Medical sensor and technique for using the same
Embodiments disclosed may include a sensor which may be adapted to provide information related to its position on a patient's tissue. A sensor may be provided with tissue contact sensors which may relay a signal related to the sensor's proper placement adjacent a patient's tissue. Such a sensor may be useful for providing information to a clinician about the status of a sensor, such as if a sensor may be located more closely to the tissue in order to provide improved measurements.
Latest Covidien LP Patents:
The present disclosure relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices may have been developed for monitoring many such physiological characteristics. Such devices may provide doctors and other healthcare personnel with information they may utilize to provide the best possible healthcare for their patients. As a result, such monitoring devices may have become an indispensable part of modern medicine.
One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. The “pulse” in pulse oximetry may refer to the time varying amount of arterial blood in the tissue during each cardiac cycle.
Pulse oximeters may utilize a non-invasive sensor capable of transmitting light through a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue. Physiological characteristics may then be calculated based at least in part upon the amount of light absorbed or scattered. The light passed through the tissue may be typically selected to be of one or more wavelengths that may be absorbed or scattered by the blood in an amount correlative to the amount of the blood constituent present in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms.
To facilitate accurate and reliable measurements when monitoring physiological characteristics of a patient, a pulse oximetry sensor should be adequately in contact with the patient's tissue. When a sensor is dislodged or removed from the patient, or contact is inadequate, some or all of the emitted light does not pass through the patient's tissue, and the detected light may no longer relate in the same way to a physiological constituent. Because detected light unrelated to a physiological constituent may result in measurement inaccuracies, it may be desirable to provide a mechanism for indicating that sensor is not in sufficient contact with the patient's tissue.
SUMMARYCertain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms that the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
There is provided a sensor that includes: a sensor body; an emitter and a detector disposed adjacent the sensor body; and an electrode tissue contact sensor disposed adjacent the sensor body, wherein the electrode tissue contact sensor is capable of providing a signal related to the distance from the electrode to tissue of a patient.
There is also provided a sensor that includes: a sensor body; an emitter and a detector disposed adjacent the sensor body; and a temperature-based tissue contact sensor disposed adjacent the sensor body, wherein the temperature-based tissue contact sensor is capable of providing an electrical feedback signal related to distance between the temperature-based tissue contact sensor and tissue of a patient.
There is also provided a sensor that includes: a sensor body; and an emitter disposed adjacent the sensor body, wherein the emitter is capable of emitting a reference wavelength strongly absorbed by tissue of a patient, and a signal wavelength utilized to detect a tissue constituent; and a detector capable of detecting the reference wavelength and the signal wavelength.
Aspects of embodiments may become apparent upon reading the following detailed description and upon reference to the drawings in which:
One or more embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
In an embodiment, medical sensors for pulse oximetry or other applications utilizing spectrophotometry may be provided which may provide a signal related to a “sensor on” and/or a “sensor off” state. In an embodiment, the sensors may include one or more tissue contact sensors. Such sensors may provide a signal to a downstream medical device in order to convey a change in sensor status medical device and to a healthcare practitioner, for example when a sensor falls off of a patient or moves relative to a patient's tissue. Further, embodiments of such sensors may be capable of providing information as to proper sensor application. By providing information related to the correct placement of a sensor, sensors as provided herein may reduce measurement errors which may result from a sensor being located too far from the tissue to provide accurate measurements, as well as other inadequate sensor placement.
In an embodiment, the contact sensor 12 may be used with any suitable sensor type, including reusable and/or disposable sensors, as well as clip-on or bandage-style sensors, among others. Further, it should be understood that the contact sensor 12 may be used with sensors applied to any suitable tissue site (e.g., finger, ear, toe, forehead). The contact sensor 12 may be disposed on the sensor body 14 in any suitable location. As depicted in this embodiment, the contact sensor 12 may be proximate to the emitter 16. In transmission-type sensors 10 in which the emitter 16 and the detector 18 are positioned across the tissue from one another, it may be advantageous to position the contact sensor 12 away from the area between the emitter 16 and the detector 18. In this case, the contact sensor 12 may not be located in an area of the sensor body 14 that may fold around the tissue and thus may not conform closely enough to provide an accurate contact signal. In an embodiment, in reflectance-type sensors in which the emitter 16 and the detector 18 are side-by-side, the contact sensor 12 may be located in any suitable location on the sensor body 14.
In an embodiment, the plunger assembly 32 includes a tissue contact element 33, a biasing member 34, and a switch element 35. Generally, the switch element 35 may be formed from any suitable conductive material, such as a metal. The tissue contact element 33 may be formed from any suitable material that may be sufficiently resilient to transmit pressure from the tissue to the biasing member 34, while also being generally comfortable against a patient's tissue.
In an embodiment, suitable materials for forming the tissue contact element 33 may include thermoplastic polymers or metals, for example. The plunger assembly 32 may be biased by the biasing member, such as a spring 34, such that the switch element 35 will not close the circuit 28 without sufficient pressure being applied to the tissue contact element 33. This may result in the “resting state” of the circuit 28 being open. The open circuit may thus correspond to the “sensor off” state.
The spring 34 may be sized such that when the sensor 10A is properly applied against a monitoring site, the plunger assembly 32 will move, and the switch element 35 will close the circuit 28 across the contacts 36. In such an embodiment, the closed circuit may correspond to the “sensor on” state.
In an embodiment, as depicted in
The spring-based contact sensor 12A may provide the advantage of design flexibility as the biasing member 34 may be sized for any suitable force or pressure specification, depending on the configuration of the sensor 10A and the sensing site. Further, since the spring 34 may be configured to move only after a threshold force has been applied, the use of a spring 34 may prevent false positive “sensor on” states from incidental contact with the sensor 10A. In one embodiment, the pressure range that may be used with the spring 34 in order to close the circuit 28 may be higher than typical venous pressure (e.g., 3-5 mm Hg) and lower than typical capillary pressure (e.g., 22 mm Hg). For example, the pressure may generally be between 15 mm Hg and 20 mm Hg in an adult patient.
As depicted in the embodiment in
The spring-biased plunger assembly 68 may move a predetermined amount upon proper application of the sensor 10D to a tissue site. The application of the sensor 10D may transmit a force to the spring-biased plunger assembly 68 which may move a shutter 70 generally out of line with the optical path between the secondary emitter 62 and the secondary detector 64, which may inhibit and/or prevent emitted light from impinging the secondary detector 64, as shown in
In an embodiment, the shutter 70 may be positioned along the spring biased plunger assembly 68 such that the application of pressure to the contact sensor 12D may move the shutter 70 generally in-line with the optical path, and thus the “sensor on” signal may be related to an increase in detected light. In any embodiment, the shutter 70 may be positioned along a movable rod 72 which is part of the spring biased plunger assembly 68. Generally, the rod 72 may be formed from or be covered with a light absorbing material that may effectively block all or part of the light along the optical path. The shutter 70 may be a aperture or opening in the rod 72 which is suitably sized and shaped to allow some, or most of the light from the secondary emitter 62 to pass through to the detector 64.
