Electrode geometries for efficient neural stimulation
Electrodes designed in accordance with the present invention may selectively employ arc shaped contacts; variations in contact number, positioning, spacing, and/or distribution; variations in contact area, size, or periphery; and/or on-electrode conductive links or interconnections between particular contacts to provide enhanced efficiency neural stimulation, and/or increased electrode reliability.
Latest Advanced Neuromodulation Systems, Inc. Patents:
- Foraminal ligament anchor for application in DRG therapy
- DORSAL ROOT GANGLIA SURGICAL LEADS
- Data labeling system and method operative with patient and clinician controller devices disposed in a remote care architecture
- Compressed PKI methods for machine-to-machine authentication in bandwidth-constrained medical devices
- System and method for controlling neurostimulation according to user activity detected through patient use of icon driven user interface
This application is a division of U.S. patent application Ser. No. 10/112,301, filed Mar. 28, 2002, and entitled “Electrode Geometries For Efficient Neural Stimulation,” incorporated herein by reference in its entirety, and which relates to and incorporates by reference U.S. patent application Ser. No. 09/978,134, entitled “Systems and Methods for Automatically Optimizing Stimulus Parameters and Electrode Configurations for Neuro-Stimulators,” filed on Oct. 15, 2001.
TECHNICAL FIELDThe present invention relates generally to electrodes suitable for neural stimulation. More particularly, the present invention includes a variety of electrode geometries or designs directed toward enhancing the efficiency of neural stimulation, and/or increasing electrode reliability.
BACKGROUNDA variety of medical procedures involve electrically monitoring and/or stimulating neural tissue, such as regions of the cortex or spinal cord. For example, epileptogenic foci localization may be accomplished through cortical monitoring procedures; and various neurologically based pain conditions may be treated with cortical or spinal stimulation. Electrical signals may be exchanged with neural tissue through an electrode that includes a set of electrically conductive contacts.
The effectiveness of a neural stimulation procedure may be related to the electric field distribution produced by or associated with an electrode employed in the procedure. In general, the electric or stimulation field distribution depends upon a) electrode design; b) the particular electrode contacts to which electrical stimulation signals are applied; and c) the magnitudes and polarities of applied stimulation signals. An electrode's design encompasses the structure and spatial organization of its contacts, and/or the as-manufactured electrical couplings thereto. In order to maximize the likelihood that neural stimulation will be effective, an electrode design should be capable of producing an intended or desired type of stimulation field distribution. Depending upon stimulation requirements, an electrode design capable of providing flexibility with respect to manners in which stimulation field distributions may be established, configured, or tailored may be advantageous.
Neural microelectrodes are designed for micro-scale neural monitoring and/or stimulation, that is, highly localized signal exchange with very small neural populations or single neurons. Neural microelectrode types may include patch clamp or pipette microelectrodes; etched and/or micromachined needle electrodes or probes; and annular microelectrodes. An annular microelectrode capable of preferentially stimulating a single neuron soma is described in U.S. Pat. No. 5,411,540. Unlike the procedures disclosed in U.S. Pat. No. 5,411,540, many neural monitoring and/or stimulation procedures involve signal exchange with sizeable neural populations, i.e., hundreds, thousands, many thousands, or even millions of neurons. The microelectrodes disclosed in U.S. Pat. No. 5,411,540 accordingly have very limited applicability to such procedures.
Neural microelectrode arrays include multiple neural microelectrodes organized in a regular pattern and formed or mounted upon a substrate. Although a neural microelectrode array may be capable of monitoring and/or stimulating a larger neural population than an individual neural microelectrode, such an array may be undesirably complex and/or expensive from a manufacturing standpoint.
Grid electrodes may facilitate macro-scale neural monitoring and/or stimulation, that is, neural tissue monitoring and/or stimulation involving hundreds, thousands, hundreds of thousands, or perhaps millions of neurons.
Conventional grid electrodes 100 may include a significant number of contacts 110. Such grid electrodes 100 maintain a one-to-one ratio between the number of contacts 110 and the number of lead wires 120. Thus, a conventional eight-by-eight grid electrode 100 having sixty-four contacts 110 includes sixty-four lead wires 120. Any given lead wire 120 may be coupled to a desired stimulation signal via an external signal routing interface that is connected to a stimulation signal source in a manner readily understood by those skilled in the art. Conventional grid electrodes 100 may facilitate a limited degree of simulation field configurability through selective coupling between specific contacts 110 and particular stimulation signals.
An electrode implant procedure may be highly invasive from a surgical standpoint, possibly requiring, for example, a craniotomy. Electrode reliability is therefore of paramount importance. Unfortunately, the large number of lead wires 120 resulting from a grid electrode's one-to-one contact to lead wire ratio increases the complexity and decreases the reliability of an electrode lead 130. Thus, conventional grid electrode arrays may not be suitable for use in procedures that require implanted electrodes.
The following discussion is presented to enable a person skilled in the art to make and use the invention. The general principles described herein may be applied to embodiments and applications other than those detailed below without departing from the spirit and scope of the present invention as defined by the appended claims. The present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
The present invention comprises a variety of electrode designs or geometries that may provide enhanced neural stimulation efficiency. Enhanced neural stimulation efficiency may be particularly valuable or important when stimulation is directed toward inducing and/or enhancing neuroplasticity for neural function rehabilitation and/or other purposes. The present invention additionally comprises electrode designs that may decrease electrode complexity and thus increase electrode reliability. Increased electrode reliability may be particularly important in neural stimulation situations because electrodes may be implanted on a permanent or long term basis, possibly through a significantly invasive surgical implant procedure. The use of electrodes for intracranial neural stimulation is described in U.S. patent application Ser. No. 09/978,134, entitled “Systems and Methods for Automatically Optimizing Stimulus Parameters and Electrode Configurations for Neuro-Stimulators,” filed on Oct. 15, 2001.
Depending upon neural stimulation requirements and/or electrode embodiment details, electrodes constructed in accordance with the present invention may selectively employ concentric contacts; arc and/or generally arc shaped contacts; variations in contact number, positioning, spacing, and/or distribution; variations in contact shape, area, and/or periphery; and/or conductive on-electrode links or interconnections between particular contacts to provide an intended type of stimulation field distribution, as described in detail hereafter.
The substrate 240 of the annular electrode may be soft and/or flexible, such that it may readily conform to a wide variety of neural tissue surfaces. Each contact 210, 212a, 212b is sufficiently large that the annular electrode 200 may deliver stimulation to a macro-scale neural tissue region, which may include a large number of neural cell bodies. In one embodiment, a surface area enclosed by an outermost annular contact 212b is many times larger than the surface area associated with a single neural cell body, even when considering large types of neurons such as pyramidal neurons. The annular electrode 200 may be suitable for delivering stimulation to a region of the cerebral cortex; for example, the electrode 200 may be implanted proximate to a cortical region associated with controlling a particular type of mental or physical function.
The central and each arc contact 310, 312 may comprise a compositionally stable, biologically compatible, electrically conductive material such as Stainless Steel, Platinum, Platinum-Iridium, Iridium Oxide, Gold, and/or other materials and/or coatings. The arc electrode 300 may be manufactured using conventional electrode manufacturing processes or techniques.
An arc contact 312 may exhibit a curved, bent, or arc-like shape, and may be characterized by a radius of curvature and an arc length. Depending upon the requirements of the stimulation field, the number, curvature, length, and/or position of the arcs may vary. In alternate embodiments, one or more arc contacts 312 may exhibit v-like or other types of curved or angled shapes.
Arc contacts 312 may be grouped or organized into particular patterns, which may be generally circular, elliptical, or otherwise shaped. Any given arc contact pattern may be positioned or oriented in a predetermined manner with respect to the central contact 310 and/or other contact patterns. In the embodiment shown in
The central contact 310 and each arc contact 312 may be coupled to corresponding lead wires 320. Any given lead wire 320 may be coupled to a particular stimulation signal at a stimulation signal source. Thus, within the first and/or second circular patterns 314, 316, successively positioned arc contacts 312 may be coupled to stimulation signals having identical or different magnitudes, biases, and/or temporal characteristics. In an analogous manner, arc contacts 312 that exhibit a given positional correspondence from one circular pattern 314, 316 to another may be coupled to stimulation signals having identical or different magnitudes, biases, and/or temporal characteristics. Hence, an arc electrode 300 constructed in accordance with the present invention may be configured to provide a wide variety of stimulation field distributions.
