guide holes, each of the guide holes being configured to receive a respective one of the support members.

26. The system of claim 1, wherein the separation chamber has a ring shape.

27. The system of claim 1, further comprising at least one valving member on the centrifuge rotor, the valving member being configured to control flow of at least some of the blood components during rotation of the rotor.

28. The system of claim 27, wherein the valving member comprises a tubing clamp.

29. The system of claim 1, further comprising at least one sealing member on the centrifuge rotor, the sealing member being configured to create a seal during rotation of the rotor.

30. The system of claim 29, wherein the sealing member comprises a tubing welder.

31. The system of claim 1, wherein the system is configured so that the pump pumps blood components from the chamber during rotation of the centrifuge rotor.

32. The system of claim 1, wherein the chamber is configured so that the chamber interior has a variable volume, and wherein the pump is configured to reduce the volume of the chamber interior.

33. The system of claim 32, wherein the pump is configured to apply pressure to the chamber via hydraulic fluid.

34. The system of claim 33, further comprising a sensor configured to sense pressure of pumped blood components, wherein the sensor senses pressure of the hydraulic fluid.

35. The system of claim 1, further comprising a sensor configured to sense pressure of pumped blood components, wherein the system is configured to control the pump based on at least the pressure sensed by the pressure sensor.

36. The system of claim 35, wherein the system is configured to

calculate a difference between pressures sensed by the pressure sensor in at least one time interval,
determine when the calculated difference is at least a predetermined amount, and
control the pump in response to at least the determination that the calculated difference is at least the predetermined amount.

37. The system of claim 35, further comprising an optical sensor, wherein the system is configured to control the pump based on at least information sensed by the optical sensor and pressure sensed by the pressure sensor.

38. The system of claim 1, wherein the filter comprises a filter inflow port upstream of the porous filtration medium and a filter outflow port downstream of the porous filtration medium, and wherein the system is configured so that when the filter is received in the second portion, the filter outflow port is located closer than the filter inflow port to the axis of rotation.

39. A method of processing blood components, comprising:

providing the system of claim 1;
placing the separation chamber in the first portion of the rotor and the filter in the second portion of the rotor, wherein the filter is located closer than an interior of the separation chamber to the axis of rotation of the rotor;
rotating the centrifuge rotor, the separation chamber, and the filter about the axis of rotation of the centrifuge rotor,
wherein blood components are centrifugally separated in the chamber interior;
removing at least some of the centrifugally separated blood components from the separation chamber via the outlet port; and
flowing the removed blood components through the porous filtration medium so as to filter at least some of at least one blood component from the removed blood components,
wherein at least a portion of the filtering occurs during said rotating.

40. A method of processing blood components, comprising:

placing a separation chamber in a first portion of a centrifuge rotor and a filter in a second portion of the rotor, wherein the filter is located closer than an interior of the separation chamber to an axis of rotation of the centrifuge rotor, and wherein the filter comprises a porous filtration medium;
rotating the centrifuge rotor, the separation chamber, and the filter about the axis of rotation,
wherein blood components are centrifugally separated in a chamber interior of the separation chamber;
removing at least some of the centrifugally separated blood components from the separation chamber via an outlet port of the separation chamber;
flowing the removed blood components through the porous filtration medium so as to filter at least some of at least one blood component from the removed blood components; and
wherein the flowing comprises pumping the removed blood components from the chamber through the porous filtration medium;
wherein at least a portion of the filtering occurs during said rotating.

41. The method of claim 40, wherein the method further comprises passing the filtered blood components into at least one collection container.

42. The method of claim 40, wherein the blood components in the separation chamber are blood components of a buffy coat.

43. The method of claim 40, wherein whole blood is processed in the method.

44. The method of claim 40, wherein the filter comprises a filter housing defining an interior space containing the porous filtration medium, and wherein the method comprises flowing blood components in the interior space in a direction facing generally toward the axis of rotation.