In an embodiment, as shown in
The emitter 16 may be configured to emit multiple wavelengths of light. In an embodiment, a first wavelength, as shown by dashed arrow 84, may be related to a physiological constituent. A second wavelength, as shown by solid arrow 86, may be strongly absorbed by a patient's tissue. If the sensor is not properly applied to the tissue, as shown in
In this embodiment, such a configuration may not employ any additional mechanical components, and thus may provide manufacturing advantages. The wavelengths related to the “sensor off” condition may be selected based on the optical absorption properties of the tissue and the distance between the emitter 16 and the detector 18, among other considerations. For a pulse oximetry sensor having an emitter-detector spacing of at least a few millimeters, such a wavelength may be selected to be generally longer than about 1200 nm, so as to generally be strongly absorbed by water in the tissue, or shorter than about 600 nm, so as to be generally strongly absorbed by hemoglobin in the blood perfusing the tissue.
In an embodiment, a second temperature sensor (not shown) may be positioned on a non-tissue-contacting surface to measure an ambient temperature. Accordingly, when the difference between the first and second temperature measurements is less than a predetermined threshold value downstream medical device may interpret that condition as a “sensor off.” The dual temperature sensing configuration, which may be more expensive than a single temperature sensing configuration, may provide a generally more reliable measurement, which may be based at least in part upon a difference between temperature measurements.
In addition to contact measurements based on mechanical switches, optical measurements, and temperature, a sensor contact with the tissue may be determined from electrical properties inherent to certain sensing components. In an embodiment, as shown in
Such a configuration may provide cost and convenience advantages over dual electrode contact sensors that measure impedance of the skin between two electrodes. For dual electrode sensors, electrical impedance of the skin may be affected by tissue integrity and hydration as well as by the distance between the two electrodes, which may vary. As In sensor 10H a single electrode 92 relays a noise signal related to the gap between the sensor 10H and the tissue. Accordingly, the skin itself does not conduct the detected noise signal 94. Thus, the signal may not be influenced by the tissue characteristics unique to each patient. Accordingly, the sensor 10H may be more readily calibrated than dual electrode contact sensors that measure impedance of the skin between two electrodes that send a current through the skin.
In various embodiments, regardless of the type of contact sensor 12 used, a sensor, illustrated generically as a sensor 10, may be used in conjunction with a downstream medical device, which may include a pulse oximetry monitor 100, as illustrated in
In an embodiment, the sensor 10 may be connected to a pulse oximetry monitor 100. The monitor 100 may include a microprocessor 122 coupled to an internal bus 124. Also connected to the bus may be a RAM memory 126 and a display 128. A time processing unit (TPU) 130 may provide timing control signals to light drive circuitry 132, which controls when the emitter 16 is activated, and if multiple light sources are used, the multiplexed timing for the different light sources. TPU 130 may also control the gating-in of signals from detector 18 through an amplifier 133 and a switching circuit 134. These signals are sampled at the proper time, depending at least in part upon which of multiple light sources is activated, if multiple light sources are used. The received signal from the detector 18 and the contact sensor 12 may be passed through an amplifier 136, a low pass filter 138, and an analog-to-digital converter 140. The digital data may then be stored in a queued serial module (QSM) 142, for later downloading to RAM 126 as QSM 142 fills up. In an embodiment, there may be multiple parallel paths of separate amplifier, filter, and A/D converters for multiple light wavelengths or spectra received.
In an embodiment, the monitor 100 may be configured to receive signals from the sensor 10. The signals may be related to a physiological constituent and/or a contact sensor 12 that may be processed by the monitor 100 to indicate a sensor condition such as “sensor on” or “sensor off.” The monitor 100 may be configured to provide an indication about the sensor condition, such as an audio alarm, visual alarm or a display message, such as “CHECK SENSOR.” Further, the monitor 100 may be configured to receive information about the contact sensor 12 from a memory chip or other device, such as the encoder 116, which may be on the sensor 10 or the cable 20. In an embodiment, such a device may include a code or other identification parameter that may allow the monitor 100 to select an appropriate software or hardware instruction for processing the signal.
In an embodiment, a monitor 100 may run an algorithm or code for processing the signal provided by the contact sensor 12 The processing algorithm may receive information that a circuit is either opened or closed, allowing for a simple binary determination of “sensor on” or “sensor off,” depending on the parameters of the particular contact sensor 12. In other embodiments, a more complex algorithm may process a signal from a primary detector 18, and/or a secondary detector, and/or other detectors, and may compare an increase or decrease in detected light to empirically-derived stored parameters to determine the sensor condition. In other embodiments, a signal may result in a hardware switch that may open or close a circuit, which may trigger the display 128 to display a sensor state message.
In an embodiment, based at least in part upon the received signals corresponding to the light received by detector 18, microprocessor 122 may calculate the oxygen saturation using various algorithms. These algorithms may require coefficients, which may be empirically determined, and may correspond to the wavelengths of light used. The algorithms may be stored in a ROM 146 and accessed and operated according to microprocessor 122 instructions.
In an embodiment of a two-wavelength system, the particular set of coefficients chosen for any pair of wavelength spectra may be determined by a value indicated by the encoder 116 corresponding to a particular light source in a particular sensor 10. In one embodiment, multiple resistor values may be assigned to select different sets of coefficients. In another embodiment, the same resistors are used to select from among the coefficients appropriate for an infrared source paired with either a near red source or far red source. The selection between whether the near red or far red set will be chosen can be selected with a control input from control inputs 154. Control inputs 154 may be, for instance, a switch on the pulse oximeter, a keyboard, or a port providing instructions from a remote host computer. Furthermore, any number of methods or algorithms may be used to determine a patient's pulse rate, oxygen saturation or any other desired physiological parameter.
In an embodiment, a monitor 100 may provide instructions to vary the emitter drive 132 frequency and/or pattern, and verify that the detected and de-multiplexed light signals are unaffected. Accordingly, when the sensor is receiving a significant portion of its signals from the ambient light (i.e. corresponding to a “sensor off” condition), then a change in the emitter 16 drive frequency and/or pattern will likely result in a change in the detected photocurrent and/or the de-multiplexed waveform (resulting from a change in alias frequencies). This technique may be more advantageous in a setting with sufficient ambient light.
In an embodiment, the sensor 10 includes an emitter 16 and a detector 18 that may be of any suitable type. For example, the emitter 16 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range, and the detector 18 may one or more photodetectors selected to receive light in the range or ranges emitted from the emitter 16. Alternatively, an emitter 16 may also be a laser diode or a vertical cavity surface emitting laser (VCSEL), or other light source. The emitter 16 and detector 18 may also include optical fiber sensing elements.
In an embodiment, an emitter 16 may include a broadband or “white light” source, and the detector could include any of a variety of elements for selecting specific wavelengths, such as reflective or refractive elements or interferometers. These types of emitters and/or detectors may be coupled to the rigid or rigidified sensor via fiber optics.
In an embodiment, a sensor 10 may sense light detected from the tissue at a different wavelength from the light emitted into the tissue. Such sensors may be adapted to sense fluorescence, phosphorescence, Raman scattering, Rayleigh scattering, and/or multi-photon events or photoacoustic effects. For pulse oximetry applications using either transmission or reflectance type sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications, a tissue water fraction (or other tissue constituent related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light. In various embodiments, these wavelengths may be infrared wavelengths between about 1,000 nm to about 2,500 nm.
