Chip scale package with heat spreader

- Micron Technology, Inc.

A dense semiconductor flip-chip device assembly is provided with a heat sink/spreading/dissipating member that is formed as a paddle of a metallic paddle frame in a strip of paddle frames. Semiconductor dice are bonded to the paddles by, e.g., conventional semiconductor die attachment methods, enabling bump attachment and testing to be conducted before detachment from the paddle frame strip.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 09/342,789, filed Jun. 29, 1999, pending, which is a divisional of application Ser. No. 09/028,134, filed Feb. 23, 1998, now U.S. Pat. No. 6,314,639 issued Nov. 13, 2001.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to semiconductor device assemblies. More particularly, the invention pertains to a method for producing a chip-on-board semiconductor device assembly with a heat spreading/dissipating member, and the device produced thereby.

2. State of the Art

In the design and production of modem integrated circuits (IC), an important consideration is the dissipation of heat generated in the semiconductor device. Elevated temperatures may cause irreparable damage to the semiconductor die and its electrical connections.

Various methods for preventing excessive temperatures in a semiconductor device have been in use.

Thus, for low-power devices of less than about 1 watt, the metal lead frame itself may be sufficient to dissipate generated heat. Lead frame configurations for improved heat dissipation are shown in U.S. Pat. No. 5,541,446 of Kierse, U.S. Pat. No. 4,961,107 of Geist et al., and U.S. Pat. No. 5,101,465 of Murphy.

For higher power packaged devices, a metal heat spreader may be incorporated or attached to the outside of the package. Because of the generally low thermal polymers, the heat dissipation design is more critical for polymer-packaged those packaged in ceramic or metal.

Heat spreaders/heat sinks/heat dissipaters in packaged semiconductor devices are often used to conduct heat to the exterior of the devices, either directly or via the leads. A wide variety of such is illustrated in U.S. Pat. No. 5,596,231 of Combs, U.S. Pat. No. 5,594,282 of Otsuki, U.S. Pat. No. 5,598,034 of Wakefield, U.S. Pat. No. 5,489,801 to Blish II, U.S. Pat. No. 4,024,570 of Hartmann et al., U.S. Pat. Nos. 5,378,924 and 5,387,554 of Liang, U.S. Pat. No. 5,379,187 of Lee et al., U.S. Pat. No. 4,507,675 of Fujii et al., U.S. Pat. No. 4,642,671 of Rohsler et al., U.S. Pat. No. 4,931,852 of Brown et al., U.S. Pat. No. 5,173,764 of Higgins III, U.S. Pat. No. 5,379,186 to Gold et al., U.S. Pat. No. 5,434,105 to Liou, and U.S. Pat. No. 5,488,254 to Nishimura et al.

The above-indicated references may be characterized as providing complex devices requiring difficult and/or costly processes to achieve the desired heat dissipation. Most of the references are not applicable at all to a high density device attached in a bare state to a substrate such as a circuit board.

Encapsulation compositions and methods are shown in U.S. Pat. No. 4,358,552 to Shinohara et al. and U.S. Pat. No. 5,194,930 to Papathomas et al.

BRIEF SUMMARY OF THE INVENTION

The present invention comprises a high density semiconductor device assembly for electrical connection without wires to a substrate such as a circuit board. In a preferred embodiment, the invention comprises a chip-on-board (COB) device with a heat spreader/dissipater on its back side. The active surface on its “front side” may be attached in a bare die state to the substrate by lead bond methods known in the art, preferably by ball grid array (BGA) methods which simultaneously complete each of the conductive bonds between the semiconductor die and the circuit board.

The present invention also encompasses a “paddle frame” strip for (a) providing a heat spreader/dissipater on each semiconductor die, (b) supporting the semiconductor dice for die testing and/or (c) supporting the semiconductor dice for applying conductive bumps to the bond pads. The paddle frame strip may incorporate any number of paddle frames, and preferably has at least eight paddle frames.