45. The method of claim 40, further comprising causing at least one valving member on the centrifuge rotor to control flow of at least some of the blood components during rotation of the rotor.

46. The method of claim 45, wherein the valving member comprises a tubing clamp.

47. The method of claim 40, further comprising causing at least one sealing member on the centrifuge rotor to create a seal during rotation of the rotor.

48. The method of claim 47, wherein the sealing member comprises a tubing welder.

49. The method of claim 40, wherein the pumping occurs during rotation of the centrifuge rotor.

50. The method of claim 40, wherein the pumping comprises reducing the volume of an interior of the chamber.

51. The method of claim 50, further comprising applying pressure to the chamber via hydraulic fluid.

52. The method of claim 40, further comprising sensing pressure of pumped blood components, and controlling the pumping based on at least the sensed pressure.

53. The method of claim 52, further comprising

calculating a difference between pressures sensed in at least one time interval,
determining when the calculated difference is at least a predetermined amount, and
controlling the pumping in response to at least the determination that the calculated difference is at least the predetermined amount.

54. The method of claim 52, further comprising optically sensing the pumped blood products, and controlling the pumping based on at least one of optically sensed information and sensed pressure.

55. The method of claim 40, wherein the flowing comprises flowing the removed blood components through the porous filtration medium in a direction generally facing toward the axis of rotation.

56. An apparatus for use with a centrifuge for processing blood components, the apparatus comprising: wherein the centrifuge for use with the apparatus comprises

a separation chamber comprising
a chamber interior in which blood components are centrifugally separated, and
an outlet port for passing at least some of the centrifugally separated blood components from the chamber interior;
a flow path in flow communication with the outlet port of the separation chamber; and
a filter comprising a filter inlet in flow communication with the flow path,
a porous filtration medium configured to filter at least some of at least one blood component from centrifugally separated blood components passed to the filter via the flow path, and
a filter outlet for filtered blood components,
a rotor configured to be rotated about an axis of rotation, the rotor comprising
a first portion configured to receive the separation chamber and
a second portion configured to receive the filter; and
wherein the system further comprises a pump configured to pump at least some of the centrifugally separated blood components from the chamber to the filter via the flow path;
wherein the first and second portions are positioned with respect to one another so that when the separation chamber is received in the first portion and the filter is received in the second portion, the filter is closer than the interior of the separation chamber to the axis of rotation,
wherein the centrifuge is configured so that the rotor rotates during filtering of at least some of said at least one blood component via the filter.

57. The apparatus of claim 56, wherein the apparatus further comprises a collection container comprising an inlet in flow communication with the filter outlet, and wherein the second portion of the rotor comprises a cavity configured to receive the filter and the collection container.

58. The apparatus of claim 56, wherein the chamber is configured so that the chamber interior has a variable volume.

59. The apparatus of claim 56, wherein the separation chamber comprises a blood component separation bag.

60. The apparatus of claim 59, wherein at least a portion of the blood component separation bag is formed of at least one of flexible and semi-rigid material so that the chamber interior has a variable volume.

61. The apparatus of claim 59, wherein the bag has a generally annular ring shape defining a central opening.

62. The apparatus of claim 59, wherein the chamber interior includes a tapered portion leading to the outlet port.

63. The apparatus of claim 56, wherein the separation chamber comprises at least one guide hole configured to receive at least one support member of the centrifuge.

64. The apparatus of claim 56, wherein the rotor comprises a plurality of support members located in an asymmetric fashion with respect to the axis of rotation, and wherein the separation chamber comprises a plurality of guide holes, each of the guide holes being configured to receive a respective one of the support members.

65. The apparatus of claim 56, wherein the apparatus is configured to be disposed after being used for processing of blood components from a single donor.