It should be understood that, as used herein, the term “light” may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, or X-ray spectra, and that any suitable wavelength of light may be appropriate for use with the present techniques.
In an embodiment, the emitter 16 and the detector 18 may be disposed on or generally adjacent to a sensor body 14, which may be made of any suitable material, such as plastic, foam, woven material, or paper. In an embodiment, the emitter 16 and the detector 18 may be remotely located and optically coupled to the sensor 10 using optical fibers. In various embodiments, the sensor 10 is coupled to a cable 20 that is responsible for transmitting electrical and/or optical signals to and from the emitter 16 and detector 18 of the sensor 10. The cable 20 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10—the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.
In various embodiments, the sensor 10 may be a “transmission type” sensor. Transmission type sensors may include an emitter 16 and detector 18 that are placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the sensor 10 is positioned over the patient's fingertip such that the emitter 16 and detector 18 lie on either side of the patient's nail bed. In other words, the sensor 10 is positioned so that the emitter 16 is located on the patient's fingernail and the detector 18 is located 180° opposite the emitter 16 on the patient's finger pad.
During operation, the emitter 16 shines one or more wavelengths of light through the patient's fingertip, and the light received by the detector 18 is processed to determine various physiological characteristics of the patient. In each of the embodiments discussed herein, it should be understood that the locations of the emitter 16 and the detector 18 may be exchanged. For example, the detector 18 may be located at the top of the finger and the emitter 16 may be located underneath the finger. In either arrangement, the sensor 10 may perform in substantially the same manner.
Reflectance type sensors also operate by emitting light into the tissue and detecting the light that is transmitted and scattered by the tissue. Reflectance type sensors may include an emitter 16 and detector 18 which are typically placed on the same side of the sensor site. For example, a reflectance type sensor may be placed on a patient's fingertip or foot such that the emitter 16 and detector 18 lie side-by-side. Reflectance type sensors detect light photons that are scattered back to the detector 18. A sensor 10 may also be a “transflectance” sensor, such as a sensor that may subtend a portion of a baby's heel.
While the resent disclosure may be capable of various modifications and alternative forms, embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of blood oxygen saturation, but these techniques may also be utilized for the measurement and/or analysis of other blood constituents. For example, using the same, different, or additional wavelengths, the present techniques may be utilized for the measurement and/or analysis of additional blood or tissue constituents, such as carboxyhemoglobin, met-hemoglobin, total hemoglobin, intravascular dyes, and/or water content. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
Claims
1. A sensor comprising:
- a sensor body;
- an emitter and a detector disposed adjacent the sensor body;
- a temperature-based tissue contact sensor disposed adjacent the sensor body, wherein the temperature-based tissue contact sensor is configured to provide an electrical feedback signal related to distance between the temperature-based tissue contact sensor and tissue of a patient; and
- an encoder comprising stored data or code related to the temperature-based tissue contact sensor, wherein the stored data or code is configured to be read by a monitor to cause the monitor to select a set of instructions for processing the electrical feedback signal from the temperature-based tissue contact sensor and determining if the temperature-based tissue contact sensor is in contact with the tissue of the patient.
2. The sensor, as set forth in claim 1, wherein the sensor comprises a pulse oximetry sensor or a sensor configured to measure a water fraction.
3. The sensor, as set forth in claim 1, wherein the emitter comprises a light emitting diode.
4. The sensor, as set forth in claim 1, wherein the detector comprises a photodetector.
5. The sensor, as set forth in claim 1, wherein the tissue contact sensor comprises at least two temperature sensors.
6. The sensor, as set forth in claim 5, wherein the at least two temperature sensors are positioned to contact the patient.
7. The sensor, as set for in claim 5, wherein at least one of the at least two temperature sensors is configured to sense ambient temperature.
8. The sensor, as set forth in claim 5, wherein a first temperature sensor of the at least two temperature sensors is disposed adjacent the sensor body proximate to the emitter.
9. The sensor, as set forth in claim 5, wherein a first temperature sensor of the at least two temperature sensors is disposed adjacent the sensor body proximate to the detector.
10. A system comprising:
- a sensor comprising:
- a sensor body;
- an emitter and a detector disposed on the sensor body;
- a temperature-based tissue contact sensor disposed on or adjacent the sensor body, wherein the temperature-based tissue contact sensor is configured to provide a signal related to distance between the temperature-based tissue contact sensor and tissue of a patient; and
- a patient monitor operatively coupled to the sensor and the temperature-based tissue contact sensor and comprising a processor configured to receive the signal and determine if the sensor is in contact with the tissue of the patient based at least in part upon the signal from the temperature-based tissue contact sensor.
11. The system, as set forth in claim 10, wherein the processor is configured to compare the signal to a threshold and determine that the sensor is not in contact with the tissue of the patient if the signal is representative of a measured temperature that is lower than a predetermined threshold.
12. The system, as set forth in claim 11, wherein the threshold comprises a predetermined average skin surface temperature of the patient.
13. The system, as set forth in claim 10, wherein the processor is configured to compare the signal to a threshold and determine that the sensor is in contact with the tissue of the patient if the signal is representative of a measured temperature that is higher than a predetermined threshold comprising a predetermined average skin surface temperature of the patient.
14. A system, comprising:
- a sensor comprising: a sensor body; an emitter and a detector disposed on the sensor body; and a first temperature sensor disposed on a surface of the sensor body configured to contact a tissue of a patient when the sensor is applied to a patient, wherein the first temperature sensor is configured to provide a first signal; and a second temperature sensor disposed on a non-tissue-contacting surface of the sensor body, wherein the second temperature sensor is configured to provide a second signal; and
- a patient monitor operatively coupled to the sensor and comprising:
- an input circuit configured to receive the first signal and the second signal;
- a memory storing instructions for:
- determining a first temperature measurement based on the first signal;
- determining a second temperature measurement based on the second signal; and
- determining a sensor condition based on a difference between the first temperature measurement and the second temperature measurement; and
- an output circuit configured to provide an indication of the sensor condition.
15. The system, as set forth in claim 14, wherein the instructions for determining a sensor condition based on a difference between the first temperature measurement and the second temperature measurement comprise comparing the difference to a threshold.
16. The system, as set forth in claim 14, comprising a display configured to display the indication of the sensor condition.