The present invention encompasses arc electrode embodiments beyond those described above. For example, an arc electrode 300 may omit the central contact 310, include additional or fewer arc contacts 312, and/or include one or more conventional annular contacts 112. As another example, an arc electrode 300 may include a centrally positioned contact grid in place of the central contact 310, in which case individual contacts within the contact grid may be coupled to one or more particular stimulation signals provided by a stimulation signal source. As yet another example, an arc electrode 300 may comprise one or more arc contacts 312 positioned in one or more non-concentric manners. Any given embodiment may be selected in accordance with stimulation field distribution requirements associated with a given neural stimulation situation.
In addition to arc electrode embodiments 300 such as those described above, the present invention also encompasses a variety of grid-like and/or other types of multi-contact electrode embodiments. In accordance with the present invention, one manner of affecting an electrical or stimulation field distribution is through nonuniform contact distribution, separation, or pitch. The description hereafter details various multi-contact electrode embodiments that may selectively exploit nonuniform contact separation to provide or approximate a desired or intended type of stimulation field distribution. Relative to various electrode embodiments described hereafter, like and/or analogous elements may be indicated with like reference numbers to aid understanding.
Relative to any given electrode embodiment, one or more contact organizational patterns may be defined. Depending upon embodiment details, the spacing between the contacts 410a-c within a subset of contacts may be nonuniform, and/or the spacing or separation between sets of contacts may be nonuniform. As such, the spacing between contacts in a pattern may be nonuniform, and/or the spacing between patterns of contacts may be nonuniform. In
Other types of contact organizations or patterns may be defined with respect to any given embodiment and/or alternate embodiments. Moreover, any given contact organizational pattern may appear multiple times in the context of a single embodiment. The spatial distribution or density of contacts 410a-c within a contact organizational pattern may be nonuniform, and/or the spatial separation between particular contact organizational patterns may vary across an electrode's surface. Furthermore, a contact distribution pattern may be defined and/or employed based upon particular types of stimulation signals that may be applied to some or all contacts 410a-c within the pattern.
As shown in
In various embodiments, the separation distance between or spatial distribution of the particular contacts 410a-c and/or contact organizational patterns may be a function of distance from a set of the reference contacts 410a-c and/or reference contact organizational patterns. Thus, in one embodiment, the contacts 410a-c organized within any given organizational pattern may exhibit a uniform contact to contact separation distance, whereas separation distances between radially successive contact organizational patterns may increase or decrease with distance from a centrally-positioned contact organizational pattern.
With respect to electrodes 400, 450, 460 exhibiting nonuniform contact distribution, the particular contacts 410a-c may be coupled to particular stimulation signals at a stimulation signal source. In contrast to neural simulation delivered through a conventional grid electrode 100 such as that shown in
In accordance with the present invention, one manner of providing an electrode having desired or intended neural stimulation characteristics involves the use of contacts of different peripheries or areas. The description hereafter details various multi-contact electrode embodiments having nonuniform contact periphery or area, possibly in conjunction with nonuniform contact separation. Relative to various embodiments described hereafter, like and/or analogous elements may be indicated with like reference numbers for ease of understanding.
A contact 510 characterized by the first size or area may be larger than a contact 512 characterized by the second size or area. In the embodiment shown in
Relative to a smaller-area contact 512, a larger-area contact 510 exhibits a larger signal transfer area. A larger-area contact 510 may therefore facilitate more efficient delivery of larger magnitude stimulation signals than a smaller-area contact 512. An electrode characterized by nonuniform contact area may advantageously exhibit a lower effective impedance than, for example, a conventional grid electrode 100, and may provide enhanced efficiency neural stimulation.
Another manner of providing or approximating an intended electric or stimulation field distribution is through the selective use of electrode-based or on-electrode couplings, links, connections, and/or shunts between contacts. In the context of the present invention, an electrode-based or on-electrode contact coupling may comprise a contact-to-contact coupling and/or connection that originates at one contact and terminates at one or more other contacts. On-electrode contact couplings may include one or more portions that reside within, upon, above and/or beneath a substrate, and/or proximate to the substrate's spatial bounds. The description hereafter details various multi-contact electrode embodiments that may selectively exploit on-electrode contact couplings or interconnections, possibly in conjunction with nonuniform contact separation and/or nonuniform contact area. Relative to various embodiments described hereafter, like and/or analogous elements may be indicated with like reference numbers for ease of understanding.
In one embodiment, an isoelectric contact group 616 comprises two or more contacts 610 having on-electrode couplings, links, connections, interconnections and/or shunts 618 therebetween. A contact interconnection 618 within an isoelectric contact group 616 may reside in a particular plane relative to contact, contact group, and/or electrode surfaces intended to impinge or impress upon a patient's neural tissue. Contacts 610 and/or contact groups 616 may be implemented using one or more biologically compatible, electrically conductive materials, such as Stainless Steel, Platinum, Platinum-Iridium, and/or other materials. Contact groups 616 and/or contact interconnections 618 may be formed using highly conductive materials, materials having variable and/or adjustable conductive properties, and/or materials exhibiting particular impedance characteristics.
An electrode 600 having contact couplings and/or interconnections 618 in accordance with the present invention may be manufactured in a variety of manners. For example, various types of preformed isoelectric contact groups 616 may be cut, stamped, formed, molded, or otherwise manufactured in a manner analogous to that for contacts 610. One or more portions of a preformed contact group 616 may exhibit bar, barbell, rectangular, or other types of shapes. Preformed contact groups 616 may be positioned upon or within a substrate 640 and coupled or connected to lead wires 620 in a manner essentially identical to that for contacts 610. As another manufacturing example, contacts 610, lead wires 620, and/or an electrode lead 630 may be formed, placed, and/or organized using conventional techniques, after which desired contact interconnections 618 may be formed or fabricated using selective masking and material deposition techniques, thereby forming isoelectric contact groups 616. As yet another example, contacts 610 organized in accordance with a given pattern and exhibiting selective contact interconnections 618 may be formed using flex circuit and/or membrane circuit fabrication techniques. One or more portions of a flex or membrane circuit may be encased, encapsulated, covered, or surrounded by Silicone, Silastic® (Dow Corning Corporation, Midland, Mich.), and/or other materials to ensure appropriate biocompatibility.
An electrode having selectively positioned on-electrode contact groups 616, which may be formed from appropriate types of couplings or interconnections 618 between contacts 610, may produce a predetermined or preconfigured stimulation field distribution capable of providing an intended or desired type of neural stimulation. In addition, such an electrode may advantageously exhibit reduced complexity, and thus enhanced reliability, since any given isoelectric contact group 616 may be coupled to a single lead wire rather than coupling individual lead wires to each contact 610 within the contact group 616.
Electrodes may be designed in accordance with the present invention based upon stimulation signal characteristics and/or stimulation field distribution requirements associated with a given neural stimulation situation. Electrode embodiments described herein may be modified and/or generalized in a variety of manners. For example, an annular or arc electrode may include one or more on-electrode contact interconnections. As another example, one or more electrode embodiments described above may include fewer or additional contacts and/or contact groups. As yet another example, an electrode designed in accordance with the present invention may include one or more arc shaped, disk shaped, and/or otherwise shaped contacts, which may vary in spatial distribution and/or contact area or periphery. Such an electrode may further include on-electrode contact interconnections or couplings between identically, similarly, and/or differently shaped contacts. The present invention encompasses these and other variations, and is limited only by the following claims.