66. The apparatus of claim 56, wherein the separation chamber has a ring shape.

Referenced Cited
U.S. Patent Documents
1684870 September 1928 Lewis
2616619 November 1952 MacLeod
2878995 March 1959 Dega
3096283 July 1963 Hein
3145713 August 1964 Latham, Jr.
3244363 April 1966 Hein
3326458 June 1967 Meryman et al.
3329136 July 1967 Cadiou
3456875 July 1969 Hein
3489145 January 1970 Judson et al.
3519201 July 1970 Eisel et al.
3600900 August 1971 Buddecke
3679128 July 1972 Unger et al.
3708110 January 1973 Unger et al.
3724747 April 1973 Unger et al.
3737096 June 1973 Jones et al.
3771715 November 1973 Baram
3823869 July 1974 Loison
3825175 July 1974 Sartory
3858796 January 1975 Unger et al.
3864089 February 1975 Tiffany et al.
3885735 May 1975 Westbert
3987961 October 26, 1976 Sinn et al.
4007871 February 15, 1977 Jones et al.
4010894 March 8, 1977 Kellogg et al.
4016828 April 12, 1977 Maher, Jr. et al.
4059967 November 29, 1977 Rowe et al.
4091989 May 30, 1978 Schultz
4094461 June 13, 1978 Kellogg et al.
4111355 September 5, 1978 Ishimaru
4131369 December 26, 1978 Gordon et al.
4132349 January 2, 1979 Khoja et al.
4142670 March 6, 1979 Ishimaru et al.
4146172 March 27, 1979 Cullis et al.
4187979 February 12, 1980 Cullis et al.
4198972 April 22, 1980 Herb
4230263 October 28, 1980 Westberg
4244513 January 13, 1981 Fayer et al.
4268393 May 19, 1981 Persidsky et al.
4269718 May 26, 1981 Persidsky
4278202 July 14, 1981 Westberg
4303193 December 1, 1981 Latham, Jr.
4304357 December 8, 1981 Schoendorfer
4322298 March 30, 1982 Persidsky
4350283 September 21, 1982 Leonian
4356958 November 2, 1982 Kolobow et al.
4386730 June 7, 1983 Mulzet
4387848 June 14, 1983 Kellogg et al.
4388184 June 14, 1983 Brous et al.
4389206 June 21, 1983 Bacehowski et al.
4389207 June 21, 1983 Bacehowski et al.
4405079 September 20, 1983 Schoendorfer
4413771 November 8, 1983 Rohde et al.
4413772 November 8, 1983 Rohde et al.
4416654 November 22, 1983 Schoendorfer et al.
4419089 December 6, 1983 Kolobow et al.
4421503 December 20, 1983 Latham, Jr. et al.
4425112 January 10, 1984 Ito
4430072 February 7, 1984 Kellogg et al.
4439177 March 27, 1984 Conway
4447221 May 8, 1984 Mulzet
4459169 July 10, 1984 Bacehowski et al.
4464167 August 7, 1984 Schoendorfer et al.
4482342 November 13, 1984 Lueptow et al.
4530691 July 23, 1985 Brown
4610846 September 9, 1986 Martin
4617009 October 14, 1986 Öhlin et al.
4647279 March 3, 1987 Mulzet et al.
4675117 June 23, 1987 Neuman et al.
4680025 July 14, 1987 Kruger et al.
4701267 October 20, 1987 Watanabe et al.
4708710 November 24, 1987 Dunn, Jr.
4708712 November 24, 1987 Mulzet
4720284 January 19, 1988 McCarty
4767397 August 30, 1988 Hohenberg et al.
4798579 January 17, 1989 Penhasi
4808151 February 28, 1989 Dunn, Jr. et al.
4834890 May 30, 1989 Brown et al.
4846780 July 11, 1989 Galloway et al.
4846974 July 11, 1989 Kelley et al.
4850952 July 25, 1989 Figdor et al.
4851126 July 25, 1989 Schoendorfer
4885137 December 5, 1989 Lork
4911833 March 27, 1990 Schoendorfer et al.
4915847 April 10, 1990 Dillon et al.
4925442 May 15, 1990 Bodelson
4933291 June 12, 1990 Daiss et al.
