Forming nonvolatile phase change memory cell having a reduced thermal contact area
The invention provides for a nonvolatile memory cell comprising a heater layer in series with a phase change material, such as a chalcogenide. Phase change is achieved in chalcogenide memories by thermal means. Concentrating thermal energy in a relatively small volume assists this phase change. In the present invention, a layer in a pillar-shaped section of a memory cell is etched laterally, decreasing its cross-section. In this way the cross section of the contact area between the heater layer and the phase change material is reduced. In preferred embodiments, the laterally etched layer is the heater layer or a sacrificial layer. In a preferred embodiment, such a cell can be used in a monolithic three dimensional memory array.
Latest Sandisk Corporation Patents:
- Non-volatile semiconductor memory adapted to store a multi-valued data in a single memory cell
- Non-volatile semiconductor memory adapted to store a multi-valued data in a single memory cell
- Gate stack having electron blocking layers on charge storage layers for electronic devices
- Compositions and methods for modulation of nanostructure energy levels
- Resistance change memory
This is a divisional application of U.S. patent application Ser. No. 11/040,465, filed Jan. 19, 2005 now U.S. Pat. No. 7,259,038, published as US Pub. No. 20060157683 on Jul. 20, 2006, incorporated herein by reference. This application is also related to Scheuerlein, US Pub. No. 2005/0158950, published Jul. 21, 2005 (application Ser. No. 11/040,255, filed Jan. 19, 2005), titled “A Non-Volatile Memory Cell Comprising a Dielectric Layer and a Phase Change Material in Series,”; to Scheuerlein, US Pub. No. 2006/0157679, published Jul. 20, 2006 (application Ser. No. 11/040,262, filed Jan. 19, 2005), titled “Structure and Method for Biasing Phase Change Memory Array for Reliable Writing,”; and to Scheuerlein, US Pub. No. 2006/0157682, published Jul. 20, 2006 (application Ser. No. 11/040,256, filed Jan. 19, 2005), titled “A Write-Once Nonvolatile Phase Change Memory Array,”; all filed on even date herewith and incorporated herein by reference.
BACKGROUND OF THE INVENTIONThe invention relates to a nonvolatile memory cell comprising a phase change material to in contact with a heater layer, the contact region of reduced area, and methods to form this heater layer.
Phase-change materials such as chalcogenides have been used in nonvolatile memories. Such materials can exist in one of two or more stable states, for example a high-resistance and a low-resistance state. In chalcogenides, the high-resistance state corresponds to an amorphous state, while the low-resistance state corresponds to a more ordered crystalline state. The conversion between states is generally achieved thermally.
Conversion from one phase to another is achieved most effectively if the thermal energy is focused into a relatively small area. Some prior art devices have tried to focus thermal energy by forming a very small contact area using photolithography. The limits of photolithography, however, restrict the usefulness of this approach. A need exists, therefore, for a method to concentrate heat in a phase change memory in a volume smaller than that easily achievable using photolithography.
SUMMARY OF THE INVENTIONThe present invention is defined by the following claims, and nothing in this section should be taken as a limitation on those claims. In general, the invention is directed to a nonvolatile memory cell comprising a phase change element and a heater layer, with a small contact area between the two.
A first aspect of the invention provides for a method for forming a phase change memory cell, the method comprising forming a bottom conductor; forming a top conductor above and vertically separate from the bottom conductor; forming a pillar diode having a diode diameter, the pillar diode disposed between the bottom conductor and the top conductor; forming a heater layer disposed between the pillar diode and the bottom conductor or between the pillar diode and the top conductor; forming a phase change element in contact with the heater layer; forming a laterally etchable layer disposed between the pillar diode and the bottom conductor or between the pillar diode and the top conductor; and laterally etching the laterally etchable layer wherein, after lateral etching, the laterally etchable layer has an etched diameter less than the diode diameter.
A preferred embodiment of the invention provides for a monolithic three dimensional phase change memory array comprising a) a first memory level, the first memory level comprising i) a plurality of substantially parallel first conductors formed at a first height above a substrate; ii) a plurality of substantially parallel second conductors formed at a second height, the second height above the first height; iii) a plurality of first diodes, each disposed between one of the first conductors and one of the second conductors; iv) a plurality of heater layers, each disposed between one of the first conductors and one of the second conductors and each having an upper surface having a first area; v) a plurality of phase change elements, each having a lower surface having a second area, wherein at least a part of the lower surface of each phase change element is in contact with the upper surface of the adjacent heater layer and wherein the first area is smaller than the second area; and b) at least a second memory level monolithically formed on the first memory level.