Claims
1. An electrode suitable for neural stimulation comprising:
- a substrate configured to be implanted in a human body;
- a first set of electrical contacts carried by the substrate and organized in accordance with a first pattern; and
- a second set of electrical contacts carried by the substrate and organized in accordance with a second pattern,
- wherein a separation distance between a contact within the first set of electrical contacts and a contact within the second set of electrical contacts is unequal to the separation distance between contacts in first set electrical contacts and is unequal to the separation distance between contacts in the second set of electrical contacts and further wherein at least one contact within the second set of electrical contacts is disk shaped.
2. The electrode of claim 1, wherein each contact within the second set of electrical contacts is disk shaped.
3. An electrode suitable for neural stimulation comprising:
- a substrate configured to be implanted in a human body;
- a centrally positioned electrical contact carried by the substrate and having a first area; and
- a plurality of peripherally positioned electrical contacts carried by the substrate, at least one peripherally positioned electrical contact having an essentially identical shape as the centrally positioned contact and a second area different than the first area.
4. The electrode of claim 3, wherein each peripherally positioned electrical contact has an essentially identical shape as the centrally positioned contact.
5. An electrode suitable for neural stimulation comprising:
- a substrate configured to be implanted in a human body; and
- a plurality of electrical contacts carried by the substrate and spatially distributed in a nonuniform manner, the plurality of electrical contacts including at least two contacts having different peripheries, wherein the plurality of electrical contacts includes at least two contacts having an on-electrode coupling therebetween.
6. An electrode suitable for neural stimulation comprising:
- a substrate configured to be implanted in a human body; and
- a plurality of electrical contacts carried by the substrate and spatially distributed in a nonuniform manner; and
- an on-electrode coupling between at least two contacts within the plurality of electrical contacts.
7. The electrode of claim 6, wherein at least two contacts within the plurality of electrical contacts have different peripheries.
2716226 | August 1955 | Jonas |
2721316 | October 1955 | Shaw |
3628193 | December 1971 | Collins |
3650276 | March 1972 | Burghele et al. |
3918461 | November 1975 | Cooper |
4030509 | June 21, 1977 | Heilman et al. |
4125116 | November 14, 1978 | Fischell |
4140133 | February 20, 1979 | Kastrubin et al. |
4214804 | July 29, 1980 | Little |
4245645 | January 20, 1981 | Picard et al. |
4308868 | January 5, 1982 | Jhabvala |
4328813 | May 11, 1982 | Ray |
4340038 | July 20, 1982 | McKean |
4431000 | February 14, 1984 | Butler et al. |
4474186 | October 2, 1984 | Ledley et al. |
4542752 | September 24, 1985 | Dehaan et al. |
4590946 | May 27, 1986 | Loeb |
4607639 | August 26, 1986 | Tanagho et al. |
4646744 | March 3, 1987 | Capel |
4702254 | October 27, 1987 | Zabara |
4844075 | July 4, 1989 | Liss et al. |
4865048 | September 12, 1989 | Eckerson |
4969468 | November 13, 1990 | Byers et al. |
5002053 | March 26, 1991 | Garcia-Rill et al. |
5024226 | June 18, 1991 | Tan |
5031618 | July 16, 1991 | Mullett |
5054906 | October 8, 1991 | Lyons |
5063932 | November 12, 1991 | Dahl et al. |
5092835 | March 3, 1992 | Schurig et al. |
5121754 | June 16, 1992 | Mullett |
5143089 | September 1, 1992 | Alt |
5169384 | December 8, 1992 | Bosniak et al. |
5184620 | February 9, 1993 | Cudahy et al. |
5193540 | March 16, 1993 | Schulman et al. |
5215086 | June 1, 1993 | Terry, Jr. et al. |
5224491 | July 6, 1993 | Mehra |
5255678 | October 26, 1993 | Deslauriers et al. |
5263967 | November 23, 1993 | Lyons, III et al. |
5269319 | December 14, 1993 | Schulte et al. |
5271417 | December 21, 1993 | Swanson et al. |
5282468 | February 1, 1994 | Klepinski |
5299569 | April 5, 1994 | Wernicke et al. |
5303705 | April 19, 1994 | Nenov |
5304206 | April 19, 1994 | Baker, Jr. et al. |
5314458 | May 24, 1994 | Najafi et al. |
5358513 | October 25, 1994 | Powell, III et al. |
5370672 | December 6, 1994 | Fowler et al. |
5405375 | April 11, 1995 | Ayers et al. |
5406957 | April 18, 1995 | Tansey |
5411540 | May 2, 1995 | Edell et al. |
5417719 | May 23, 1995 | Hull et al. |
5423864 | June 13, 1995 | Ljungstroem |
5464446 | November 7, 1995 | Dreessen et al. |
5520190 | May 28, 1996 | Benedict et al. |
5522864 | June 4, 1996 | Wallace et al. |
5537512 | July 16, 1996 | Hsia et al. |
5540734 | July 30, 1996 | Zabara |
5540736 | July 30, 1996 | Haimovish et al. |
5549655 | August 27, 1996 | Erickson |
5562708 | October 8, 1996 | Combs et al. |
5575813 | November 19, 1996 | Edell et al. |
5591216 | January 7, 1997 | Testerman et al. |
5593432 | January 14, 1997 | Crowther et al. |
5601611 | February 11, 1997 | Fayram et al. |
5611350 | March 18, 1997 | John |
5618531 | April 8, 1997 | Cherksey |
5628317 | May 13, 1997 | Starkebaum et al. |
5643338 | July 1, 1997 | Bornzin et al. |
5674251 | October 7, 1997 | Combs et al. |
5676655 | October 14, 1997 | Howard, III et al. |
5683422 | November 4, 1997 | Rise |
5702429 | December 30, 1997 | King |
5707334 | January 13, 1998 | Young |
5711316 | January 27, 1998 | Elsberry et al. |
5713922 | February 3, 1998 | King |
5713923 | February 3, 1998 | Ward et al. |
5716377 | February 10, 1998 | Rise et al. |
5722401 | March 3, 1998 | Pietroski |
5735814 | April 7, 1998 | Elsberry et al. |
5750376 | May 12, 1998 | Weiss et al. |
5752979 | May 19, 1998 | Benabid |
5769778 | June 23, 1998 | Abrams et al. |
5772591 | June 30, 1998 | Cram |
5782798 | July 21, 1998 | Rise |
5782873 | July 21, 1998 | Collins |
5792186 | August 11, 1998 | Rise |
5797970 | August 25, 1998 | Pouvreau |
5814014 | September 29, 1998 | Elsberry et al. |
5814092 | September 29, 1998 | King |
5824021 | October 20, 1998 | Rise |
5824030 | October 20, 1998 | Yang et al. |
5832932 | November 10, 1998 | Elsberry et al. |
5833709 | November 10, 1998 | Rise et al. |
5843148 | December 1, 1998 | Gijsbers et al. |
5843150 | December 1, 1998 | Dreessen et al. |
5865842 | February 2, 1999 | Knuth et al. |
5871517 | February 16, 1999 | Abrams et al. |
5885976 | March 23, 1999 | Sandyk |
5886769 | March 23, 1999 | Zolten |
5893883 | April 13, 1999 | Torgerson et al. |
5904916 | May 18, 1999 | Hirsch |
5913882 | June 22, 1999 | King |
5916171 | June 29, 1999 | Mayevsky |
5925070 | July 20, 1999 | King et al. |
5938688 | August 17, 1999 | Schiff |
5938689 | August 17, 1999 | Fischell et al. |
5941906 | August 24, 1999 | Barreras, Sr. et al. |
5964794 | October 12, 1999 | Bolz et al. |
5975085 | November 2, 1999 | Rise |
5978702 | November 2, 1999 | Ward et al. |
5983140 | November 9, 1999 | Smith et al. |
6006124 | December 21, 1999 | Fischell et al. |
6011996 | January 4, 2000 | Gielen et al. |
6016449 | January 18, 2000 | Fischell et al. |
6018682 | January 25, 2000 | Rise |
6021352 | February 1, 2000 | Christopherson et al. |
6026326 | February 15, 2000 | Bardy |
6035236 | March 7, 2000 | Jarding et al. |
6040180 | March 21, 2000 | Johe |