17. The system, as set forth in claim 16, wherein the indication of the sensor condition comprises a text indication.
18. The system, as set forth in claim 16, wherein the indication of the sensor condition comprises an alarm.
3403555 | October 1968 | Versaci et al. |
3536545 | October 1970 | Traynor et al. |
D222454 | October 1971 | Beeber |
3721813 | March 1973 | Condon et al. |
4098772 | July 4, 1978 | Bonk et al. |
D250275 | November 14, 1978 | Bond |
D251387 | March 20, 1979 | Ramsay et al. |
D262488 | December 29, 1981 | Rossman et al. |
4334544 | June 15, 1982 | Hill et al. |
4350165 | September 21, 1982 | Striese |
4353372 | October 12, 1982 | Ayer |
4380240 | April 19, 1983 | Jobsis et al. |
4406289 | September 27, 1983 | Wesseling et al. |
4510551 | April 9, 1985 | Brainard, II |
4586513 | May 6, 1986 | Hamaguri |
4603700 | August 5, 1986 | Nichols et al. |
4621643 | November 11, 1986 | New, Jr. et al. |
4653498 | March 31, 1987 | New, Jr. et al. |
4677528 | June 30, 1987 | Miniet |
4685464 | August 11, 1987 | Goldberger et al. |
4694833 | September 22, 1987 | Hamaguri |
4697593 | October 6, 1987 | Evans et al. |
4700708 | October 20, 1987 | New, Jr. et al. |
4714080 | December 22, 1987 | Edgar, Jr. et al. |
4714341 | December 22, 1987 | Hamaguri et al. |
4722120 | February 2, 1988 | Lu |
4726382 | February 23, 1988 | Boehmer et al. |
4759369 | July 26, 1988 | Taylor |
4770179 | September 13, 1988 | New, Jr. et al. |
4773422 | September 27, 1988 | Isaacson et al. |
4776339 | October 11, 1988 | Schreiber |
4781195 | November 1, 1988 | Martin |
4783815 | November 8, 1988 | Buttner |
4796636 | January 10, 1989 | Branstetter et al. |
4800495 | January 24, 1989 | Smith |
4800885 | January 31, 1989 | Johnson |
4802486 | February 7, 1989 | Goodman et al. |
4805623 | February 21, 1989 | Jöbsis |
4807630 | February 28, 1989 | Malinouskas |
4807631 | February 28, 1989 | Hersh et al. |
4819646 | April 11, 1989 | Cheung et al. |
4819752 | April 11, 1989 | Zelin |
4824242 | April 25, 1989 | Frick et al. |
4825872 | May 2, 1989 | Tan et al. |
4825879 | May 2, 1989 | Tan et al. |
4830014 | May 16, 1989 | Goodman et al. |
4832484 | May 23, 1989 | Aoyagi et al. |
4846183 | July 11, 1989 | Martin |
4848901 | July 18, 1989 | Hood, Jr. |
4854699 | August 8, 1989 | Edgar, Jr. |
4859056 | August 22, 1989 | Prosser et al. |
4859057 | August 22, 1989 | Taylor et al. |
4863265 | September 5, 1989 | Flower et al. |
4865038 | September 12, 1989 | Rich et al. |
4867557 | September 19, 1989 | Takatani et al. |
4869253 | September 26, 1989 | Craig, Jr. et al. |
4869254 | September 26, 1989 | Stone et al. |
4880304 | November 14, 1989 | Jaeb et al. |
4883055 | November 28, 1989 | Merrick |
4883353 | November 28, 1989 | Hansmann et al. |
4890619 | January 2, 1990 | Hatschek |
4892101 | January 9, 1990 | Cheung et al. |
4901238 | February 13, 1990 | Suzuki et al. |
4908762 | March 13, 1990 | Suzuki et al. |
4911167 | March 27, 1990 | Corenman et al. |
4913150 | April 3, 1990 | Cheung et al. |
4926867 | May 22, 1990 | Kanda et al. |
4927264 | May 22, 1990 | Shiga et al. |
4928692 | May 29, 1990 | Goodman et al. |
4934372 | June 19, 1990 | Corenman et al. |
4938218 | July 3, 1990 | Goodman et al. |
4942877 | July 24, 1990 | Sakai et al. |
4948248 | August 14, 1990 | Lehman |
4955379 | September 11, 1990 | Hall |
4960126 | October 2, 1990 | Conlon et al. |
4964408 | October 23, 1990 | Hink et al. |
4971062 | November 20, 1990 | Hasebe et al. |
4974591 | December 4, 1990 | Awazu et al. |
5007423 | April 16, 1991 | Branstetter et al. |
5025791 | June 25, 1991 | Niwa |
RE33643 | July 23, 1991 | Isaacson et al. |
5028787 | July 2, 1991 | Rosenthal et al. |
5035243 | July 30, 1991 | Muz |
5040039 | August 13, 1991 | Schmitt et al. |
5041187 | August 20, 1991 | Hink et al. |
5054488 | October 8, 1991 | Muz |
5055671 | October 8, 1991 | Jones |
5058588 | October 22, 1991 | Kaestle |
5065749 | November 19, 1991 | Hasebe et al. |
5066859 | November 19, 1991 | Karkar et al. |
5069213 | December 3, 1991 | Polczynski |
5078136 | January 7, 1992 | Stone et al. |
5086229 | February 4, 1992 | Rosenthal et al. |
5088493 | February 18, 1992 | Giannini et al. |
5090410 | February 25, 1992 | Saper et al. |
5094239 | March 10, 1992 | Jaeb et al. |
5094240 | March 10, 1992 | Muz |
5099841 | March 31, 1992 | Heinonen et al. |
5099842 | March 31, 1992 | Mannheimer et al. |
H1039 | April 7, 1992 | Tripp, Jr. et al. |
5104623 | April 14, 1992 | Miller |
5109849 | May 5, 1992 | Goodman et al. |
5111817 | May 12, 1992 | Clark et al. |
5113861 | May 19, 1992 | Rother |
D326715 | June 2, 1992 | Schmidt |
5119463 | June 2, 1992 | Vurek et al. |
5125403 | June 30, 1992 | Culp |
5127406 | July 7, 1992 | Yamaguchi |
5131391 | July 21, 1992 | Sakai et al. |
5140989 | August 25, 1992 | Lewis et al. |
5152296 | October 6, 1992 | Simons |
5154175 | October 13, 1992 | Gunther |
5158082 | October 27, 1992 | Jones |
5170786 | December 15, 1992 | Thomas et al. |
5188108 | February 23, 1993 | Secker et al. |
5190038 | March 2, 1993 | Polson et al. |
5193542 | March 16, 1993 | Missanelli et al. |
5193543 | March 16, 1993 | Yelderman |
5203329 | April 20, 1993 | Takatani et al. |
5209230 | May 11, 1993 | Swedlow et al. |
5213099 | May 25, 1993 | Tripp et al. |
5216598 | June 1, 1993 | Branstetter et al. |
5217012 | June 8, 1993 | Young et al. |
5217013 | June 8, 1993 | Lewis et al. |
5218207 | June 8, 1993 | Rosenthal |
5218962 | June 15, 1993 | Mannheimer et al. |
5224478 | July 6, 1993 | Sakai et al. |
5226417 | July 13, 1993 | Swedlow et al. |