The present invention further comprises a method for producing the high density semiconductor device with the heat spreader/dissipater.

The present invention provides significant advantages in the production of dense semiconductor devices, including enhanced reliability, ease of production, and reduced production costs.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The invention is illustrated in the following figures, wherein the elements are not necessarily shown to scale:

FIG. 1 is a plan view of a portion of a paddle frame and attached semiconductor dice of the spreading chip scale package of the invention;

FIG. 2 is a cross-sectional side view of a semiconductor die bonded to a paddle frame in accordance with the heat spreading chip scale package of the invention, as taken along line 22 of FIG. 1;

FIG. 3 is an enlarged perspective view of a semiconductor die bonded to a paddle of a paddle frame, furnished with a ball grid array and excised from the paddle frame in accordance with the chip scale package of the invention;

FIG. 4 is a side view of a circuit board upon which are reversibly mounted paddle-bonded semiconductor dice with ball grid arrays in accordance with the heat spreading chip scale package of the invention; and

FIG. 5 is a cross-sectional side view of a circuit board upon which are reversibly mounted and resin-packaged, paddle-bonded semiconductor dice with ball grid arrays, in accordance with the heat-spreading chip scale package of the invention.

DETAILED DESCRIPTION OF THE INVENTION

An improved high density semiconductor device assembly is provided by the present invention which is configured to be electrically attached to a substrate, such as a circuit board, by array bonding. A series of bare semiconductor devices of the invention may be mounted on a substrate in a closely packed arrangement. The semiconductor device is provided with a heat sink/spreading/dissipating member. Following mounting on a substrate, the device or plurality of devices may be “packaged” with a protective polymeric sealer.

The semiconductor device assembly and a method for producing it are described hereinbelow and illustrated in drawing FIGS. 1–5.

With reference to the drawings of FIGS. 1 and 2, a metal strip 10 of heat conductive material is configured with multiple paddle frames 12. The metal strip 10 has left and right side rails 14, 16 and a series of sprocket holes 18 in the side rails for precise positioning of processing equipment and a plurality of semiconductor dice 20 which are attached to the metal strip. Each paddle frame 12 includes the side rails 14, 16, cross-members 26, and a generally centrally positioned metal paddle 22 which is attached to the side rails 14, 16 by paddle support bars 24 and to cross-members 26 by paddle support bars 28. A semiconductor die 20, having a first major surface 36 and an opposing second major surface 38, has second major surface 38 attached to a metal paddle 22 by semiconductor die attachment methods known in the art. Exemplary of such semiconductor die attachment methods is attachment using a semiconductor die attach layer 30 of electrically non-conductive polymeric adhesive such as epoxy or polyimide. Alternatively, a semiconductor die attach layer 30 may be electrically conductive. As known in the art, a metal filled polymer, an unfilled conductive polymer such as a silver filled epoxy or polyimide, or a conductive gold-silicon eutectic material may be used. Thus, the semiconductor die attach layer 30 may be electrically conductive or insulative, depending upon the circuit configuration of the second major semiconductor die surface 38. Thus, for example, the second major surface 38 may be designed to be grounded to a ground plane surface, which may be the metal paddle 22.

The metal paddle 22 acts as a heat spreader/dissipater in the final semiconductor device assembly 40. Thus, while the semiconductor die attach layer 30 may be either electrically conductive or insulative, it preferably has an enhanced heat conductivity. Where the metal paddle 22 comprises a metal layer attached to a polymer layer, the semiconductor die attach layer 30 is attached to the metal surface 48 to enhance heat transfer (see drawing FIG. 3).

Each metal strip 10 with paddle frames 12 may be formed in the same manner as are lead frames in the art. The number of paddle frames 12 which may be incorporated into the metal strip 10 is limited only by the capability of a manufacturer's machines for semiconductor die attachment and die excising.