4934995 June 19, 1990 Cullis
4936820 June 26, 1990 Dennehey et al.
4936998 June 26, 1990 Nishimura et al.
4939081 July 3, 1990 Figdor et al.
4939087 July 3, 1990 Van Wie et al.
4940543 July 10, 1990 Brown et al.
4990132 February 5, 1991 Unger et al.
5006103 April 9, 1991 Bacehowski et al.
5032288 July 16, 1991 Columbus et al.
5076911 December 31, 1991 Brown et al.
5078671 January 7, 1992 Dennehey et al.
5089146 February 18, 1992 Carmen et al.
5100564 March 31, 1992 Pall et al.
5114396 May 19, 1992 Unger et al.
5160310 November 3, 1992 Yhland
5203999 April 20, 1993 Hugues
5213970 May 25, 1993 Lopez-Berestein et al.
5217426 June 8, 1993 Bacehowski et al.
5217427 June 8, 1993 Cullis
5224921 July 6, 1993 Dennehey et al.
5229012 July 20, 1993 Pall et al.
5282982 February 1, 1994 Wells
5298171 March 29, 1994 Biesel
5316540 May 31, 1994 McMannis et al.
5316666 May 31, 1994 Brown et al.
5316667 May 31, 1994 Brown et al.
5356365 October 18, 1994 Brierton
5360542 November 1, 1994 Williamson, IV et al.
5360545 November 1, 1994 Pall et al.
5362291 November 8, 1994 Williamson, IV
5370802 December 6, 1994 Brown
5397497 March 14, 1995 Jakobson et al.
5409813 April 25, 1995 Schwartz
5427695 June 27, 1995 Brown
5431814 July 11, 1995 Jorgensen
5437624 August 1, 1995 Langley
5472621 December 5, 1995 Matkovich et al.
5494592 February 27, 1996 Latham, Jr. et al.
5501795 March 26, 1996 Pall et al.
5529691 June 25, 1996 Brown
5543062 August 6, 1996 Nishimura
5547591 August 20, 1996 Hagihara et al.
5549834 August 27, 1996 Brown
5571068 November 5, 1996 Bacehowski et al.
5580465 December 3, 1996 Pall et al.
5587070 December 24, 1996 Pall et al.
5593378 January 14, 1997 Dyck
5607830 March 4, 1997 Biesel et al.
5628915 May 13, 1997 Brown et al.
5641414 June 24, 1997 Brown
5651766 July 29, 1997 Kingsley et al.
5656163 August 12, 1997 Brown
5674173 October 7, 1997 Hlavinka et al.
5690815 November 25, 1997 Krasnoff et al.
5690835 November 25, 1997 Brown
5702357 December 30, 1997 Bainbridge et al.
5704887 January 6, 1998 Slowik et al.
5704888 January 6, 1998 Hlavinka et al.
5704889 January 6, 1998 Hlavinka et al.
5720716 February 24, 1998 Blakeslee et al.
5722926 March 3, 1998 Hlavinka et al.
5723050 March 3, 1998 Unger et al.
5733253 March 31, 1998 Headley et al.
5738796 April 14, 1998 Bormann et al.
5759147 June 2, 1998 Bacehowski et al.
5792038 August 11, 1998 Hlavinka
5792372 August 11, 1998 Brown et al.
5824230 October 20, 1998 Holm et al.
5858251 January 12, 1999 Borchardt et al.
5904645 May 18, 1999 Hlavinka
5906570 May 25, 1999 Langley et al.
5913768 June 22, 1999 Langley et al.
5939319 August 17, 1999 Hlavinka et al.
5951877 September 14, 1999 Langley et al.
5954626 September 21, 1999 Hlavinka
5976388 November 2, 1999 Carson
6053856 April 25, 2000 Hlavinka
6071421 June 6, 2000 Brown
6071422 June 6, 2000 Hlavinka et al.
6174447 January 16, 2001 Spindler
6261217 July 17, 2001 Unger et al.
6315706 November 13, 2001 Unger et al.
6334842 January 1, 2002 Hlavinka et al.
6348031 February 19, 2002 Unger et al.
6354986 March 12, 2002 Hlavinka et al.
6361692 March 26, 2002 Bischof
6379322 April 30, 2002 Kingsley et al.