5228440 | July 20, 1993 | Chung et al. |
5237994 | August 24, 1993 | Goldberger |
5239185 | August 24, 1993 | Ito et al. |
5246002 | September 21, 1993 | Prosser |
5246003 | September 21, 1993 | DeLonzor |
5247931 | September 28, 1993 | Norwood |
5247932 | September 28, 1993 | Chung et al. |
5249576 | October 5, 1993 | Goldberger et al. |
5253645 | October 19, 1993 | Friedman et al. |
5253646 | October 19, 1993 | Delpy et al. |
5259381 | November 9, 1993 | Cheung et al. |
5259761 | November 9, 1993 | Schnettler et al. |
5263244 | November 23, 1993 | Centa et al. |
5267562 | December 7, 1993 | Ukawa et al. |
5267563 | December 7, 1993 | Swedlow et al. |
5267566 | December 7, 1993 | Choucair et al. |
5273036 | December 28, 1993 | Kronberg et al. |
5275159 | January 4, 1994 | Griebel |
5278627 | January 11, 1994 | Aoyagi et al. |
5279295 | January 18, 1994 | Martens et al. |
5285783 | February 15, 1994 | Secker |
5285784 | February 15, 1994 | Seeker |
5287853 | February 22, 1994 | Vester et al. |
5291884 | March 8, 1994 | Heinemann et al. |
5297548 | March 29, 1994 | Pologe |
5299120 | March 29, 1994 | Kaestle |
5299570 | April 5, 1994 | Hatschek |
5309908 | May 10, 1994 | Friedman et al. |
5311865 | May 17, 1994 | Mayeux |
5313940 | May 24, 1994 | Fuse et al. |
5323776 | June 28, 1994 | Blakeley et al. |
5329922 | July 19, 1994 | Atlee, III |
5337744 | August 16, 1994 | Branigan |
5339810 | August 23, 1994 | Ivers et al. |
5343818 | September 6, 1994 | McCarthy et al. |
5343869 | September 6, 1994 | Pross et al. |
5348003 | September 20, 1994 | Caro |
5348004 | September 20, 1994 | Hollub et al. |
5348005 | September 20, 1994 | Merrick et al. |
5349519 | September 20, 1994 | Kaestle |
5349952 | September 27, 1994 | McCarthy et al. |
5349953 | September 27, 1994 | McCarthy et al. |
5351685 | October 4, 1994 | Potratz |
5353799 | October 11, 1994 | Chance |
5355880 | October 18, 1994 | Thomas et al. |
5355882 | October 18, 1994 | Ukawa et al. |
5361758 | November 8, 1994 | Hall et al. |
5365066 | November 15, 1994 | Krueger, Jr. et al. |
5368025 | November 29, 1994 | Young et al. |
5368026 | November 29, 1994 | Swedlow et al. |
5368224 | November 29, 1994 | Richardson et al. |
5372136 | December 13, 1994 | Steuer et al. |
5377675 | January 3, 1995 | Ruskewicz et al. |
5385143 | January 31, 1995 | Aoyagi |
5387122 | February 7, 1995 | Goldberger et al. |
5390670 | February 21, 1995 | Centa et al. |
5392777 | February 28, 1995 | Swedlow et al. |
5398680 | March 21, 1995 | Polson et al. |
5402777 | April 4, 1995 | Warring et al. |
5402779 | April 4, 1995 | Chen et al. |
5411023 | May 2, 1995 | Morris, Sr. et al. |
5411024 | May 2, 1995 | Thomas et al. |
5413099 | May 9, 1995 | Schmidt et al. |
5413100 | May 9, 1995 | Barthelemy et al. |
5413101 | May 9, 1995 | Sugiura |
5413102 | May 9, 1995 | Schmidt et al. |
5417207 | May 23, 1995 | Young et al. |
5421329 | June 6, 1995 | Casciani et al. |
5425360 | June 20, 1995 | Nelson |
5425362 | June 20, 1995 | Siker et al. |
5427093 | June 27, 1995 | Ogawa et al. |
5429128 | July 4, 1995 | Cadell et al. |
5429129 | July 4, 1995 | Lovejoy et al. |
5431159 | July 11, 1995 | Baker et al. |
5431170 | July 11, 1995 | Mathews |
5437275 | August 1, 1995 | Amundsen et al. |
5438986 | August 8, 1995 | Disch et al. |
5448991 | September 12, 1995 | Polson et al. |
5452717 | September 26, 1995 | Branigan et al. |
5465714 | November 14, 1995 | Scheuing |
5469845 | November 28, 1995 | DeLonzor et al. |
RE35122 | December 19, 1995 | Corenman et al. |
5482034 | January 9, 1996 | Lewis et al. |
5482036 | January 9, 1996 | Diab et al. |
5485847 | January 23, 1996 | Baker, Jr. |
5490505 | February 13, 1996 | Diab et al. |
5490523 | February 13, 1996 | Isaacson et al. |
5491299 | February 13, 1996 | Naylor et al. |
5494032 | February 27, 1996 | Robinson et al. |
5494043 | February 27, 1996 | O'Sullivan et al. |
5497771 | March 12, 1996 | Rosenheimer |
5499627 | March 19, 1996 | Steuer et al. |
5503148 | April 2, 1996 | Pologe et al. |
5505199 | April 9, 1996 | Kim |
5507286 | April 16, 1996 | Solenberger |
5511546 | April 30, 1996 | Hon |
5517988 | May 21, 1996 | Gerhard |
5520177 | May 28, 1996 | Ogawa et al. |
5521851 | May 28, 1996 | Wei et al. |
5522388 | June 4, 1996 | Ishikawa et al. |
5524617 | June 11, 1996 | Mannheimer |
5529064 | June 25, 1996 | Rall et al. |
5533507 | July 9, 1996 | Potratz et al. |
5551423 | September 3, 1996 | Sugiura |
5551424 | September 3, 1996 | Morrison et al. |
5553614 | September 10, 1996 | Chance |
5553615 | September 10, 1996 | Carim et al. |
5555882 | September 17, 1996 | Richardson et al. |
5558096 | September 24, 1996 | Palatnik |
5560355 | October 1, 1996 | Merchant et al. |
5564417 | October 15, 1996 | Chance |
5575284 | November 19, 1996 | Athan et al. |
5575285 | November 19, 1996 | Takanashi et al. |
5577500 | November 26, 1996 | Potratz |
5582169 | December 10, 1996 | Oda et al. |
5584296 | December 17, 1996 | Cui et al. |
5588425 | December 31, 1996 | Sackner et al. |
5588427 | December 31, 1996 | Tien |
5590652 | January 7, 1997 | Inai |
5595176 | January 21, 1997 | Yamaura |
5596986 | January 28, 1997 | Goldfarb |
5611337 | March 18, 1997 | Bukta |
5617852 | April 8, 1997 | MacGregor |
5619991 | April 15, 1997 | Guthrie et al. |
5619992 | April 15, 1997 | Guthrie et al. |
5626140 | May 6, 1997 | Feldman et al. |
5630413 | May 20, 1997 | Thomas et al. |
5632272 | May 27, 1997 | Diab et al. |
5632273 | May 27, 1997 | Suzuki |
5634459 | June 3, 1997 | Gardosi |
5638593 | June 17, 1997 | Gerhardt et al. |
5638816 | June 17, 1997 | Kiani-Azarbayjany et al. |