Another aspect of the invention provides for a method for forming a monolithic three dimensional phase change memory array, the method comprising forming a plurality of substantially parallel, substantially coplanar first conductors at a first height above a substrate; forming a plurality of substantially parallel, substantially coplanar second conductors at a second height above the first height; forming a plurality of first diodes disposed between the first conductors and the second conductors, each first diode having a first average diode diameter; forming a plurality of heater elements, each heater element between one of the first diodes and one of the first conductors or one of the second conductors; forming a plurality of phase change elements, each in contact with one of the heater elements; forming a plurality of laterally etchable elements, each disposed above one of the first diodes, between the one of the first diodes and one of the second conductors; and laterally etching each of the laterally etchable elements wherein, after lateral etching, each laterally etchable element has an etched diameter less than the first average diode diameter of the first diode below it, wherein a phase change memory cell is formed between each of the first conductors and each of the second conductors.
Another preferred embodiment of the invention provides for a method for forming a monolithic three dimensional phase change memory array, the method comprising forming a plurality of substantially parallel, substantially coplanar first conductors at a first height above a substrate; depositing a semiconductor layerstack over the first conductors; depositing a heater layer on the semiconductor layerstack; forming a sacrificial layer on the heater layer; patterning and etching the sacrificial layer, heater layer, and semiconductor layer stack into first pillars, each first pillar comprising a) a first semiconductor diode etched from the semiconductor layer stack; b) a heater element etched from the heater layer, each heater element having a first diameter; and c) a sacrificial region etched from the sacrificial layer, each sacrificial region having a second diameter; further laterally and selectively etching each sacrificial region; filling gaps between the sacrificial regions with dielectric material; etching to remove the sacrificial regions, leaving voids in the dielectric material; forming phase change elements, wherein a portion of each phase change element fills one of the voids; and forming a plurality of substantially parallel, substantially coplanar second conductors above the first pillars.
Yet another aspect of the invention provides for a method for forming a phase change memory cell, the method comprising forming a bottom conductor; forming a top conductor above and vertically separate from the bottom conductor; forming a non-ohmic conductive element disposed between the bottom conductor and the top conductor, the non-ohmic conductive element having a first diameter; forming a heater layer disposed between the non-ohmic conductive element and the bottom conductor or between the non-ohmic conductive element and the top conductor; forming a phase change element in contact with the heater layer; forming a laterally etchable layer disposed between the non-ohmic conductive element and the bottom conductor or between the non-ohmic conductive element and the top conductor; and laterally etching the laterally etchable layer wherein, after lateral etching, the laterally etchable layer has an etched diameter less than the first diameter.
Each of the aspects and embodiments of the invention described herein can be used alone or in combination with one another.
The preferred aspects and embodiments will now be described with reference to the attached drawings.
While all materials can change phase, in this discussion the term “phase change material” will be used to describe a material that changes relatively easily from one stable state to another. The phase change is typically from an amorphous state to a crystalline state (or vice versa), but may be an intermediate change, such as from a less-ordered to a more ordered crystalline state, or vice versa. Chalcogenides are well-known phase change materials.
It is known to use phase change materials, such as chalcogenides, in a nonvolatile memory cell, in which a high-resistance, amorphous state represents one memory state while a low-resistance, crystalline state represents the other memory state, where memory states correspond to a value of 1 or 0. (If intermediate stable states are achieved, more than two memory states can exist for each cell; for simplicity, the examples in this discussion will describe only two memory states.) Chalcogenides are particularly useful examples of phase change materials, but it will be understood that other materials which undergo reliably detectable stable phase changes, such as silicon, can be used instead.
Phase change material is converted from one state to the other by heating to high temperature. To facilitate this conversion, mechanisms have been used to concentrate heat in a relatively small area contacting the phase change material. For example, as shown in
The present invention takes a different approach to forming a small contact area between a heater layer and a phase change material, allowing formation of a contact area smaller than the minimum feature size that can easily be formed by pattern and etch, with no precise alignment required.