6042579 | March 28, 2000 | Elsberry et al. |
6052624 | April 18, 2000 | Mann |
6055456 | April 25, 2000 | Gerber |
6057846 | May 2, 2000 | Sever, Jr. |
6057847 | May 2, 2000 | Jenkins |
6058331 | May 2, 2000 | King |
6060048 | May 9, 2000 | Cherksey |
6061593 | May 9, 2000 | Fischell et al. |
6066163 | May 23, 2000 | John |
6095148 | August 1, 2000 | Shastri et al. |
6104956 | August 15, 2000 | Naritoku et al. |
6104960 | August 15, 2000 | Duysens et al. |
6122548 | September 19, 2000 | Starkebaum et al. |
6126657 | October 3, 2000 | Edwards et al. |
6128537 | October 3, 2000 | Rise |
6128538 | October 3, 2000 | Fischell et al. |
6134474 | October 17, 2000 | Fischell et al. |
6152143 | November 28, 2000 | Edwards |
6161044 | December 12, 2000 | Silverstone |
6161045 | December 12, 2000 | Fischell et al. |
6176242 | January 23, 2001 | Rise |
6190893 | February 20, 2001 | Shastri et al. |
6198958 | March 6, 2001 | Ives et al. |
6205360 | March 20, 2001 | Carter et al. |
6210417 | April 3, 2001 | Baudino et al. |
6221908 | April 24, 2001 | Kilgard et al. |
6230049 | May 8, 2001 | Fischell et al. |
6236892 | May 22, 2001 | Feler |
6246912 | June 12, 2001 | Sluijter et al. |
6280462 | August 28, 2001 | Hauser et al. |
6301493 | October 9, 2001 | Marro et al. |
6319241 | November 20, 2001 | King et al. |
6339725 | January 15, 2002 | Naritoku et al. |
6353754 | March 5, 2002 | Fischell et al. |
6354299 | March 12, 2002 | Fischell et al. |
6356792 | March 12, 2002 | Errico et al. |
6360122 | March 19, 2002 | Fischell et al. |
6366813 | April 2, 2002 | DiLorenzo |
6375666 | April 23, 2002 | Mische |
6405079 | June 11, 2002 | Ansarinia |
6418344 | July 9, 2002 | Rezai |
6427086 | July 30, 2002 | Fischell et al. |
6456886 | September 24, 2002 | Howard, III et al. |
6459936 | October 1, 2002 | Fischell et al. |
6463328 | October 8, 2002 | John |
6464356 | October 15, 2002 | Sabel et al. |
6466822 | October 15, 2002 | Pless |
6473568 | October 29, 2002 | Kashiyama |
6473639 | October 29, 2002 | Fischell et al. |
6480743 | November 12, 2002 | Kirkpatrick et al. |
6484059 | November 19, 2002 | Gielen |
6487450 | November 26, 2002 | Chen |
6499488 | December 31, 2002 | Hunter et al. |
6505075 | January 7, 2003 | Weiner |
6507755 | January 14, 2003 | Gozani et al. |
6529774 | March 4, 2003 | Greene |
6539263 | March 25, 2003 | Schiff et al. |
6556868 | April 29, 2003 | Naritoku et al. |
6569654 | May 27, 2003 | Shastri et al. |
6591138 | July 8, 2003 | Fischell et al. |
6597954 | July 22, 2003 | Pless et al. |
6615065 | September 2, 2003 | Barrett et al. |
6622048 | September 16, 2003 | Mann et al. |
6633780 | October 14, 2003 | Berger |
6647296 | November 11, 2003 | Fischell et al. |
6665562 | December 16, 2003 | Gluckman et al. |
6684105 | January 27, 2004 | Cohen et al. |
6687525 | February 3, 2004 | Llinas et al. |
6690974 | February 10, 2004 | Archer et al. |
6708064 | March 16, 2004 | Rezai |
6725094 | April 20, 2004 | Saberski |
6731978 | May 4, 2004 | Olson et al. |
6764498 | July 20, 2004 | Mische |
6782292 | August 24, 2004 | Whitehurst |
6788975 | September 7, 2004 | Whitehurst et al. |
6795737 | September 21, 2004 | Gielen et al. |
6810286 | October 26, 2004 | Donovan et al. |
6839594 | January 4, 2005 | Cohen et al. |
6873872 | March 29, 2005 | Gluckman et al. |
6892097 | May 10, 2005 | Holsheimer |
6895280 | May 17, 2005 | Meadows et al. |
6907296 | June 14, 2005 | Doan et al. |
6934580 | August 23, 2005 | Osorio et al. |
6944497 | September 13, 2005 | Stypulkowski |
6944501 | September 13, 2005 | Pless |
6959215 | October 25, 2005 | Gliner et al. |
6990377 | January 24, 2006 | Gliner et al. |
7006859 | February 28, 2006 | Osorio et al. |
7010351 | March 7, 2006 | Firlik et al. |
7024247 | April 4, 2006 | Gliner et al. |
7065412 | June 20, 2006 | Swoyer |
7107097 | September 12, 2006 | Stern et al. |
7107104 | September 12, 2006 | Keravel et al. |
7110820 | September 19, 2006 | Tcheng et al. |
7146217 | December 5, 2006 | Firlik |
7149586 | December 12, 2006 | Greenberg et al. |
20010051819 | December 13, 2001 | Fischell et al. |
20020077670 | June 20, 2002 | Archer |
20020087201 | July 4, 2002 | Firlik et al. |
20020091419 | July 11, 2002 | Firlik |
20020099412 | July 25, 2002 | Fischell et al. |
20020169485 | November 14, 2002 | Pless et al. |
20030074032 | April 17, 2003 | Gliner |
20030078633 | April 24, 2003 | Firlik et al. |
20030088274 | May 8, 2003 | Gliner et al. |
20030097161 | May 22, 2003 | Firlik et al. |
20030114886 | June 19, 2003 | Gluckman et al. |
20030125772 | July 3, 2003 | Olsen et al. |
20030125786 | July 3, 2003 | Gliner et al. |
20030130706 | July 10, 2003 | Sheffield et al. |
20030149457 | August 7, 2003 | Tcheng et al. |
20030176901 | September 18, 2003 | May |
20030187490 | October 2, 2003 | Gliner |
20030187491 | October 2, 2003 | Greenberg et al. |
20040073270 | April 15, 2004 | Firlik et al. |
20040082847 | April 29, 2004 | McDermott |
20040088024 | May 6, 2004 | Firlik et al. |
20040092809 | May 13, 2004 | DeCharms |
20040102828 | May 27, 2004 | Lowry et al. |
20040111127 | June 10, 2004 | Gliner et al. |
20040131998 | July 8, 2004 | Marom et al. |
20040138550 | July 15, 2004 | Hartlep et al. |
20040158298 | August 12, 2004 | Gliner et al. |
20040176831 | September 9, 2004 | Gliner et al. |
20040181263 | September 16, 2004 | Balzer et al. |
20040215287 | October 28, 2004 | Swoyer et al. |
20040236388 | November 25, 2004 | Gielen et al. |
20040243205 | December 2, 2004 | Keravel et al. |
20040249422 | December 9, 2004 | Gliner et al. |
20050004620 | January 6, 2005 | Singhal et al. |
20050015129 | January 20, 2005 | Mische |
20050021104 | January 27, 2005 | DiLorenzo |
20050021105 | January 27, 2005 | Firlik et al. |
20050021106 | January 27, 2005 | Firlik et al. |
20050021107 | January 27, 2005 | Firlik et al. |
20050021118 | January 27, 2005 | Genau et al. |
20050033378 | February 10, 2005 | Sheffield et al. |
20050070971 | March 31, 2005 | Fowler et al. |
20050075679 | April 7, 2005 | Gliner et al. |
20050075680 | April 7, 2005 | Lowry et al. |
20050096701 | May 5, 2005 | Donovan et al. |
20050113882 | May 26, 2005 | Cameron et al. |
20050119712 | June 2, 2005 | Shafer |
20050154425 | July 14, 2005 | Boveja et al. |
20050154426 | July 14, 2005 | Boveja et al. |
20050182453 | August 18, 2005 | Whitehurst |
20060015153 | January 19, 2006 | Gliner et al. |
20060106430 | May 18, 2006 | Fowler et al. |
20060106431 | May 18, 2006 | Wyler et al. |
20060129205 | June 15, 2006 | Boveja et al. |
20060173522 | August 3, 2006 | Osorio |
20060217782 | September 28, 2006 | Boveja et al. |
20060241717 | October 26, 2006 | Whitehurst et al. |
20090088827 | April 2, 2009 | Tockman et al. |
19750043 | May 1999 | DE |
0214527 | March 1987 | EP |
0319844 | June 1989 | EP |
0998958 | May 2000 | EP |
1145736 | October 2001 | EP |
1180056 | November 2003 | EP |
WO 87-07511 | December 1987 | WO |
WO 94-07564 | April 1994 | WO |
WO 95-21591 | August 1995 | WO |
WO 98-06342 | February 1998 | WO |
0119977 | March 2001 | WO |
WO 01-97906 | December 2001 | WO |
WO 02-09811 | February 2002 | WO |
WO 02-36003 | May 2002 | WO |
WO 02-38031 | May 2002 | WO |
WO 02-38217 | May 2002 | WO |
WO 03-043690 | May 2003 | WO |
WO 03-082402 | October 2003 | WO |
- U.S. Appl. No. 10/583,630, filed Jun. 20, 2006, Lozano.