The paddle frame 12 includes the left and right side rails 14, 16 which are joined by cross-members 26. The generally centrally located metal paddle 22 is supported from the left and right side rails 14, 16 and cross-members 26 by paddle support bars 24, 28. Generally, no leads for electrical conduction are provided, although one or more of the paddle support bars 24, 28 may be used as leads in certain specific instances as shown in FIG. 1. No narrow “leads” common in lead frames are required in the paddle frame 12, resulting in greater ease of manufacture and increased reliability.

The paddle frame 12 may be formed of a thin film of metal such as aluminum, silver, copper, or Alloy “42.” Typically, the metal paddle 22 is sized to completely cover the second major surface 38 of the semiconductor die 20 and preferably be somewhat larger. The thickness 44 of the metal paddle 22 is a function of the quantity of generated thermal energy, the semiconductor die size, the thermal conductivity of the semiconductor die attach material, and whether a packaging material overlies the metal paddle 22 in the final product. For generally low rates of heat generation, the paddle thickness 44 may be the minimum required by structural considerations. However, where the heat generation rate is very high, it may be necessary to increase the paddle thickness 44 to provide an increased heat sink capacity.

In many cases, the thickness 44 of the metal paddle 22 need only be sufficient to support the semiconductor die 20 prior to excision, and for uniform adherence to the semiconductor die 20. The paddle thickness 44 may typically range from about 0.5 μm to about 5 μm, but may vary from this range, particularly upwardly for enhancing heat sink capability. This range of paddle thickness 44 includes the typical thicknesses of lead frames of the prior art. Paddle frames 12 may be formed and joined to semiconductor dice 20 by tape automated bonding (TAB).

To singulate each semiconductor device assembly 40, the paddle support bars 24, 28 are excised close to the metal paddle 22 with excisions 50 (see drawing FIG. 3).

Illustrated in drawing FIG. 1 is a plurality of semiconductor dice 20 with conductive bond pads 32 on the first major surface 36, i.e., the “active” surface. While drawing FIG. 1 shows the conductive bond pads 32 along the periphery of the semiconductor dice, thus limiting the number of conductive bond pads, the invention may be used for semiconductor dice having a full grid array of conductive bond pads as shown in drawing FIGS. 2 and 3.

In a preferred embodiment, conductive projections 34 such as solder bumps or balls are formed on the conductive bond pads 32, the projections enabling “gang” bonding, i.e., flip-chip bonding, of the semiconductor die bond pads to the conductive traces 46 of a substrate 42 such as a circuit board. This is illustrated in drawing FIGS. 4 and 5, which show a plurality of semiconductor device assemblies 40 flipped and bonded to circuit connections, e.g., conductive traces 46 (see drawing FIG. 5), of a substrate 42 comprising a circuit board. The internal circuitry within the substrate 42 is not shown, being irrelevant to the invention. The semiconductor device assemblies 40 may be bonded to a substrate 42 in a high density pattern and, being “bare” semiconductor dice 20, take up minimal space. The bonding may be completed by standard “flip-chip” methods, including thermal and/or pressure processes.

Each semiconductor device assembly 40 has a heat sink/spreader/dissipater 52 which was formerly a metal paddle 22 of a metal paddle frame 12. The heat sink/spreader/dissipater 52 has a generally exposed surface 54 for dissipating heat generated in the semiconductor device assembly 40.

As depicted in drawing FIG. 5, a sealant material 56 may be applied to the periphery of a semiconductor device assembly 40 and the space 58 between the semiconductor device assembly 40 and the substrate 42. The sealant material 56 seals the semiconductor device asssembly 40 to the substrate 42 and protects the semiconductor device assembly from moisture, etc. The spaces between adjacent semiconductor device assemblies 40 may be readily filled with sealant material 56. The space 58 may be filled, for example, by injecting sealant material 56 through holes, not shown, in the substrate 42. Preferably, surface 54 of the heat sink/spreader/dissipater 52 is largely left uncovered to provide high heat dissipation.