In the present invention, either the heater layer or a volume of the phase change area adjacent to the heater layer has a narrow cross section, concentrating the applied thermal energy. Turning to
This technique can be used in a variety of ways to form a nonvolatile phase change memory cell. In one aspect of the invention, shown in
Next, as in
Turning to
In yet another embodiment,
Turning to
The examples shown in
In the examples of
To summarize, what has been described is a method for forming a phase change memory cell, the method comprising forming a bottom conductor; forming a top conductor above and vertically separate from the bottom conductor; forming a non-ohmic conductive element disposed between the bottom conductor and the top conductor, the non-ohmic conductive element having a first diameter; forming a heater layer disposed between the non-ohmic conductive element and the bottom conductor or between the non-ohmic conductive element and the top conductor; forming a phase change element in contact with the heater layer; forming a laterally etchable layer disposed between the non-ohmic conductive element and the bottom conductor or between the non-ohmic conductive element and the top conductor; and laterally etching the laterally etchable layer wherein, after lateral etching, the laterally etchable layer has an etched diameter less than the first diameter. The non-ohmic conductive element can be, for example, a diode or a MIM device. In some embodiments, the laterally etchable layer is a heater layer, in others it may be a sacrificial layer, and in still others it may be a phase change layer.
A detailed example will be provided describing fabrication of a monolithic three dimensional memory array, the nonvolatile memory cells of the array formed according to preferred embodiments of the present invention. Formation of two embodiments will be described. For completeness, specific process conditions, dimensions, methods, and materials will be provided. It will be understood, however, that these details are not intended to be limiting, and that many of these details can be modified, omitted or augmented while the results still fall within the scope of the invention.
Fabrication
Fabrication of a single memory level will be described in detail. Additional memory levels can be stacked, each monolithically formed above the one below it.
Turning to
An insulating layer 102 is formed over substrate 100. The insulating layer 102 can be silicon oxide, silicon nitride, high-dielectric film, Si—C—O—H film, or any other suitable insulating material.
The first conductors 200 are formed over the substrate and insulator. An adhesion layer 104 may be included between the insulating layer 102 and the conducting layer 106 to help the conducting layer 106 adhere. Preferred materials for the adhesion layer 104 are tantalum nitride, tungsten nitride, titanium tungsten, tungsten, titanium nitride, or combinations of these materials. If the overlying conducting layer is tungsten, titanium nitride is preferred as an adhesion layer.
The next layer to be deposited is conducting layer 106. Conducting layer 106 can comprise any conducting material known in the art, including tantalum, titanium, tungsten, copper, cobalt, or alloys thereof. Titanium nitride may be used.
Once all the layers that will form the conductor rails have been deposited, the layers will be patterned and etched using any suitable masking and etching process to form substantially parallel, substantially coplanar conductors 200, shown in
Next a dielectric material 108 is deposited over and between conductor rails 200. Dielectric material 108 can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon oxide is used as dielectric material 108.
Finally, excess dielectric material 108 on top of conductor rails 200 is removed, exposing the tops of conductor rails 200 separated by dielectric material 108, and leaving a substantially planar surface 109. The resulting structure is shown in
The first conductors were formed by depositing a first conductive material; and patterning and etching the first conductive material into rail-shaped bottom conductors. The conductors could have been formed by a Damascene method instead.
Next, turning to
Next semiconductor material that will be patterned into pillars is deposited. The semiconductor material can be silicon, silicon-germanium, silicon-germanium-carbon, germanium, or other suitable semiconductors or compounds. For simplicity, this description will refer to the semiconductor material as silicon, but it will be understood that other suitable materials may be substituted.
In preferred embodiments, the pillar comprises a semiconductor junction diode. Turning to
In
The next layer 114 will be intrinsic undoped silicon. This layer can be formed by any deposition method known in the art. The thickness of the intrinsic silicon layer can range from about 1000 to about 4000 angstroms, preferably about 2500 angstroms. In one embodiment, silicon is deposited without intentional doping, yet has defects which render it slightly n-type.