6387070 May 14, 2002 Marino et al.
6464624 October 15, 2002 Pages
6605223 August 12, 2003 Jorgensen et al.
20020020680 February 21, 2002 Jorgensen
20020046967 April 25, 2002 Romanauskas et al.
20020086788 July 4, 2002 Hogberg et al.
20020090319 July 11, 2002 Vandlik et al.
20020091057 July 11, 2002 Westberg et al.
20020119880 August 29, 2002 Hogberg et al.
Foreign Patent Documents
26 58 926 June 1978 DE
28 21 055 April 1979 DE
37 00 122 July 1988 DE
38 15 645 November 1989 DE
0 057 907 August 1982 EP
0 363 120 April 1990 EP
0 406 485 January 1991 EP
0 408 462 January 1991 EP
0 419 346 March 1991 EP
0 508 474 October 1992 EP
0 304 431 June 1993 EP
0 935 966 August 1999 EP
0 578 086 January 2001 EP
2 567 416 January 1986 FR
1 373 672 November 1974 GB
354 581 September 1972 SE
354 582 September 1972 SE
WO85/02561 June 1985 WO
WO87/06844 November 1987 WO
WO87/06857 November 1987 WO
WO 87/06857 November 1987 WO
WO89/02273 March 1989 WO
WO92/00145 January 1992 WO
WO94/02157 February 1994 WO
WO94/25086 November 1994 WO
WO94/27698 December 1994 WO
WO95/01842 January 1995 WO
WO95/04591 February 1995 WO
WO96/29081 September 1996 WO
WO96/32198 October 1996 WO
WO96/33023 October 1996 WO
WO96/40402 December 1996 WO
WO96/40403 December 1996 WO
WO97/30715 August 1997 WO
WO97/30715 August 1997 WO
WO97/30748 August 1997 WO
WO 97/30748 August 1997 WO
WO97/43045 November 1997 WO
WO 98/35757 August 1998 WO
WO98/35757 August 1998 WO
WO98/46362 October 1998 WO
WO98/46362 October 1998 WO
WO98/50163 November 1998 WO
WO 00/54886 September 2000 WO
WO 01/02037 January 2001 WO
WO 01/02037 January 2001 WO
WO 01/30364 May 2001 WO
WO 01/97943 December 2001 WO
Other references
  • Cobe Spectra™ Apheresis System, Operator's Manual, For Use with Software Program Revisions 3.0 through 3.9, Feb. 1991, pp. 8-1, and 8-3 through 8-34.
  • A. H. Runck et al., Continuous-flow Centrifugation Washing of Red Blood Cells, Transfusion, Jul.-Aug. 1972, pp. 237-244.
  • T. J. Contreras et al., A Comparison of Methods to Wash Liquid-Stored Red Blood Cells and Red Blood Cells Frozen with High or Low Concentrations of Glycerol, Transfusion, Nov.-Dec. 1976, pp. 539-565.
  • Co-pending U.S. Appl. No. 09/985,050; Title: Centrifugal Separation Apparatus and Method for Separating Fluid Components Inventor(s): Dennis Hlavinka et al. U.S. Filing Date: Nov. 1, 2001 Amendment Filed: Jul. 24, 2002; Response to Office Action Dated Oct. 16, 2002 Filed: Jan. 13, 2003.
  • Co-pending U.S. Appl. No. 10/356,605; Title: Blood Component Separation Device, System, and Method Including Filtration Inventor(s): Frank Corbin, III et al. U.S Filing Date: Feb. 3, 2003.
  • Nancy M. Heddle et al., The Role of the Plasma from Platelet Concentrates in Transfusion React-ions, The New England Journal of Medicine, vol. 331, No. 10, Sep. 8, 1994, pp. 625-628, 670 and 671.
  • A. Bruil et al., Asymmetric Membrane Filters for the Removal of Leukocytes From Blood, Journal of Biomed. Materials Research, vol. 25, 1459-1480, 1991.
  • N. Besso et al., Asahi Sepacell R-500 Leukocyte Removal Filter: The Effects of Saline Flush on the Unloading of White Blood Cells and Contamination of the Filtrate, undated.