Any sealant material 56 useful in packaging semiconductor device assemblies may be used, including, e.g., epoxy, polyimide, etc.

A method of producing the semiconductor device assembly 40 includes the steps of:

1. producing a plurality of semiconductor dice 20 with integrated circuits as a wafer, each semiconductor die 20 having a first major surface 36 defined as an active surface with an array of conductive bond pads 32, i.e., input/output (I/O) pads, and a second, opposite major surface 38;

2. separating the individual semiconductor die 20 from the wafer;

3. providing a conductive “paddle frame” metal strip 10 with multiple paddle frames 12, each paddle frame having a heat conductive metal paddle 22 connected to left and right side rails 14, 16 and cross-members 26 of the paddle frame 12 by paddle support bars 24, 28;

4. bonding a semiconductor die 20 to each metal paddle 22 of the paddle frame metal strip 10 with a thin semiconductor die attach layer 30 of adhesive or adhesive tape of, e.g., epoxy or polyimide. The adhesive semiconductor die attach layer 30 may be provided with enhanced heat conductive properties. Alternatively, the second major surface 38 of the semiconductor die 20 may be bonded to the metal paddle 22 eutectically by formation of, e.g., a gold-silicon eutectic semiconductor die attach layer 30 or other electrically conductive material such as a specially designed polyimide.

5. conductive projections 34, i.e., balls or bumps (stud bumps) for reflow, may be formed on the I/O conductive bond pads 32 of the semiconductor dice 20 either prior to or following attachment of the semiconductor dice to the metal paddles 22;

6. the semiconductor dice 20 may be tested in sequence in strip form, i.e., while the metal paddles 22 with attached semiconductor dice are connected to the paddle frame metal strip 10. A test head (not shown) is placed to make temporary electrical connection with the conductive bond pads 32 or conductive protections 34 for the conduction of parametric and functional tests. The testing may include additional tests typical of “burn-in” testing;

7. the paddle support bars 24, 28 connecting the metal paddles 22 to the paddle frame 12 are excised to free each semiconductor device assembly 40.

The semiconductor device assemblies 40 so produced are configured for mounting in a “flip-chip” configuration, i.e., face down on a substrate 42 such as a circuit board, e.g., by reflowing under heat and/or by pressure or other methods as known in the art.

The metal paddle 22 attached to the second major surface 38 of each semiconductor die 20 comprises a heat sink/spreader/dissipater 52 which prevents overheating of the semiconductor device assembly 40 (a) during testing (including burn-in), (b) during mounting on the substrate 42, (c) during packaging, and (d) in actual operation.

Following attachment to a substrate 42 such as a circuit board, the semiconductor device assembly 40 may be sealed with an electrically insulating sealant material 56 to produce a partially encapsulated package. The exposed surface 54 of the heat sink/spreader/dissipater 52 is preferably left largely uncovered, or is only thinly covered with the sealant material 56. The sealant may be any of the polymeric materials commonly used for packaging, including those used for “glob-top.” Examples of such materials are epoxy resins and polyimides.

The invention is particularly applicable to high density integrated circuit semiconductor device assemblies 40 having a large number of interconnections, i.e., conductive bond pads 32. Such devices may produce significant quantities of thermal energy which, if not removed, may lead to destruction of the integrated circuit. The bare semiconductor dice 20 of the invention may be densely mounted on a substrate 42 and then sealed by introducing a sealant material 56 between the substrate and semiconductor dice to surround the electrical connections and the first major or active surfaces 36 and edges 60 of the semiconductor dice 20.

Major advantages of the invention are as follows:

1. The ease of device handling is enhanced. The semiconductor dice 20 are fixed to the unseparated metal paddles 22 of the “paddle frame” 12 during the test process and each semiconductor device assembly 40 can be handled without touching the semiconductor die. Once the semiconductor device assembly 40 is separated from the paddle frame 12 by excision of the paddle support bars 24, 28, the metal paddle 22 becomes a heat sink/spreader/dissipater 52, and the device may be handled and supported solely thereby.