Above this is a layer 116 of heavily doped p-type silicon. This layer is doped by in situ doping or by ion implantation. The thickness of heavily doped p-type silicon region 116 preferably ranges from about 100 to about 400 angstroms.
Pillars and Phase Change Elements First EmbodimentReturning to
A sacrificial layer 120 will be formed on heater layer 118. The sacrificial layer should be formed of a material that has good etch selectivity with titanium nitride, silicon and with the dielectric material that will fill gaps between the pillars that are to be formed. Examples of materials suitable for use in the sacrificial layer are magnesium oxide, silicon nitride, silicon, or a silicide. Metal silicides are preferred, including titanium silicide, nickel silicide, or tungsten silicide. If titanium silicide is used, it can be formed by depositing a thin layer of silicon, followed by a thin layer of titanium. A subsequent anneal will form titanium silicide layer 120.
Next, sacrificial layer 120, heater layer 118, semiconductor layers 116, 114 and 112, and underlying barrier layer 110 will all be patterned and etched to form pillars 300. Pillars 300 should have about the same pitch and about the same width as conductors 200 below, such that each pillar 300 is formed on top of a conductor 200. Some misalignment can be tolerated. The structure at this point is shown in
The pillars 300 can be formed using any suitable masking and etching process. For example, photoresist can be deposited, patterned using standard photolithography techniques, and etched. The patterning of the pillars 300 could also include forming a hard mask layer such as silicon nitride on top of layer 118, etching the hard mask with the photoresist pattern, then using the patterned hard mask material to etch the pillar.
After formation of the pillars, preferably while the photoresist or hard mask layer remains on the pillars, another etch is performed. This next etch is a relatively isotropic etch, which selectively etches the material of sacrificial layer 120, in this case titanium silicide, while etching the other materials of the pillar, in this example silicon and titanium nitride, and the hard mask layer if present, much more slowly or not at all. As shown in
Dielectric material 108 is deposited over and between the semiconductor pillars 300, filling the gaps between them. Dielectric material 108 can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon dioxide is used as the insulating material.
Next the dielectric material on top of the pillars 300 is removed, exposing the sacrificial layers 120 separated and surrounded by dielectric material 108, and leaving a substantially planar surface. This removal of dielectric overfill can be performed by any process known in the art, such as CMP or etchback. The resulting structure is shown in
Turning to
Turning to
In preferred embodiments a thin barrier layer 124 is formed on phase change layer 122. Barrier layer 124 provides a barrier between phase change layer 122 and conductive layer 126. Conductive layer 126 is formed of a conductive material, for example tungsten or titanium tungsten.
Phase change material layer 122, barrier layer 124, and conductive layer 126 are then patterned and etched using any suitable masking and etching process to form substantially parallel, substantially coplanar conductors 400, shown in
Next a dielectric material (not shown) is deposited over and between conductor rails 400. The dielectric material can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon oxide is used as this dielectric material.
Pillars and Phase Change Elements Second EmbodimentAn alternative embodiment will be described, in which the heater layer, rather than a sacrificial layer, is laterally etched to reduce the contact area between the heater layer and the phase change material.
Turning to
Heater layer 118, semiconductor layers 116, 114 and 112, and underlying barrier layer 110 will all be patterned and etched to form pillars 300. Pillars 300 should have about the same pitch and about the same width as conductors 200 below, such that each pillar 300 is formed on top of a conductor 200. Some misalignment can be tolerated. The structure at this point is shown in
The pillars 300 can be formed using any suitable masking and etching process. For example, photoresist can be deposited, patterned using standard photolithography techniques, and etched, then the photoresist removed. In both preferred embodiments, the step of forming the pillar diodes 300 comprises forming a semiconductor layer stack and patterning and etching the semiconductor layer stack to form the pillar diodes.
Turning to
Dielectric material 108 is deposited over and between the semiconductor pillars 300, filling the gaps between them. Dielectric material 108 can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon dioxide is used as the insulating material.
Next the dielectric material on top of the pillars 300 is removed, exposing the heater layers 118 separated by dielectric material 108, and leaving a substantially planar surface. This removal of dielectric overfill can be performed by any process known in the art, such as CMP or etchback. The resulting structure is shown in
Turning to
In preferred embodiments a thin barrier layer 124 is formed on phase change layer 122. Barrier layer 124 provides a barrier between phase change layer 122 and conductive layer 126. Conductive layer 126 is formed of a conductive material, for example tungsten or titanium tungsten.