  • Maxim D. Persidsky et al., Separation of Platelet-Rich Plasma by Modified Centrifugal Elutriation, Journal of Clinical Apheresis 1:18-24 (1982).
  • John F. Jemionek et al., Special Techniques for the Separation of Hemopoietic Cells, Current Methodology in Experimental Hematology, 1984, pp. 12-16.
  • J. Freedman et al., White Cell Depletion of Red Cell and Pooled Random-Donor Platelet Concentrates by Filtration and Residual Lymphocyte Subset Analysis, Transfusion, 1991, vol. 31, No. 5, pp. 433-440.
  • Carl G. Figdor, et al., “Isolation of Functionally Different Human Monocytes by Counterflow Centrifugation Elutriation,” Blood, vol. 60, No. 1, Jul. 1982, pp. 46-53.
  • Bernard John Van Wie, Conceptualization and Evaluation of Techniques for Centrifugal Separation of Blood Cells: Optimum Process Conditions, Recycle, and Stagewise Processing, Dissertation, 1982, pp. 27-58.
  • Haemonetics Mobile Collection System Owner's Operating and Maintenance Manual, 1991, pp. 3-2 through 3-7 and pp. 1-6.
  • E.A. Burgstaler et al., White Blood Cell Contamination of Apheresis Platelets Collected on the COBE spectra, COBE Blood Component Technology.
  • Centrifugal Elutriation, Beckman, pp. 1-7, vi, undated.
  • T. H. Price, et al., Platelet Collection using the COBE Spectra, COBE Blood Component Technology, 1998.
  • Nassy Besso et al., Asahi Sepacell PL-10A Leukocyte Removal Filter: Effect of Post-Filtration Flush with Saline, PALL Technical Report, 1991.
  • Harvey J. Brandwein, et al., Asahi Sepacell PL-10A Leukocyte Removal Filter Description and Review of Claims, PALL Technical Report, 1991.
  • “Lower is Better!” (flyer) PALL Biomedical Products Company, 1994.
  • Judy H. Angelbeck, Adverse Reactions to Platelet Transfusion, Risks and Probable Causes (1994), pp. 1-14.
  • AS 104 Cell Separator, Fresenius, undated.
  • CS-3000 Blood Cell Separator, Powerful Technology, Fenwell Laboratories, undated.
  • Baxter CS-3000 Plus Blood Cell Separator Operator's Manual (7-19-3-139), undated.
  • The Mobile Collection System gives you easier access to more donors that ever before, Haemonetics (Sep. 1992).
  • LRF6/LRF10, High Efficiency Leukocyte Removal Filter Systems for Platelets, PALL Biomedical Products Corporation, undated.
  • J. Whitbread, et al., Reduction of C3A Fragment Levels Following Leukodepletion Using a PALL PXL8 Filter, undated.
  • T. A. Takahashi et al., Bradykinin Formation in a Platelet Concentrate Filtered with a Leukocyte-Removal Filter Made of Nonwoven Polyester Fibers with a Negatively Charged Surface, undated.
  • Baxter CS-3000 Plus Blood Cell Separator, pp. 1-18, undated.
  • J. F. Jemionek, Variations in CCE Protocol for Cell Isolation, Elutriation, pp. 17-41, undated.
  • Brief Operating Instructions, Fresenius MT AS 104 blood cell separator, 4/6.90(OP), undated.
  • English Abstract of SU 1725117 A, Apr. 1992.
  • English Abstract of SU 1255136, Sep. 1986.
  • English Abstract of SU 1236366, Jun. 1986.
  • English Abstract of SU 1091071, May 1984.
  • English language abstract of DE 3734170, Apr. 1989.