2. Current methods of lead frame production may be used to produce the paddle frame metal strip 10. The paddle frames 12 are much simpler in design than lead frames, there being few or no electrical leads.

3. Semiconductor dice or multiple chips 20 may be mounted on a single paddle frame metal strip 10, using equipment widely used by device manufacturers. Thus, reliable attachment of the semiconductor dice 20 to the metal paddles 22, testing (and burn-in) of the semiconductor dice, separation of the paddle mounted semiconductor dice from the paddle frame metal strip 10, and mounting of the semiconductor dice on a substrate 42 may be easily accomplished using well-developed and common assembly equipment and methods. The readily aligned semiconductor die attach apparatus, test head, and lead excision apparatus enable accuracy and ease of operation in the device assembly.

4. The heat sink/spreader/dissipater 52 of the invention results in better temperature control and increased reliability of the semiconductor device assembly 40.

5. Use of known technology and equipment results in a lower assembly cost. No additional specially designed equipment is required.

6. A dense chip-size bare semiconductor device assembly 40 of low profile is produced for dense attachment to a circuit board or other substrate 42.

It is apparent to those skilled in the art that various changes and modifications may be made to the semiconductor die with a heat spreader/dissipater and the novel method of manufacturing, testing and installing the semiconductor die of the invention as disclosed herein without departing from the spirit and scope of the invention as defined in the following claims.

Claims

1. An assembly having a semiconductor die adhesively attached to a portion of a paddle frame comprising:

a chip-on-board semiconductor die having an active surface having a plurality of bond pads thereon and an opposing second surface;
at least one projection connected to at least one bond pad of said plurality of bond pads on said active surface of said chip-on-board semiconductor die for direct connection using at least one of a thermal process, a pressure process, and a combination of a thermal process and a pressure process to a substrate, said at least one projection including one of at least one of a piece of wire forming a solder ball and at least one solder bump; and
a generally centrally positioned paddle having a size essentially the same as said chip-on-board semiconductor die, said generally centrally positioned paddle of a paddle frame of a plurality of paddle frames solely having side rails and a plurality of cross-members connected to said generally centrally positioned paddle, said generally centrally positioned paddle for use as a heat sink for said chip-on-board semiconductor die for dissipating heat therefrom when said chip-on-board semiconductor die is mounted on a substrate, said opposing second surface of said chip-on-board semiconductor die being secured to said generally centrally positioned paddle, said generally centrally positioned paddle being attached to said side rails by at least a plurality of paddle support bars and being attached to said cross-members by said at least a plurality of paddle support bars.

2. The assembly of claim 1, wherein said at least one projection includes a plurality of projections comprising a ball grid array (BGA) of solder balls.

3. The assembly of claim 1, wherein said at least one projection comprises at least one ball deposited by a wire bonding machine.

4. The assembly of claim 1, wherein said at least one projection comprises at least one stud bump deposited by a wire bonding machine.

5. The assembly of claim 1, further comprising:

an electrically non-conductive adhesive layer securing said opposing second surface to said generally centrally positioned paddle.

6. The assembly of claim 5, wherein said electrically non-conductive adhesive layer comprises one of epoxy and polyimide.

7. The assembly of claim 1, further comprising:

an electrically conductive adhesive layer securing said opposing second surface of said chip-on-board semiconductor die to said generally centrally positioned paddle.

8. The assembly of claim 7, wherein said electrically conductive adhesive layer comprises a eutectic material.

9. The assembly of claim 7, wherein said electrically conductive adhesive layer comprises a gold-silicon eutectic material.

10. The assembly of claim 7, wherein said electrically conductive adhesive layer comprises a metal-filled polymer, said metal-filled polymer comprising a heat conductive material.