Phase change material layer 122, barrier layer 124, and conductive layer 126 are then patterned and etched using any suitable masking and etching process to form substantially parallel, substantially coplanar conductors 400, shown in
Next a dielectric material (not shown) is deposited over and between conductor rails 400. The dielectric material can be any known electrically insulating material, such as silicon oxide, silicon nitride, or silicon oxynitride. In a preferred embodiment, silicon oxide is used as this dielectric material.
Additional Memory Levels
A second memory level can be formed above the first memory level just described. In one configuration, top conductors 400 can be shared between adjacent memory levels. Turning to
Alternatively, turning to
In another embodiment, some conductors may be shared while others are not.
Memory levels need not all be formed having the same style of memory cell. If desired, memory levels using phase change materials can alternate with memory levels using other types of memory cells.
Monolithic three dimensional memory array comprising vertically oriented pillars formed between conductors, the pillars comprising diodes, are described in Herner et al., U.S. patent application Ser. No. 10/326,470, “An Improved Method for Making High Density Nonvolatile Memory,” filed Dec. 19, 2002, since abandoned; and Herner et al., U.S. patent application Ser. No. 10/955,549, “Nonvolatile Memory Cell Without a Dielectric Antifuse Having High- and Low-Impedance States,” filed Sep. 29, 2004 (published as US 2005/0052915 on Mar. 10, 2005) both owned by the assignee of the present application and both hereby incorporated by reference. While the structure of the arrays just described diverges in some important ways from the structure of the array of these Herner et al. applications, wherever they are the same, the fabrication methods of the Herner et al. applications can be used. For clarity, not all of the fabrication details of these applications were included in this description, but no part of their description is intended to be excluded.
The photolithography techniques described in Chen, U.S. application Ser. No. 10/728,436, “Photomask Features with Interior Nonprinting Window Using Alternating Phase Shifting,” filed Dec. 5, 2003 (issued as U.S. Pat. No. 7,172,840 on Feb. 6, 2007); or Chen, U.S. application Ser. No. 10/815,312, Photomask Features with Chromeless Nonprinting Phase Shifting Window,” filed Apr. 1, 2004, (published as US 2005/0221200 on Oct. 6, 2005), both owned by the assignee of the present invention and hereby incorporated by reference, can advantageously be used to perform any photolithography step used in formation of a memory array according to the present invention.
To summarize, among the preferred embodiments described herein is a monolithic three dimensional phase change memory array comprising a) a first memory level, the first memory level comprising: i) a plurality of substantially parallel first conductors formed at a first height above a substrate; ii) a plurality of substantially parallel second conductors formed at a second height, the second height above the first height; iii) a plurality of first diodes, each disposed between one of the first conductors and one of the second conductors; iv) a plurality of heater layers, each disposed between one of the first conductors and one of the second conductors and each having an upper surface having a first area; v) a plurality of phase change elements, each having a lower surface having a second area, wherein at least part of the lower surface of each phase change element is in contact with the upper surface of the adjacent heater layer and wherein the first area is smaller than the second area; and b) at least a second memory level monolithically formed on the first memory level.
A method for forming a monolithic three dimensional phase change memory array according to the present invention comprises forming a plurality of substantially parallel, substantially coplanar first conductors at a first height above a substrate; forming a plurality of substantially parallel, substantially coplanar second conductors at a second height above the first height; forming a plurality of first diodes disposed between the first conductors and the second conductors, each first diode having a first average diode diameter; forming a plurality of heater elements, each heater element between one of the first diodes and one of the first conductors or one of the second conductors; forming a plurality of phase change elements, each in contact with one of the heater elements; forming a plurality of laterally etchable elements, each disposed above one of the first diodes, between the one of the first diodes and one of the second conductors; and laterally etching each of the laterally etchable elements wherein, after lateral etching, each laterally etchable element has an etched diameter less than the first average diode diameter of the first diode below it, wherein a phase change memory cell is formed between each of the first conductors and each of the second conductors.