- U.S. Appl. No. 11/254,060, filed Oct. 19, 2005, Wyler.
- U.S. Appl. No. 11/254,240, filed Oct. 19, 2005, Wyler.
- U.S. Appl. No. 11/255,187, filed Oct. 19, 2005, Firlik.
- U.S. Appl. No. 11/344,453, filed Jan. 30, 2006, Gliner.
- U.S. Appl. No. 11/518,139, filed Sep. 7, 2006, Weinand.
- U.S. Appl. No. 11/583,349, filed Oct. 18, 2006, Sloan.
- U.S. Appl. No. 11/638,326, filed Dec. 12, 2006, Gliner et al.
- Barr, Deborah et al., “Induction and Reversal of Long-Term Potentiation by Low-and High-Intensity Theta Pattern Stimulation,” The Journal of Neuroscience, 15(7): pp. 5402-5410 (Jul. 1995).
- Barres et al., “Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons,” Nature; Medical Research Council Developmental Neurobiology Programme, Department of Biology, University College, London, p. 258-260, (Jan. 21, 1993).
- Behrens, T. et al., “Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging,” Nature neuroscience, vol. 6 No. 7, pp. 750-757 (Jul. 2003).
- Bel, S. and Bauer, B.L., “Dorsal col. Stimulation (DCS): Cost to Benefit Analysis,” Acta Neurochirurgica, Suppl. 52, pp. 121-123 (1991).
- Benabid, A.L. et al., “Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders,” J. Neurosurg., Apr. 1997, 86(4); 737; http:—www.ncbi.nlm.nih.gov; [accessed Nov. 18, 2003].
- Beveridge, J. A., “Use of Exogenous Electric Current in the Treatment of Delayed Lesions in Peripheral Nerves,” Plastic and Reconstructive Surgery, Oct. 1988, vol. 82, No. 4, pp. 573-579.
- Bezard et al., “Cortical Stimulation and Epileptic Seizure: A Study of the Potential Risk in Primates,” Neurosurgery, vol. 45, No. 2, Aug. 1999, 346-350.
- Binder, J. M.D., “Functional Magnetic Resonance Imaging: Language Mapping,” Neurosurgery Clinics of North America, vol. 8, No. 3, Jul. 1997, pp. 383-392.
- Bluestone, Avraham Y. et al., “Three-dimensional optical tomography of hemodynamics in the human head,” Optics Express, vol. 9, No. 6, pp: 272-286 (Sep. 10, 2001).
- Brain Electrical Stimulation to Enhance Recovery After Stroke, ClinicalTrials.gov, URL: http://www.clinicaltrials.gov/ct/show/NCT00085657?order=2 [Retrieved on Dec. 22, 2005].
- Burnett, Mark G. et al., “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics Letters, vol. 29, No. 15, pp: 1766-1768 (Aug. 1, 2004).
- Bury, Scott et al., “The Effects of Behavioral Demand on Motor Cortical and Cerebellar Structural Plasticity After Brain Injury in Adult Rats,” http://www.mcmaster.ca-inabis98-schallert-bury0827-two.html#introduction, 2 pages [Retrieved on Mar. 1, 2003].
- Butefisch et al., “Mechanisms of use-dependent plasticity in the human motor cortex,” Proc. Natl. Acad. Sci. USA, vol. 97, No. 7, pp. 3661-3665 (Mar. 2000).
- Canavero, S. and Paolotti, R., “Extradural Motor Cortex Stimulation for Advanced Parkinson's Disease: Case Report,” Movement Disorders, 15(1)169-171, 2000.
- Cao, Yue et al., “Cortical Language Activation in Stroke Patients Recovering From Aphasia With Functional MRI,” Stroke, vol. 30, pp: 2331-2340, Nov. 1999.
- Cheun et al., “Differentiation of a Stem Cell Line Toward a Neuronal Phenotype,” Int. J. Devl. Neuroscience, vol. 9, No. 4, pp. 391-404 (1991).
- Cicinelli et al., “Transcranial magnetic stimulation reveals an interhemispheric asymmetry of cortical inhibition in focal epilepsy,” Neurophysiology, vol. 11, No. 4 Mar. 20, 2000, pp. 701-707.
- Cincotta et al., “Reorganization of the motor cortex in a patient with congenital hemiparesis and mirror movements,” Neurology, vol. 55, pp. 129-131 (2000).
- Cincotta et al., “Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy,” Clinical Neurophysiology, vol. 114, 2003, pp. 1827-1833, Elsevier Ireland Ltd.
- Classen et al., “Rapid Plasticity of Human Cortical Movement Representation Induced by Practice,” The Journal of Neurophysiology, vol. 79, No. 2, pp. 1117-1123 (Feb. 1998).
- CNN.com, Health, “Lab Zaps Strokes with Magnetic Pulses,” http://www.cnn.com/2004/HEALTH/conditions/11/29/zapping.strokes.ap/, Nov. 29, 2004, 4 pages [Retrieved on Dec. 2, 2004].
- Cohen et al., “Studies of Neuroplasticity With Transcranial Magnetic Stimulation,” The Journal of Clinical Neurophysiology, vol. 15, No. 4 (1998).
- Cramer et al., “Use of Functional MRI to Guide Decisions in a clinical Stroke Trial,” Stroke, Journal of the American Heart Association, May 2005, pp. e50-e52, American Heart Association, Dallas TX.
- Cramer, S.C. and Bastings, E.P., “Mapping clinically relevant plasticity after stroke,” Neuropharmacology vol. 19, No. 5, pp. 842-851 (Apr. 2000).
- Cytokines Web Clinical Significance, Cytokines Web, 2 pages, URL: http:—cmbi.bjmu.edu.cn-cmbidata-cgf-CGF—Database-cytweb-roles-index.html [Retrieved on Sep. 2, 2005].
- Dam et al., “Effects of Fluoxetine and Maprotiline on Functional Recovery in Poststroke Hemiplegic Patients Undergoing Rehabilitation Therapy,” Stroke, vol. 27, No. 7, pp. 1211-1214 (Jul. 1996).
- De Ridder, Dirk et al., “Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus,” Journal Neurosurg., vol. 100, pp: 560-564, (Mar. 2004).
- Di Lazzaro, V. et al., “Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex,” Physiology in Press; published online on Apr. 21, 2005 as 10.1113-jphysiol.2005.087288.
- Ding, Yuemin et al., “Neural Plasticity After Spinal Cord Injury,” Current Pharmaceutical Design vol. 11, No. 11, pp: 1441-1450, Abstract Only, 1 page (Apr. 2005).