11. The assembly of claim 7, wherein said electrically conductive adhesive layer comprises conductive polyimide.

12. The assembly of claim 1, wherein said substrate includes circuit connections, said plurality of bond pads bonded to said circuit connections.

13. The assembly of claim 12, further comprising:

sealant packaging material enclosing a portion of said chip-on-board semiconductor die and covering a portion of said substrate.

14. An assembly having a semiconductor die adhesively attached to a portion of a paddle frame comprising:

a semiconductor die having an active surface having at least one bond pad thereon and an opposing second surface;
at least one projection secured to said at least one bond pad on said active surface of said semiconductor die for direct connection using at least one of a thermal process, a pressure process, and a combination of a thermal process and a pressure process to a substrate, said at least one projection including one of at least one of a piece of wire forming a solder ball and at least one solder bump; and
a metal paddle having a size essentially the same as said semiconductor die, said metal paddle from a paddle frame having no narrow leads, said opposing second surface of said semiconductor die being attached to said metal paddle, said metal paddle attached to at least one side rail of a paddle frame by at least a plurality of paddle support bars and attached to a plurality of cross-members by said at least a plurality of paddle of support bars.

15. The assembly of claim 14, wherein said at least one projection comprises a ball grid array (BGA) of solder balls.

16. The assembly of claim 14, wherein said at least one projection comprises at least one ball deposited by a wire bonding machine.

17. The assembly of claim 14, wherein said at least one projection comprises at least one stud bump deposited by a wire bonding machine.

18. The assembly of claim 14, further comprising:

an electrically non-conductive adhesive layer attaching said opposing second surface to said metal paddle.

19. The assembly of claim 18, wherein said electrically non-conductive adhesive layer comprises one of epoxy and polyimide.

20. The assembly of claim 14, further comprising:

an electrically conductive adhesive layer attaching said opposing second surface to said metal paddle.

21. The assembly of claim 20, wherein said electrically conductive adhesive layer comprises a eutectic material.

22. The assembly of claim 21, wherein said electrically conductive adhesive layer comprises a metal-filled polymer, said metal-filled polymer comprising a heat conductor.

23. The assembly of claim 21, wherein said electrically conductive layer comprises conductive polyimide.

24. The assembly of claim 20, wherein said electrically conductive adhesive layer comprises a gold-silicon eutectic material.

25. The assembly of claim 14, further comprising:

a substrate having a plurality of circuit connections, said at least one bond pad connected to at least one circuit connection of said plurality of circuit connections.

26. The assembly of claim 25, further comprising:

sealant packaging covering a portion of said semiconductor die and a portion of said substrate.

27. An assembly having a semiconductor die and a portion of a paddle frame comprising:

a chip-on-board semiconductor die having an active surface having a plurality of bond pads thereon and an opposing second surface;
a plurality of projections connected to said plurality of bond pads directly for connection using at least one of a thermal process, a pressure process, and a combination of a thermal process and a pressure process to a host circuit board, said plurality of projections including one of a plurality of pieces of wire forming solder balls and a plurality of solder bumps; and
a metallic paddle having a size essentially the same as said chip-on-board semiconductor die, said metallic paddle secured to said opposing second surface of said chip-on-board semiconductor die for dissipating heat therefrom during operation thereof when said chip-on-board semiconductor die is attached to a substrate, said metallic paddle being attached to at least one side rail of a paddle frame having no narrow leads by at least a plurality of paddle support bars and being attached to a plurality of cross-members by said at least a plurality of support bars.

28. The assembly of claim 27, wherein said plurality of projections comprises a ball grid array (BGA) of solder balls.

29. The assembly of claim 27, wherein said plurality of projections comprises balls deposited by a wire bonding machine.

30. The assembly of claim 27, wherein said plurality of projections comprises a plurality of stud bumps deposited by a wire bonding machine.