  • Multi Chamber Counterflow Centrifugation System, Dijkstra Vereenigde B.V., 13 pgs, undated.
  • Baxter CS-3000 Plus Blood Cell Separator, Technology With a Mind You Can Own, 1990.
  • Plas et al, “A New Multichamber Counterflow Centrifugation Rotor with High-separation Capacity and Versatile Potentials,” Experimental Hematology 16:355-359 (1988).
  • Kauffman, et al., “Isolation of Cell Cycle Fractions by Counterflow Centrifugal Elutriation,” Analytical Biochemistry 191, 41-46 (1990).
  • A. Faradji, et al., “Large Scale Isolation of Human Blood Monocytes by Continuous Flow Centrifugation Leukopherisis and Counterflow Centrifugation Elutration for Adoptive Cellular Immunotherapy in Cancer Patients,” Journal of Immunological Methods 174 (1994) pp. 297-309.
  • Ino K. Gao, et al., “Implementation of a Semiclosed Large Scale Counterflow Centrifugal Elutriation System,” Journal of Clinical Apheresis 3:154-160 (1987).
  • Griffith, “Separation of T and B Cells from Human Peripheral Blood by Centrifugal Elutriation,” Analytical Biochemistry 87, 97-107 (1978).
  • Sunny Dzik, Leukodepletion Blood Filters: Filter Design and Mechanisms of Leukocyte Removal, Transfusion Medicine Reviews, vol. VII, No. 2, Apr. 1993, pp. 65-77.
  • Bernard J. Van Wie, et al., The Effect of Hematocrit and Recycle on Cell Separations, Plasma Ther. Transfus. Technol. 1986; 7:373-388.
  • P.D. Drumheller et al., The Effects of RPM and Recycle on Separation Efficiency in a Clinical Blood Cell Centrifuge, Journal of Biomechanical Engineering, Nov. 1987, vol. 109, pp. 324-329.
  • R.J. Oxford et al., Monitoring and Automated Optimization of a Cell Centrifuge, IEEE/Eighth Annual Conference of the Engineering in Medicine and Biology Society, pp. 925-927, undated.
  • R. J. Oxford et al., Interface Dynamics in a Centrifugal Cell Separator, Transfusion, Nov.-Dec., 1988, vol. 28, Nov.6, pp. 588-592.
  • A. Tulp et al., A Separation Chamber to Sort Cells and Cell Organelles by Weak Physical Forces, V.A. Sector-Shaped Chamber and Its Application to the Separation of Peripheral Blood Cells, Journal of Immunological Methods 69 (1984), pp. 281-295.
  • Robert J. Grabske, Separating Cell Populations by Elutration, pp. 1-8, undated.
  • Carl G. Figdor et al., Theory and Practice of Centrifugal Elutriation (CE) Factors Influencing the Separation of Human Blood Cells, Cell Biophysics 5, 105-118 (1983).
  • P.E. Lindahl, On Counterstreaming Centrifugation in the Separation of Cells and Cell Fragments (1956), pp. 411-415.
  • C. Almici et al., Counterflow Centrifugal Elutriation: present and future, Bone Marrow Transplantation 1993, 12:105-108.
  • Richard J. Sanderson, Separation of Different Kinds of Nucleated Cells from Blood by Centrifugal Elutriation, Cell Separation Methods and Selected Applications, vol. 1, 1982, pp. 153-168.
  • P.C. Keng, et al., Characterization of the Separation Properties of the Beckman Elutriator System, Cell Biophysics 3 (1981), pp. 41-56.
  • Biofil, Systems for Filtration of Haemocomponents, undated.
  • Claes, F. Högman, Leucocyte Depletion of Blood Components, 1994, pp. 1, 156-173.