- Duncan, Pamela W. et al., “Defining post-stroke recovery: implications for design and interpretation of drug trials,” Neuropharmacology vol. 39, pp. 835-841 (2000).
- Ferrari, A. et al., “Immature human NT2 cells grafted into mouse brain differentiate into neuronal and glial cell types,” FEBS Letters, Dec. 8, 2000, pp. 121-125, vol. 486, No. 2, Elsevier Science B.V., Amsterdam.
- Feys et al., “Value of somatosensory and motor evoked potentials in predicting arm recovery after a stroke,” (Oct. 1999).
- Franzini et al., “Reversal of thalamic hand syndrome by long-term motor cortex stimulation,” Journal of Neurosurgery 93:873-875 (2000).
- Fregni et al., “Antiepileptic Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Cortical Malformations: An EEG and Clinical Study,” ASSFN Proceedings 2004, Stereotactic and Functional Neurosurgery, 2005, 83:57-62.
- Fregni, Felipe et al., “Anodal Transcranial Direct Current Stimulation of Prefrontal Cortex Enhances Working Memory,” Experimental Brain Research vol. 166, No. 1, pp: 23-30 (Sep. 2005).
- Gladstone et al., “Enhancing Recovery after Stroke with Noradrenergic Pharmacotherapy: A New Frontier?,” Can J. Neurol. Sci., vol. 27, No. 2 (May 2000).
- Gordon et al., “Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation,” Electroencephalography and clinical Neurophysiology, vol. 75, pp. 371-377 (1990).
- Hagemann, Georg et al., “Increased Long-Term Potentiation in the Surround of Experimentally Induced Focal Cortical Infarction,” Annals of Neurology, vol. 44, No. 2, pp. 255-258 (Aug. 1998).
- Haglund, Michael M. et al., “Optical imaging of epileptiform and functional activity in human cerebral cortex,” Nature, Aug. 20, 1992, pp. 668-671, vol. 358, Nature Publishing Group.
- Hayakawa, Toshiji et al., “Changes in Cerebral Oxygenation and Hemodynamics During Obstructive Sleep Apneas,” Chest, vol. 109, pp. 916-921 (1996).
- Hodge, Jr., C.J. and Boakye, M., “Biological Plasticity: The Future of Science in Neurosurgery,” Neurosurgery, vol. 48, No. 1 (Jan. 2001).
- Hoshi, Yoko et al., “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in a man,” Neuroscience Letters, vol. 150, pp: 5-8 (1993).
- Hoshino et al., “Application of multichannel near-infrared spectroscopic topography to physiological monitoring of the cortex during cortical mapping: technical case report,” Surgical Neurology, vol. 64, pp. 272-275 (2005).
- How Imagent™ Works. ISS Inc., http://www.iss.com-Products-imagent—fmri.html, 1 page [Retrieved on Oct. 14, 2005].
- Huang, Ying-Zu et al., “Theta Burst Stimulation of the Human Motor Cortex,” Neuron, vol. 45, pp. 201-206 (Jan. 20, 2005).
- Hummel, Friedhelm et al., “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain Advance Access, pp. 1-10, (Jan. 5, 2005).
- Imagent™ Functional Brain Imaging System, ISS, Inc., http://www.iss.com-Products-imagent.html, 2 pages [Retrieved on Oct. 14, 2005].
- Imagent™ functional Near Infrared Imaging System (fNIRS) Brain Imaging Using Infrared Photons, ISS Inc., http://www.iss.com-products-imagent-Imagent.pdf, 8 pages [Retrieved on Oct. 14, 2005].
- Ishibashi, Tomoko et al., “Astrocytes Promote Myelination in Response to Electrical Impulses,” Neuron 49, pp. 823-832, (Mar. 16, 2006).
- Janicek, Milos J. et al., “Dynamic Infrared Imaging of Newly Diagnosed Malignant Lymphoma Compared with Gallium-67 and Fluorine-18 Fluorodeoxyglucose (FDG) Positron Emission Tomography,” Technology in Cancer Research and Treatment, vol. 2, No. 6, pp. 571-577 (Dec. 2003).
- Kauhanen et al., “Domains and Determinants of Quality of Life After Stroke Caused by Brain Infarction,” Arch. Phys. Med. Rehabil., vol. 81, pp. 1541-1546 (Dec. 2000).
- Kelly-Spratt, K. “Transfection of PC-12 cells: a model system for primary neuronal cells,” Qiagen News, Customer application article, www.qiagen.com, Issue 4, 1998, 2 pages.
- Keyvani, Kathy et al., “Suppression of proteasome C2 contralateral to ischemic lesions in rat brain,” Brain Research, vol. 858, pp: 386-392, 2000.
- Kilgard, Michael et al., “Cortical Map Reorganization Enabled by Nucleus Basalis Activity,” Science, vol. 279 pp. 1714-1717 (Mar. 13, 1998).
- Kimura, K. et al., “Electrically induced neurite outgrowth of PC12 cells on the electrode surface,” Entrez PubMed, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=Abstract, 1 page.
- Kinoshita et al., “Electric cortical stimulation suppresses epileptic and background activities in neocortical epilepsy and mesial temporal lobe epilepsy,” Clinical Neurophysiology, vol. 116, 2005, pp. 1291-1299, Elsevier Ireland Ltd.
- Kopell et al., “The Continuing Evolution of Psychiatric Neurosurgery,” CNS Spectrums, vol. 5, No. 10, pp. 20-31 (Oct. 2000).
- Kossoff et al., “Effect of an External Responsive Neurostimulator on Seizures and Electrographic Discharges during Subdural Electrode Monitoring,” Epilepsia 45(12):1560-1567, 2004, Blackwell Publishing, Inc.
- Lang, Nicolas et al., “Preconditioning with Transcranial Direct Current Stimulation Sensitizes the Motor Cortex to Rapid-Rate Transcranial Magnetic Stimulation and Controls the Direction of After-Effects,” Biol Psychiatry 2004:56:634-639, 2004 Society of Biological Psychiatry.
- Larson, John et al., “Reversal of LTP by theta frequency stimulation,” Brain Research, 600: pp. 97-102 (1993).
- Lazar, M. et al., “White Matter Tractography Using Diffusion Tensor Deflection,” Human Brain Mapping, 18:306-321, (2003).
- L-DOPA dyskinesias, BioChemistry of PD, http://www.mayo.edu-fdp-pd-info-dyskinesias.htm [Retrieved on Dec. 22, 2005].
- Levy et al., “Functional MRI Evidence of Cortical Reorganization in Upper-Limb Stroke Hemiplegia Treated with Constraint-Induced Movement Therapy,” American Journal of Physical Medicine & Rehabilitation, vol. 80, No. 1, pp. 4-7 (2001).
- Liepert et al., “Treatment-Induced Cortical Reorganization After Stroke in Humans,” Stroke, 31:1210-1216 (2000).
- Lutsep et al., “Safety of Cortical Stimulation in Patients with Hemiparetic Stroke,” Oasis, Online Abstract Submission and Invitation System—Program Planner, International Stroke Conference 2005, 1 pages, American Stroke Association.
- Malenka, R.C. and Nicoll, R.A., “Long-Term Potenetiation—A Decade of Progress?,” Neuroscience, vol. 285, No. 5435, Issue of Sep. 17, 1999, pp. 1870-1874.
- Mansur, C.G. et al., “A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients,” Neurology, vol. 64, pp. 1802-1804 (2005).
- Martin et al., “Transcranial Magnetic Stimulation as a Complementary Treatment for Aphasia,” Semin Speech Language, vol. 25, pp: 181-191 (2004) Abstract Only- 1 page.
- Martinez et al., “Motor hand recovery after stroke Prognostic yield of early transcranial magnetic stimulation,” Electromyography. Clin. Neurophysiology, vol, 39, pp. 405-410 (1999).
- Mendonca, A.C., “Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats,” Journal of Neuroscience Methods, 2003, vol. 129, pp. 183-190.
- Meyerson, B.A. et al., “Motor Cortex Stimulation as Treatment of Trigeminal Neuropathic Pain”, Acta Neurochirurgica Supplementum, vol. 58, pp: 150-153 (1993).