31. The assembly of claim 27, further comprising:

an electrically non-conductive adhesive layer connecting said opposing second surface to said metallic paddle.

32. The assembly of claim 31, wherein said electrically non-conductive adhesive layer comprises one of epoxy and polyimide.

33. The assembly of claim 27, further comprising:

an electrically conductive adhesive layer connecting said opposing second surface to said metallic paddle.

34. The assembly of claim 33, wherein said electrically conductive adhesive layer comprises a eutectic material.

35. The assembly of claim 33, wherein said electrically conductive adhesive layer comprises a gold-silicon eutectic material.

36. The assembly of claim 33, wherein said electrically conductive adhesive layer comprises a metal-filled polymer, said metal-filled polymer comprising a heat conductive material.

37. The assembly of claim 33, wherein said electrically conductive adhesive layer comprises conductive polyimide.

38. The assembly of claim 27, further comprising:

a substrate having a plurality of circuit connections, said plurality of bond pads connected to said plurality of circuit connections.

39. The assembly of claim 38, further comprising:

sealant packaging covering a portion of said chip-on-board semiconductor die and a portion of said substrate.
Referenced Cited
U.S. Patent Documents
4024570 May 17, 1977 Hartmann et al.
4143456 March 13, 1979 Inoue
4264917 April 28, 1981 Ugon
4300153 November 10, 1981 Hayakawa et al.
4358552 November 9, 1982 Shinohara et al.
4507675 March 26, 1985 Fujii et al.
4594770 June 17, 1986 Butt
4642671 February 10, 1987 Rohsler et al.
4931852 June 5, 1990 Brown et al.
4961107 October 2, 1990 Geist et al.
5073521 December 17, 1991 Braden
5101465 March 31, 1992 Murphy
5173764 December 22, 1992 Higgins, III
5194930 March 16, 1993 Papathomas et al.
5214845 June 1, 1993 King et al.
5233220 August 3, 1993 Lamson et al.
5378924 January 3, 1995 Liang
5379186 January 3, 1995 Gold et al.
5379187 January 3, 1995 Lee et al.
5387554 February 7, 1995 Liang
5434105 July 18, 1995 Liou
5436203 July 25, 1995 Lin
5450283 September 12, 1995 Lin et al.
5488254 January 30, 1996 Nishimura et al.
5489538 February 6, 1996 Rostoker et al.
5489801 February 6, 1996 Blish, II
5490324 February 13, 1996 Newman
5528076 June 18, 1996 Pavio
5541446 July 30, 1996 Kierse
5550408 August 27, 1996 Kunitomo et al.
5559306 September 24, 1996 Mahulikar
5594282 January 14, 1997 Otsuki
5596231 January 21, 1997 Combs
5598034 January 28, 1997 Wakefield
5606199 February 25, 1997 Yoshigai
5661086 August 26, 1997 Nakashima et al.
5708567 January 13, 1998 Shim et al.
5773896 June 30, 1998 Fujimoto et al.
5834848 November 10, 1998 Iwasaki
5866953 February 2, 1999 Akram et al.
5884396 March 23, 1999 Lin
5907769 May 25, 1999 Corisis
5917702 June 29, 1999 Barrow
5923090 July 13, 1999 Fallon et al.
5938956 August 17, 1999 Hembree et al.
6163956 December 26, 2000 Corisis
6314639 November 13, 2001 Corisis
6403882 June 11, 2002 Chen et al.
6505400 January 14, 2003 Corisis
Patent History
Patent number: 7312516
Type: Grant
Filed: Jan 13, 2003
Date of Patent: Dec 25, 2007
Patent Publication Number: 20030080402
Assignee: Micron Technology, Inc. (Boise, ID)
Inventor: David J. Corisis (Meridian, ID)
Primary Examiner: Hoai Pham
Assistant Examiner: DiLinh Nguyen
Attorney: TraskBritt
Application Number: 10/342,632