  • A. S. Buchanan et al., Principle of a Counter-streaming Centrifuge for the Separation of Particles of Different Sizes, Nature, Apr. 24, 1948, pp. 648-649.
  • “Cost-Effectiveness of Leukocyte Depletion of Blood Components”, Presented at the 1993 AABB Meeting Miami Beach, FL.
  • I. Sniecinski, Prevention of Immunologic and Infectious Complications of Transfusion by Leukocyte Depletion, Prevention of Complications of Transfusion, Chapter 18; pp. 202-211, undated.
  • Benefits of Leukocyte Filtration for Red Cell and Platelet Blood Products, Transfusion Associated CMV (1994), pp. 1-18.
  • G. Stack et al., Cytokine Generation in Stored Platelet Concentrates, Transfusion, 1994; 34:20-25.
  • N. M. Heddle et al., A prospective study to identify the risk factors associated with acute reactions to platelet and red cell transfusions; Transfusion, 1993; 33:794-797.
  • H. Brandwein et al., Asahi Sepacell PL10A Leukocyte Removal Filter: Efficiency with Random Donor Platelet Pools, PALL Technical Report, undated.
  • J. Whitbread et al., Performance Evaluation of the Sepacell PL10A filter and PALL PXL8 filter: Measurement of Leukocyte Residuals and Consistency., PALL Technical Report, undated.
  • R. Brown et al., Evaluation of a new separation method utilizing plasma recirculation and autoelutriation, Transfusion, 1994; vol. 34, Supp.
  • R. Sanderson et al., Design Principles for a Counterflow Centrifugation Cell Separation Chamber, Analytical Biochemistry 71, 615-622 (1976).
  • Designed to Provide the Reliability and Performance to Harvest a High Yield Component Product, The Haemonetics V50 Apheresis System, undated.
  • Haemonetics MCS + LN 9000 Platelet Protocols, undated.
  • V. Sakalas, et al., Evaluation of Two New High Performance Leucocyte Removal Filters (ASAHI PLS-5A PLS-10A) for Use with Platelet Components, pp. 161-165, undated.
  • M.J. Seghatchian, et al., Leucocyte Depletion of Platelet Concentrates: Is Poor Filtration Recovery Related to Activation/Aggregation States of Platelets?, pp. 167-170, undated.
  • M.J. Seghatchian et al., Leucocyte Depletion by Filtration is Associated with Changes in Platelet Aggregation States: A New Diagnostic Approach, pp. 171-173, undated.
  • Haemonetics Leukocyte Management System, undated.
  • 2991 Cell Processor, Operator's Handbook, Cobe Blood Component Technology, Apr. 1996.
  • COBE BCT, 2991 Cell Processor, Service Manual, undated.
  • Office Action for U.S. Appl. No. 10/356,605, dated Oct. 19, 2004; Response to Office Action dated Oct. 19, 2004, filed Feb. 22, 2005 in U.S. Appl. No. 10/356,605.
Patent History
Patent number: 7279107
Type: Grant
Filed: Apr 16, 2003
Date of Patent: Oct 9, 2007
Patent Publication Number: 20040026341
Assignee: Gambro, Inc. (Lakewood, CO)
Inventors: Niclas Högberg (Karlskoga), Emanuel Hällgren (Karlskoga), Peter Pihlstedt (Stockholm), Brian M. Holmes (Lakewood, CO), Lars Persson (Askersund), Lars Strandberg (Gävle), Geert Van Waeg (Brussels), Frank Corbin, III (Littleton, CO)
Primary Examiner: David A. Reifsnyder
Attorney: Finnegan, Henderson, Farabow, Garrett & Dunner, LLP
Application Number: 10/414,475