5638818 | June 17, 1997 | Diab et al. |
5645060 | July 8, 1997 | Yorkey |
5645440 | July 8, 1997 | Tobler et al. |
5660567 | August 26, 1997 | Nierlich et al. |
5662105 | September 2, 1997 | Tien |
5662106 | September 2, 1997 | Swedlow et al. |
5664270 | September 9, 1997 | Bell et al. |
5666952 | September 16, 1997 | Fuse et al. |
5671529 | September 30, 1997 | Nelson |
5673692 | October 7, 1997 | Schulze et al. |
5673693 | October 7, 1997 | Solenberger |
5676139 | October 14, 1997 | Goldberger et al. |
5676141 | October 14, 1997 | Hollub |
5678544 | October 21, 1997 | DeLonzor et al. |
5680857 | October 28, 1997 | Pelikan et al. |
5685299 | November 11, 1997 | Diab et al. |
5685301 | November 11, 1997 | Klomhaus |
5687719 | November 18, 1997 | Sato et al. |
5687722 | November 18, 1997 | Tien et al. |
5692503 | December 2, 1997 | Kuenstner |
5692505 | December 2, 1997 | Fouts |
5709205 | January 20, 1998 | Bukta |
5713355 | February 3, 1998 | Richardson et al. |
5724967 | March 10, 1998 | Venkatachalam |
5727547 | March 17, 1998 | Levinson et al. |
5730124 | March 24, 1998 | Yamauchi |
5731582 | March 24, 1998 | West |
D393830 | April 28, 1998 | Tobler et al. |
5743260 | April 28, 1998 | Chung et al. |
5743262 | April 28, 1998 | Lepper, Jr. et al. |
5743263 | April 28, 1998 | Baker, Jr. |
5746206 | May 5, 1998 | Mannheimer |
5746697 | May 5, 1998 | Swedlow et al. |
5752914 | May 19, 1998 | DeLonzor et al. |
5755226 | May 26, 1998 | Carim et al. |
5758644 | June 2, 1998 | Diab et al. |
5760910 | June 2, 1998 | Lepper, Jr. et al. |
5766125 | June 16, 1998 | Aoyagi et al. |
5766127 | June 16, 1998 | Pologe et al. |
5769785 | June 23, 1998 | Diab et al. |
5772587 | June 30, 1998 | Gratton et al. |
5774213 | June 30, 1998 | Trebino et al. |
5776058 | July 7, 1998 | Levinson et al. |
5776059 | July 7, 1998 | Kaestle |
5779630 | July 14, 1998 | Fein et al. |
5779631 | July 14, 1998 | Chance |
5782237 | July 21, 1998 | Casciani et al. |
5782756 | July 21, 1998 | Mannheimer |
5782757 | July 21, 1998 | Diab et al. |
5782758 | July 21, 1998 | Ausec et al. |
5786592 | July 28, 1998 | Hök |
5788634 | August 4, 1998 | Suda et al. |
5790729 | August 4, 1998 | Pologe et al. |
5792052 | August 11, 1998 | Isaacson et al. |
5795292 | August 18, 1998 | Lewis et al. |
5797841 | August 25, 1998 | DeLonzor et al. |
5800348 | September 1, 1998 | Kaestle |
5800349 | September 1, 1998 | Isaacson et al. |
5803910 | September 8, 1998 | Potratz |
5807246 | September 15, 1998 | Sakaguchi et al. |
5807247 | September 15, 1998 | Merchant et al. |
5807248 | September 15, 1998 | Mills |
5810723 | September 22, 1998 | Aldrich |
5810724 | September 22, 1998 | Gronvall |
5813980 | September 29, 1998 | Levinson et al. |
5817008 | October 6, 1998 | Rafert et al. |
5817009 | October 6, 1998 | Rosenheimer et al. |
5817010 | October 6, 1998 | Hibl |
5818985 | October 6, 1998 | Merchant et al. |
5820550 | October 13, 1998 | Polson et al. |
5823950 | October 20, 1998 | Diab et al. |
5823952 | October 20, 1998 | Levinson et al. |
5827179 | October 27, 1998 | Lichter et al. |
5827182 | October 27, 1998 | Raley et al. |
5829439 | November 3, 1998 | Yokosawa et al. |
5830135 | November 3, 1998 | Bosque et al. |
5830136 | November 3, 1998 | DeLonzor et al. |
5830137 | November 3, 1998 | Scharf |
5839439 | November 24, 1998 | Nierlich et al. |
RE36000 | December 22, 1998 | Swedlow et al. |
5842979 | December 1, 1998 | Jarman et al. |
5842981 | December 1, 1998 | Larsen et al. |
5842982 | December 1, 1998 | Mannheimer |
5846190 | December 8, 1998 | Woehrle |
5851178 | December 22, 1998 | Aronow |
5851179 | December 22, 1998 | Ritson et al. |
5853364 | December 29, 1998 | Baker, Jr. et al. |
5860919 | January 19, 1999 | Kiani-Azarbayjany et al. |
5865736 | February 2, 1999 | Baker, Jr. et al. |
5879294 | March 9, 1999 | Anderson et al. |
5885213 | March 23, 1999 | Richardson et al. |
5890929 | April 6, 1999 | Mills et al. |
5891021 | April 6, 1999 | Dillon et al. |
5891022 | April 6, 1999 | Pologe |
5891024 | April 6, 1999 | Jarman et al. |
5891025 | April 6, 1999 | Buschmann et al. |
5891026 | April 6, 1999 | Wang et al. |
5902235 | May 11, 1999 | Lewis et al. |
5910108 | June 8, 1999 | Solenberger |
5911690 | June 15, 1999 | Rall |
5912656 | June 15, 1999 | Tham et al. |
5913819 | June 22, 1999 | Taylor et al. |
5916154 | June 29, 1999 | Hobbs et al. |
5916155 | June 29, 1999 | Levinson et al. |
5919133 | July 6, 1999 | Taylor et al. |
5919134 | July 6, 1999 | Diab |
5920263 | July 6, 1999 | Huttenhoff et al. |
5921921 | July 13, 1999 | Potratz et al. |
5922607 | July 13, 1999 | Bernreuter |
5924979 | July 20, 1999 | Swedlow et al. |
5924980 | July 20, 1999 | Coetzee |
5924982 | July 20, 1999 | Chin |
5924985 | July 20, 1999 | Jones |
5934277 | August 10, 1999 | Mortz |
5934925 | August 10, 1999 | Tobler et al. |
5940182 | August 17, 1999 | Lepper, Jr. et al. |
5954644 | September 21, 1999 | Dettling et al. |
5957840 | September 28, 1999 | Terasawa et al. |
5960610 | October 5, 1999 | Levinson et al. |
5961450 | October 5, 1999 | Merchant et al. |
5961452 | October 5, 1999 | Chung et al. |
5964701 | October 12, 1999 | Asada et al. |
5971930 | October 26, 1999 | Elghazzawi |
5978691 | November 2, 1999 | Mills |
5978693 | November 2, 1999 | Hamilton et al. |
5983120 | November 9, 1999 | Groner et al. |
5983122 | November 9, 1999 | Jarman et al. |
5987343 | November 16, 1999 | Kinast |
5991648 | November 23, 1999 | Levin |
5995855 | November 30, 1999 | Kiani et al. |
5995856 | November 30, 1999 | Mannheimer et al. |
5995858 | November 30, 1999 | Kinast |