A preferred embodiment comprises forming a plurality of substantially parallel, substantially coplanar first conductors at a first height above a substrate; depositing a semiconductor layerstack over the first conductors; depositing a heater layer on the semiconductor layerstack; forming a sacrificial layer on the heater layer; patterning and etching the sacrificial layer, heater layer, and semiconductor layer stack into first pillars, each first pillar comprising a) a first semiconductor diode etched from the semiconductor layer stack; b) a heater element etched from the heater layer, each heater element having a first diameter; and c) a sacrificial region etched from the sacrificial layer, each sacrificial region having a second diameter; further laterally and selectively etching each sacrificial region; filling gaps between the sacrificial regions with dielectric material; etching to remove the sacrificial regions, leaving voids in the dielectric material; and forming phase change elements, wherein a portion of each phase change element fills one of the voids; forming a plurality of substantially parallel, substantially coplanar second conductors above the first pillars.
Circuitry and Programming
To convert a chalcogenide in a crystalline, low-resistance state to an amorphous, high-resistance state, the chalcogenide must be brought to a high temperature, for example about 700 degrees C., then allowed to cool quickly. The reverse conversion from an amorphous, high-resistance state to a crystalline, low-resistance state is achieved by heating to a lower temperature, for example about 600 degrees C., then allowing the chalcogenide to cool relatively slowly. Circuit conditions must be carefully controlled in a monolithic three dimensional memory array formed according to the present invention to avoid inadvertent conversion of the chalcogenide of neighboring cells during programming of a cell, or during repeated read events.
Circuit structures and methods suitable for use in three dimensional memory arrays formed according to the present invention are described in Scheuerlein, U.S. patent application Ser. No. 10/403,844, “Word Line Arrangement Having Multi-Layer Word Line Segments for Three-Dimensional Memory Array,” filed Mar. 31, 2003, (issued as U.S. Pat. No. 6,879,505 on Apr. 12, 2005) which is assigned to the assignee of the present invention and is hereby incorporated by reference. Beneficial elements of this arrangement include use of a common word line driver and very long bitlines allowing reduction in overhead circuitry.
Scheuerlein, US Pub. No. 2006/0157679, published Jul. 20, 2006, a related application filed on even date herewith, teaches a biasing scheme that could advantageously be used in an array formed according to the present invention. The biasing scheme of this application guarantees that the voltage across unselected and half-selected cells is not sufficient to cause inadvertent conversion of those cells, and allows precise control of the power delivered to the cell to be programmed.
The unprogrammed state of the cell may be the high-resistance, amorphous state, while the programmed state of the cell is the low-resistance, crystalline state, or vice versa. Programmed memory cells can all be returned to the unprogrammed state in a single erase event, or each cell can be programmed, then returned to an unprogrammed state individually.
Monolithic three dimensional memory arrays are described in Johnson et al., U.S. Pat. No. 6,034,882, “Vertically stacked field programmable nonvolatile memory and method of fabrication”; Johnson, U.S. Pat. No. 6,525,953, “Vertically stacked field programmable nonvolatile memory and method of fabrication”; Knall et al., U.S. Pat. No. 6,420,215, “Three Dimensional Memory Array and Method of Fabrication”; and Vyvoda et al., U.S. patent application Ser. No. 10/185,507, “Electrically Isolated Pillars in Active Devices,” filed Jun. 27, 2002 (issued as U.S. Pat. No. 6,952,043 on Oct. 4, 2005); U.S. patent application Ser. No. 10/185,508, “Three Dimensional Memory,” filed Jun. 27, 2002, (issued as U.S. Pat. No. 7,081,377 on Jul. 25, 2006) all assigned to the assignee of the present invention and all hereby incorporated by reference. Any of these various monolithic three dimensional memory arrays can be modified by the methods of the present invention to form nonvolatile memories having a reduced contact area between a phase change material and a heater layer.
The present invention has been described herein in the context of a monolithic three dimensional memory array formed above a substrate. Such an array comprises at least a first memory level formed at a first height above the substrate and a second memory level formed at a second height different from the first height. Three, four, eight, or indeed any number of memory levels can be formed above the substrate in such a multilevel array. Alternatively, a memory array comprising memory cells formed according to the present invention need not be formed in a three dimensional array, and could be a more conventional two dimensional array formed without stacking.