- Misawa et al., “Low-frequency transcranial magnetic stimulation for epilepsia partialis continua due to cortical dysplasia,” Journal of the Neurological Sciences, vol. 234, 2005, pp. 37-39.
- Montgomery, “Thalamic Stimulation,” Neuroscience Pathways, The Cleveland Clinic Foundation, 2 pages.
- Motamedi et al., “Optimizing Parameters for Terminating Cortical Afterdischarges with Pulse Stimulation,” Epilepsia 43(8):836-846, 2002, Blackwell Publishing, Inc.
- Netz et al., “Reorganization of motor output in the non-affected hemisphere after stroke,” Brain, 120, pp. 1579-1586 (1997).
- Nitsche, M.A. and Paulus, W., “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” The Journal of Physiology, vol. 527.3, pp. 663-639 (2000).
- Nitsche, Michael A. et al. “Facilitation of Implicit Motor Learning by Weak Transcranial Direct Current Stimulation of the Primary Motor Cortex in the Human,” Journal of Cognitive Neuroscience 15:4, pp. 619-626, 2003 Massachusetts Institute of Technology.
- Nitsche, Michael A. et al., “Level of action of cathodal DC opographyn induced inhibition of the human motor cortex,” Dec. 2, 2002, Clinical Neurophysiology 114 (2003) 600-604.
- Nudo, Randolph J. et al., “Recovery after damage to motor cortical areas,” Current Opinion in Neurobiology, vol. 9, Issue 6, pp: 740-747, Dec. 1, 1999.
- Oliveri et al., “Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex,” The Journal of Physiology, 529.2, pp. 461-468 (2000).
- Panchanathan, Sethuraman et al., “Rehabilitation of patients with hemispatial neglect using visual-haptic feedback in Virtual reality environment,” http://www.public.asu.edu-˜tmcdani-publications.htm, 5 pages [Retrieved on Dec. 22, 2005].
- Pascual-Leone et al., “Study and Modulation of Human Cortical Excitability With Transcranial Magnetic Stimulation,” Journal of Clinical Neurophysiology, 1998, vol. 15, No. 4, pp. 333-343.
- Pascual-Leone et al., “Transcranial magnetic stimulation and neuroplasticity,” Neurophycologia 37, pp. 207-217 (1999).
- Paulus, W, “Supplements to Clinical Neurophysiology,” Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation (Supplements to Clinical Neurophysiology; vol. 56), pp. 249-254, 2003 Elsevier Science, B.V.
- Paulus, Walter, “Toward Establishing a Therapeutic Window for rTMS by Theta Burst Stimulation,” Neuron, vol. 45, pp. 181-183 (Jan. 20, 2005).
- Penn, Michael, “Stemming Parkinson's,” on Wisconsin Alumni Magazine, Summer 2003, http://www.uwalumni.com-onwisconsin-2003—summer-research.html, 1 page [Retrieved on Dec. 22, 2005].
- Politis, M. J., “Mammalian Optic Nerve Regeneration Following the Application of Electric Fields,” The Journal of Trauma, Nov. 1988, vol. 28, No. 11, pp. 1548-1552.
- Price, J. et al., “Neurotransplantation in neurodegenerative disease: a survey of relevant issues in developmental neurobiology,” Novartis Foundation Symposium 231, 2000, pp. 148-165, Wiley, Chichester, UK.
- Rezai, “Neurostimulation,” Neurological Research, vol. 22, No. 3 pp. 235-273 (Apr. 2000).
- Robinson, Kenneth R., “The Responses of Cells to Electrical Fields: A Review,” The Journal of Cell Biology, vol. 101, pp. 2423-2027 (Dec. 1985).
- Rossi et al., “Effects of Repetitive Transcranial Magnetic Stimulation on Movement-related Cortical Activity in Humans,” Cerebral Cortex, vol. 10, No. 8, pp. 802-808 (Aug. 2000).
- Roux et al., “Chronic Motor Cortex Stimulation for Phantom Limb Pain: A Functional Magnetic Resonance Imagining Study: Technical Cast Report,” Neurosurgery, vol. 48, No. 3 (Mar. 2001).
- Saitou et al., “Cerebral Blood Volume and Oxygenation Among Poststroke Hemiplegic Patients: Effects of 13 Rehabilitation Tasks Measured by Near-Infrared Spectroscopy,” Arch. Phys. Med. Rehabil., vol. 81 pp. 1348-1356 (Oct. 2000).
- Sandkuhler, “Learning and memory in pain pathways,” Pain 88, pp. 113-118 (2000).
- Sanes, “The Relation between Human Brain Activity and Hand Movements,” Neurolmage 11, pp. 370-374 (2000).
- Sanes, J. and Donoghue, J.P., “Plasticity and Primary Motor Cortex,” Annual Review of Neuroscience 23:393-415 (2000).
- Schaefer, Pamela W. et al., “Assessing Tissue Viability with MR Diffusion and Perfusion Imaging,” AJNR, 24: pp. 436-443 (Mar. 2003).
- Schiene, Klaus et al., “Neuronal Hyperexcitability and Reduction of GABA-Receptor Expression in the Surround of Cerebral Photothrombosis,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, No. 5, pp. 906-914 (1996).
- Schiff et al., “A neuromodulation strategy for rational therapy of complex brain injury states,” Neurological Research, vol. 22 pp. 267-272 (Apr. 2000).
- Schulz et al., “Localization of Epileptic Auras Induced on Stimulation by Subdural Electrodes,” Epilepsia, Dec. 1997, vol. 38, Issue 12, pp. 1321-1329.
- SCIRun, Scientific Computing and Imaging Institute. http://www.sofware.sci.utah.edu-scirun.html, 2 pages [Retrieved on Jul. 24, 2005].
- Shimizu et al., “Therapeutic efficacy of transcranial magnetic stimulation for hereditary spinocerebellar degeneration,” Tohoku Journal of Experimental Medicine, 189(3):203-11 (Nov. 1999).
- Siebner et al., “Lasting cortical activation after repetitive TMS of the motor cortex,” Neurology 54, pp. 956-963 (Feb. 2000).
- Sioutos et al. Continuous Regional Cerebral Cortical Blood Flow Monitoring in Head-injured Patients, Neurosurgery, vol. 36, No. 5, May 1995, pp. 943-949.
- Stefan et al., “Introduction of plasticity in the human motor cortex by paired associative stimulation,” Brain, vol. 123, No. 3, pp. 572-584 (Mar. 2000).
- Storer et al., “Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat,” Brain, 1997, vol. 120, Issue 12, pp. 2171-2177, Oxford University Press.
- Strangman, Gary et al., “A Quantitative Comparison of Simultaneous BOLD fMRI and NIRS Recordings during Functional Brain Activation,” NeuroImage, vol. 17, pp: 719-731 (2002).
- Strangman, Gary et al., “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” NeuroImage, vol. 18, pp: 865-879 (2003).
- Strangman, Gary et al., “Non-Invasive Neuroimaging Using Near-Infrared Light,” Biological Psychiatry, vol. 52, pp: 679-693 (2002).
- Strens, Lucy et al., “The Ipsilateral Human Motor Cortex Can Functionally Compensate for Acute Contralateral Motor Cortex Dysfunction,” Current Biology, vol. 13, pp. 1201-1205 (Jul. 15, 2003).
- Suzuki et al., “Selective Electrical Stimulation of Postganglionic Cerebrovascular Parasympathetic Nerve Fibers Originating from the Sphenopalatine Ganglion Enhances Cortical Blood Flow in the Rat,” Journal of Cerebral Blood Flow and Metabolism, May 1990, 10(3):383-91.
- Taga, Gentaro et al., “,Brain imaging in awake infants by near-infrared optical topogrpahy,” PNAS, vol. 100, No. 19, pp. 10722-10727 (Sep. 16, 2003).
- Tang, Cha-Min et al., “Optical Coherence Tomography of the Human Basal Ganglion,” Deep Brain Stimulation Consortium Meeting Program Book, Sep. 29-30, 2003, Washington DC.