5995859 | November 30, 1999 | Takahashi |
5997343 | December 7, 1999 | Mills et al. |
5999834 | December 7, 1999 | Wang et al. |
6002952 | December 14, 1999 | Diab et al. |
6005658 | December 21, 1999 | Kaluza et al. |
6006120 | December 21, 1999 | Levin |
6011985 | January 4, 2000 | Athan et al. |
6011986 | January 4, 2000 | Diab et al. |
6014576 | January 11, 2000 | Raley et al. |
6018673 | January 25, 2000 | Chin et al. |
6018674 | January 25, 2000 | Aronow |
6022321 | February 8, 2000 | Amano et al. |
6023541 | February 8, 2000 | Merchant et al. |
6026312 | February 15, 2000 | Shemwell et al. |
6026314 | February 15, 2000 | Amerov et al. |
6031603 | February 29, 2000 | Fine et al. |
6035223 | March 7, 2000 | Baker, Jr. |
6036642 | March 14, 2000 | Diab et al. |
6041247 | March 21, 2000 | Weckstrom et al. |
6044283 | March 28, 2000 | Fein et al. |
6047201 | April 4, 2000 | Jackson, III |
6055447 | April 25, 2000 | Well |
6061584 | May 9, 2000 | Lovejoy et al. |
6064898 | May 16, 2000 | Aldrich |
6064899 | May 16, 2000 | Fein et al. |
6067462 | May 23, 2000 | Diab et al. |
6073038 | June 6, 2000 | Wang et al. |
6078829 | June 20, 2000 | Uchida |
6078833 | June 20, 2000 | Hueber |
6081735 | June 27, 2000 | Diab et al. |
6083157 | July 4, 2000 | Noller |
6083172 | July 4, 2000 | Baker, Jr. et al. |
6088607 | July 11, 2000 | Diab et al. |
6094592 | July 25, 2000 | Yorkey et al. |
6095974 | August 1, 2000 | Shemwell et al. |
6104938 | August 15, 2000 | Huiku et al. |
6104939 | August 15, 2000 | Groner |
6112107 | August 29, 2000 | Hannula |
6113541 | September 5, 2000 | Dias et al. |
6115621 | September 5, 2000 | Chin |
6122535 | September 19, 2000 | Kaestle et al. |
6133994 | October 17, 2000 | Mathews et al. |
6135952 | October 24, 2000 | Coetzee |
6144444 | November 7, 2000 | Haworth et al. |
6144867 | November 7, 2000 | Walker et al. |
6144868 | November 7, 2000 | Parker |
6149481 | November 21, 2000 | Wang et al. |
6151107 | November 21, 2000 | Schöllermann et al. |
6151516 | November 21, 2000 | Kiani-Azarbayjany et al. |
6151518 | November 21, 2000 | Hayashi |
6152754 | November 28, 2000 | Gerhardt et al. |
6154667 | November 28, 2000 | Miura et al. |
6157850 | December 5, 2000 | Diab et al. |
6159147 | December 12, 2000 | Lichter |
6163175 | December 19, 2000 | Larsen et al. |
6163715 | December 19, 2000 | Larsen et al. |
6165005 | December 26, 2000 | Mills et al. |
6173196 | January 9, 2001 | Delonzor et al. |
6178343 | January 23, 2001 | Bindszus et al. |
6179159 | January 30, 2001 | Gurley |
6181958 | January 30, 2001 | Steuer et al. |
6181959 | January 30, 2001 | Schöllermann et al. |
6184521 | February 6, 2001 | Coffin, IV et al. |
6188470 | February 13, 2001 | Grace |
6192260 | February 20, 2001 | Chance |
6195575 | February 27, 2001 | Levinson |
6198951 | March 6, 2001 | Kosuda et al. |
6206830 | March 27, 2001 | Diab et al. |
6213952 | April 10, 2001 | Finarov et al. |
6217523 | April 17, 2001 | Amano et al. |
6222189 | April 24, 2001 | Misner et al. |
6223064 | April 24, 2001 | Lynn |
6226539 | May 1, 2001 | Potratz |
6226540 | May 1, 2001 | Bernreuter et al. |
6229856 | May 8, 2001 | Diab et al. |
6230035 | May 8, 2001 | Aoyagi et al. |
6233470 | May 15, 2001 | Tsuchiya |
6236871 | May 22, 2001 | Tsuchiya |
6236872 | May 22, 2001 | Diab et al. |
6240305 | May 29, 2001 | Tsuchiya |
6253097 | June 26, 2001 | Aronow et al. |
6253098 | June 26, 2001 | Walker et al. |
6256523 | July 3, 2001 | Diab et al. |
6256524 | July 3, 2001 | Walker et al. |
6261236 | July 17, 2001 | Grinblatov |
6263221 | July 17, 2001 | Chance et al. |
6263222 | July 17, 2001 | Diab et al. |
6263223 | July 17, 2001 | Sheperd et al. |
6266546 | July 24, 2001 | Steuer et al. |
6266547 | July 24, 2001 | Walker et al. |
6272363 | August 7, 2001 | Casciani et al. |
6278522 | August 21, 2001 | Lepper, Jr. et al. |
6280213 | August 28, 2001 | Tobler et al. |
6280381 | August 28, 2001 | Malin et al. |
6285894 | September 4, 2001 | Oppelt et al. |
6285895 | September 4, 2001 | Ristolainen et al. |
6285896 | September 4, 2001 | Tobler et al. |
6298252 | October 2, 2001 | Kovach et al. |
6308089 | October 23, 2001 | Von der Ruhr et al. |
6321100 | November 20, 2001 | Parker |
6330468 | December 11, 2001 | Scharf |
6334065 | December 25, 2001 | Al-Ali et al. |
6339715 | January 15, 2002 | Bahr et al. |
6342039 | January 29, 2002 | Lynn |
6343223 | January 29, 2002 | Chin et al. |
6343224 | January 29, 2002 | Parker |
6349228 | February 19, 2002 | Kiani et al. |
6351658 | February 26, 2002 | Middleman et al. |
6353750 | March 5, 2002 | Kimura |
6356774 | March 12, 2002 | Bernstein et al. |
6360113 | March 19, 2002 | Dettling |
6360114 | March 19, 2002 | Diab et al. |
6361501 | March 26, 2002 | Amano et al. |
6363269 | March 26, 2002 | Hanna et al. |
D455834 | April 16, 2002 | Donars et al. |
6370408 | April 9, 2002 | Merchant et al. |
6370409 | April 9, 2002 | Chung et al. |
6371921 | April 16, 2002 | Caro |
6374129 | April 16, 2002 | Chin et al. |
6377829 | April 23, 2002 | Al-Ali et al. |
6381479 | April 30, 2002 | Norris |
6381480 | April 30, 2002 | Stoddar et al. |
6385471 | May 7, 2002 | Mortz |
6385821 | May 14, 2002 | Modgil et al. |
6388240 | May 14, 2002 | Schulz et al. |
6393310 | May 21, 2002 | Kuenster |
6393311 | May 21, 2002 | Edgar, Jr. et al. |
6397091 | May 28, 2002 | Diab et al. |
6397092 | May 28, 2002 | Norris et al. |
6397093 | May 28, 2002 | Aldrich |
6398727 | June 4, 2002 | Bui et al. |
6400971 | June 4, 2002 | Finarov et al. |
6400972 | June 4, 2002 | Fine |
6400973 | June 4, 2002 | Winter |