Other aspects of the cell could also be modified. The diode or MIM could be formed above the reduced-cross-section layer, for example.
Detailed methods of fabrication have been described herein, but any other methods that form similar structures can be used while the results fall within the scope of the invention.
The foregoing detailed description has described only a few of the many forms that this invention can take. For this reason, this detailed description is intended by way of illustration, and not by way of limitation. It is only the following claims, including all equivalents, which are intended to define the scope of this invention.
Claims
1. A monolithic three dimensional phase change memory array comprising:
- a) a first memory level, the first memory level comprising: i) a plurality of substantially parallel first conductors formed at a first height above a substrate; ii) a plurality of substantially parallel second conductors formed at a second height, the second height above the first height; iii) a plurality of first diodes, each disposed between one of the first conductors and one of the second conductors; iv) a plurality of heater layers, each disposed between one of the first conductors and one of the second conductors and each having an upper surface having a first area; v) a plurality of phase change elements, each having a lower surface having a second area, wherein at least a part of the lower surface of each phase change element is in contact with the upper surface of the adjacent heater layer and wherein the first area is smaller than the second area; and
- b) at least a second memory level monolithically formed on the first memory level.
2. The monolithic three dimensional phase change memory array of claim 1 wherein the phase change elements comprise a chalcogenide material.
3. The monolithic three dimensional phase change memory array of claim 2 wherein the chalcogenide material comprises a GST material.
4. The monolithic three dimensional phase change memory array of claim 3 wherein the GST material comprises Ge2Sb2Te5.
5. The monolithic three dimensional phase change memory array of claim 1 wherein the first diodes are p-i-n diodes.
6. The monolithic three dimensional phase change memory array of claim 5 wherein the first diodes reside in vertically oriented pillars.
7. The monolithic three dimensional phase change memory array of claim 1 wherein the substrate comprises monocrystalline silicon.
8. The monolithic three dimensional phase change memory array of claim 1 wherein the second conductors are substantially perpendicular to the first conductors.
9. The monolithic three dimensional phase change memory array of claim 1 wherein at least some of the first or second conductors comprise titanium tungsten or tungsten.
10. The monolithic three dimensional phase change memory array of claim 1 wherein the second memory level comprises a plurality of substantially parallel third conductors formed at a third height, the third height above the second height.
11. The monolithic three dimensional phase change memory array of claim 10 wherein the second memory level comprises a plurality of second diodes.
12. The monolithic three dimensional phase change memory array of claim 11 wherein the second memory level further comprises a plurality of substantially parallel fourth conductors formed at a fourth height, the fourth height above the third height.
13. The monolithic three dimensional phase change memory array of claim 12 wherein each of the second diodes is disposed between one of the third conductors and one of the fourth conductors.
14. The monolithic three dimensional phase change memory array of claim 11 wherein each of the second diodes is disposed between one of the second conductors and one of the third conductors.
5915167 | June 22, 1999 | Leedy |
6034882 | March 7, 2000 | Johnson |
RE37259 | July 3, 2001 | Ovshinsky |
6420215 | July 16, 2002 | Knall et al. |
6525953 | February 25, 2003 | Johnson |
6879505 | April 12, 2005 | Scheuerlein |
6952043 | October 4, 2005 | Vyvoda et al. |
7081377 | July 25, 2006 | Cleeves |
7092286 | August 15, 2006 | Lowrey et al. |
7172840 | February 6, 2007 | Chen |
20040051094 | March 18, 2004 | Ooishi |
20050052915 | March 10, 2005 | Herner |
20050158950 | July 21, 2005 | Scheuerlein et al. |
20050221200 | October 6, 2005 | Chen |
20060157679 | July 20, 2006 | Scheuerlein |
20060157682 | July 20, 2006 | Scheuerlein |
20060157683 | July 20, 2006 | Scheuerlein |
Type: Grant
Filed: Aug 15, 2007
Date of Patent: Apr 1, 2008
Patent Publication Number: 20070272913
Assignee: Sandisk Corporation (Milpitas, CA)
Inventor: Roy E. Scheuerlein (Cupertino, CA)
Primary Examiner: Thien F Tran
Attorney: Vierra Magen Marcus & DeNiro LLP
Application Number: 11/839,490
International Classification: H01L 47/00 (20060101);