- The GES 250 for Dense-Array EEG Research, Electrical Geodesics, Inc., http://www.egi.com/ges250r—n.html, 3 pages [Retrieved on Aug. 25, 2005].
- The INVOS Cerebral Oximeter, Somanetics, http://www.somanetics.net/invos.htm, 1 page [retrieved from the Internet on Dec. 22, 2005].
- The National Institutes of Health (NIH) Consensus Development Program, “Surgery for Epilepsy,” National Institutes of Health Consensus Development conference Statement, Mar. 19-21, 1990, 16 pages.
- Theoret, Hugo et al., “Exploring Paradoxical Functional Facilitation with TMS,” Supplements to Clinical Neurophysiology, vol. 56, pp: 211-219 (2003).
- Thomas, Carmen et al., “Do Children with aggressive behavior have temporal lobe changes?” Alasbimn Journal, Year 5, No. 19, 8 pages (Jan. 2003).
- Timmermann, Lars et al., “The cerebral oscillatory network of parkinsonian resting tremor,” Brain, vol. 126, pp: 199-212, (2003).
- Toronov, Vlad et al., “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: Temporal analysis and spatial mapping,” Medical Physics, vol. 27, No. 4, pp: 801-815 (Apr. 2000).
- Tractography, Absolute Astronomy Reference, http://www.absoluteastronomy.com-encyclopedia-T-Tr-Tractography.htm, 2 pages [Retrieved on Jul. 24, 2005].
- Tsubokawa, T. et al., “Chronic Motor Cortex Stimulation for the Treatment of Central Pain,” Acta Neurochirurgica, Supplementum. vol. 52, pp: 137-139 (1991).
- Tsubokawa, T. et al., “Chronic Motor Cortex Stimulation in Patients with Thalamic Pain,” J. Neurosurg 78:393-401, (Mar. 1993).
- Tsubokawa, T. et al., “Treatment of Thalamic Pain by Chronic Motor Cortex Stimulation”, PACE, vol. 14, pp: 131-134 (Jan. 1991).
- Tuch, D. et al., “Conductivity Tensor Mapping of the Human Brain Using Diffusion Tensor MRI,” Neurobiology, vol. 98 No. 20, pp. 11697-11701 (Sep. 25, 2001).
- Turton et al., “Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke,” Electroencephalography and Clinical Neurophysiology 101 pp. 316-328 (1996).
- Turton, A. and Lemon, R.N., “The contribution of fast corticospinal input to the voluntary activation of proximal muscles in normal subjects and in stroke patients,” Exp. Brain Res., vol. 129, pp. 559-572 (1999).
- Vanderkooy et al., “Resolution Below the Least Significant Bit in Digital Systems with Dither,” JAES, Mar. 1984, vol. 32, No. 3, pp. 106-113.
- Van Der Lee et al., “The Intra- and lnterrater Reliability of the Action Research Arm Test: A Practical Test of Upper Extremity Function in Patients With Stroke,” Arch. Phys. Med. Rehabil., vol. 82 pp. 14-19 (Jan. 2001).
- Velasco et al. “Absolute and Relative Predictor Values of Some Non-Invasive and Invasive Studies for the Outcome of Anterior Temporal Lobectormy,” Science Direct, vol. 31, Issue 1, Jan.-Feb. 2000, pp. 62-74, Elsevier Science, Inc.
- Velasco et al., “Acute and Chronic Electrical Stimulation of the Centromedian Thalamic Nucleus: Modulation of Reticulo-Cortical Systems and Predictor Factors for Generalized Seizure Control,” Archives of Medical Research, vol. 31, 2000, pp. 304-315, Elsevier Science, Inc.
- Velasco et al., “Electrical Stimulation for Epilepsy: Stimulation of Hippocampai Foci,” Stereotactic and Functional Neurosurgery, vol. 77, 2001, pp. 223-227.
- Velasco et al., “Subacute and Chronic Electrical Stimulation of the Hippocampus on Intractable Temporal Lobe Seizures: Preliminary Report,” Archives of Medical Research, vol. 31, 2000, pp. 316-328, Elsevier Science, Inc.
- Velasco et al., “Subacute Electrical Stimulation of the Hippocampus Blocks Intractable Temporal Lobe Seizures and Paroxysmal EEG Activities,” Epilepsia, vol. 41, No. 2, 2000, pp. 158-169, Lippincott Williams & Wilkins, Philadelphia.
- Walker-Batson et al., “Amphetamine Paired With Physical Therapy Accelerates Motor Recovery After Stroke,” Stroke, vol. 26, No. 12, pp. 2254-2259 (1995).
- Waxman et al., “The Interictal Behavior Syndrome of Temporal Lobe Epilepsy,” Arch Gen Psychiatry, vol. 32, Dec. 1975, pp. 1580-1586.
- Weinand et al., “Cerebral blood flow and temporal lobe epileptogenicity,” J Neurosurg, vol. 86, Feb. 1997, pp. 226-232.
- Weinand et al., “Cerebral blood flow and temporal lobe epileptogenicity,” Neurosurgical Focus, Nov. 1996, vol. 1, No. 5, AANS.ORG, http://www.aans.org/education/journal/neurosurgical/nov96/1-5-3.asp, 17 pages.
- Weinand et al., Long-term ictal monitoring with subdural strip electrodes: prognostic factors for selecting temporal lobectomy candidates, J Neurosurg, vol. 77, 1992, pp. 20-28.
- Weinand et al., “Surface cortical cerebral blood flow monitoring and single photon emission computed tomography: prognostic factors for selecting temportal lobectormy candidates,” Seizure, vol. 3, 1994, pp. 55-59.
- Weinand et al., “Targeted Subthreshold Cortical Stimulation for Recovery of Motor Hand Function following Hemiparetic Stroke,” Abstract: Apr. 18, 2005 AANS.org, http://www.aans.org/Library/Article.aspx?ArticleId=24934, 2 pages.
- Weinand, Martin E. et al., “Cerebral blood flow and temporal lobe epileptogenicity,” Retrieved from the Internet on Dec. 22, 2005, http://www.aans.org/education/journal/neurosurgical/nov96/1-5-3.asp, 13 pages.
- Woodbury, D. et al., “Adult Rat and Human Bone Marrow Stromal Cells Differentiate Into Neurons,” Journal of Neuroscience Research, 2000, vol. 61, pp. 364-370, Wiley Interscience, New York, NY.
- Yamamoto et al., “Low-frequency Electric Cortical Stimulation Has an Inhibitory Effect on Epileptic Focus in Mesial Temporal Lobe Epilepsy,” Epilepsia, vol. 43, No. 5, 2002, pp. 291-295, Blackwell Publishing, Inc.
- Yokoh, Arika et al., “Intermittent versus continuous brain retraction,” Journal of Neurosurgery, vol. 58, pp: 918-923 (Jun. 1983).
- Ziemann et al., “Modulation of Plasticity in Human Motor Cortex after Forearm Ischemic Nerve Block,” The Journal of Neuroscience 18(3):1115-1123 (Feb. 1998).
- U.S. Appl. No. 60/325,872, filed Sep. 28, 2001.
- U.S. Appl. No. 60/325,978, filed Sep. 28, 2001.
- U.S. Appl. No. 09/978,134, filed Oct. 15, 2001.
- International Search Report for Application No. PCT/US2002/32695; Applicant: Vertis Neuroscience, Inc.; Dec. 27, 2002; 9 pgs; European Patent Office.
- International Search Report for PCT/US2003/09211 dated Sep. 28, 2005.
Type: Grant
Filed: Apr 6, 2007
Date of Patent: Feb 28, 2012
Patent Publication Number: 20070179584
Assignee: Advanced Neuromodulation Systems, Inc. (Plano, TX)
Inventor: Bradford Evan Gliner (Sammamish, WA)
Primary Examiner: Kennedy Schaetzle
Attorney: Christopher S. L. Crawford
Application Number: 11/697,698
International Classification: A61N 1/05 (20060101);