6402690 | June 11, 2002 | Rhee et al. |
6408198 | June 18, 2002 | Hanna et al. |
6411832 | June 25, 2002 | Guthermann |
6411833 | June 25, 2002 | Baker, Jr. et al. |
6415166 | July 2, 2002 | Van Hoy et al. |
6421549 | July 16, 2002 | Jacques |
6430423 | August 6, 2002 | DeLonzor et al. |
6430513 | August 6, 2002 | Wang et al. |
6430525 | August 6, 2002 | Weber et al. |
6434408 | August 13, 2002 | Heckel et al. |
6438396 | August 20, 2002 | Cook |
6438399 | August 20, 2002 | Kurth |
6449501 | September 10, 2002 | Reuss |
6453183 | September 17, 2002 | Walker |
6453184 | September 17, 2002 | Hyogo et al. |
6456862 | September 24, 2002 | Benni |
6461305 | October 8, 2002 | Schnall |
6463310 | October 8, 2002 | Swedlow et al. |
6463311 | October 8, 2002 | Diab |
6466808 | October 15, 2002 | Chin et al. |
6466809 | October 15, 2002 | Riley |
6470199 | October 22, 2002 | Kopotic et al. |
6470200 | October 22, 2002 | Walker et al. |
6480729 | November 12, 2002 | Stone |
6490466 | December 3, 2002 | Fein et al. |
6493568 | December 10, 2002 | Bell |
6496711 | December 17, 2002 | Athan et al. |
6498942 | December 24, 2002 | Esenaliev et al. |
6501974 | December 31, 2002 | Huiku |
6501975 | December 31, 2002 | Diab et al. |
6505060 | January 7, 2003 | Norris |
6505061 | January 7, 2003 | Larson |
6505133 | January 7, 2003 | Hanna et al. |
6510329 | January 21, 2003 | Heckel |
6510331 | January 21, 2003 | Williams et al. |
6512937 | January 28, 2003 | Blank et al. |
6515273 | February 4, 2003 | Al-Ali |
6519484 | February 11, 2003 | Lovejoy et al. |
6519486 | February 11, 2003 | Edgar, Jr. et al. |
6519487 | February 11, 2003 | Parker |
6525386 | February 25, 2003 | Mills et al. |
6526300 | February 25, 2003 | Kiani et al. |
6526301 | February 25, 2003 | Larsen et al. |
6541756 | April 1, 2003 | Schulz et al. |
6542764 | April 1, 2003 | Al-Ali et al. |
6546267 | April 8, 2003 | Sugiura et al. |
6553241 | April 22, 2003 | Mannheimer et al. |
6553242 | April 22, 2003 | Sarussi |
6553243 | April 22, 2003 | Gurley |
6554788 | April 29, 2003 | Hunley |
6556852 | April 29, 2003 | Schulze et al. |
6560470 | May 6, 2003 | Pologe |
6564077 | May 13, 2003 | Mortara |
6564088 | May 13, 2003 | Soller et al. |
6571113 | May 27, 2003 | Fein et al. |
6571114 | May 27, 2003 | Koike et al. |
6574491 | June 3, 2003 | Elghazzawi |
6579242 | June 17, 2003 | Bui et al. |
6580086 | June 17, 2003 | Schulz et al. |
6584336 | June 24, 2003 | Ali et al. |
6587703 | July 1, 2003 | Cheng et al. |
6587704 | July 1, 2003 | Fine et al. |
6589172 | July 8, 2003 | Williams et al. |
6591122 | July 8, 2003 | Schmitt |
6591123 | July 8, 2003 | Fein et al. |
6594511 | July 15, 2003 | Stone et al. |
6594512 | July 15, 2003 | Huang |
6594513 | July 15, 2003 | Jobsis et al. |
6597931 | July 22, 2003 | Cheng et al. |
6600940 | July 29, 2003 | Fein et al. |
6606510 | August 12, 2003 | Swedlow et al. |
6606511 | August 12, 2003 | Ali et al. |
6606512 | August 12, 2003 | Muz et al. |
6608562 | August 19, 2003 | Kimura et al. |
6609016 | August 19, 2003 | Lynn |
6615064 | September 2, 2003 | Aldrich |
6615065 | September 2, 2003 | Barrett et al. |
6618602 | September 9, 2003 | Levin et al. |
6622034 | September 16, 2003 | Gorski et al. |
6628975 | September 30, 2003 | Fein et al. |
6631281 | October 7, 2003 | Kästle |
6632181 | October 14, 2003 | Flaherty |
6640116 | October 28, 2003 | Diab |
6643530 | November 4, 2003 | Diab et al. |
6643531 | November 4, 2003 | Katarow |
6647279 | November 11, 2003 | Pologe |
6647280 | November 11, 2003 | Bahr et al. |
6650916 | November 18, 2003 | Cook |
6650917 | November 18, 2003 | Diab et al. |
6650918 | November 18, 2003 | Terry |
6654621 | November 25, 2003 | Palatnik et al. |
6654622 | November 25, 2003 | Eberhard et al. |
6654623 | November 25, 2003 | Kästle |
6654624 | November 25, 2003 | Diab et al. |
6658276 | December 2, 2003 | Kianl et al. |
6658277 | December 2, 2003 | Wassermann |
6662033 | December 9, 2003 | Casciani et al. |
6665551 | December 16, 2003 | Suzuki |
6668182 | December 23, 2003 | Hubelbank |
6668183 | December 23, 2003 | Hicks et al. |
6671526 | December 30, 2003 | Aoyagi et al. |
6671528 | December 30, 2003 | Steuer et al. |
6671530 | December 30, 2003 | Chung et al. |
6671531 | December 30, 2003 | Al-Ali et al. |
6671532 | December 30, 2003 | Fudge et al. |
6675031 | January 6, 2004 | Porges et al. |
6678543 | January 13, 2004 | Diab et al. |
6681126 | January 20, 2004 | Solenberger |
6681128 | January 20, 2004 | Steuer et al. |
6681454 | January 27, 2004 | Modgil et al. |
6684090 | January 27, 2004 | Ali et al. |
6684091 | January 27, 2004 | Parker |
6694160 | February 17, 2004 | Chin |
6697653 | February 24, 2004 | Hanna |
6697655 | February 24, 2004 | Sueppel et al. |
6697656 | February 24, 2004 | Al-Ali |
6697658 | February 24, 2004 | Al-Ali |
RE38476 | March 30, 2004 | Diab et al. |
6699194 | March 2, 2004 | Diab et al. |
6699199 | March 2, 2004 | Asada et al. |
6701170 | March 2, 2004 | Stetson |
6702752 | March 9, 2004 | Dekker |
6707257 | March 16, 2004 | Norris |
6708049 | March 16, 2004 | Berson et al. |
6709402 | March 23, 2004 | Dekker |
6711424 | March 23, 2004 | Fine et al. |
6711425 | March 23, 2004 | Reuss |
6712762 | March 30, 2004 | Lichter |
6714803 | March 30, 2004 | Mortz |
6714804 | March 30, 2004 | Al-Ali et al. |
6714805 | March 30, 2004 | Jeon et al. |
RE38492 | April 6, 2004 | Diab et al. |
6719686 | April 13, 2004 | Coakley et al. |
6719705 | April 13, 2004 | Mills |
6720734 | April 13, 2004 | Norris |
6721584 | April 13, 2004 | Baker, Jr. et al. |
6721585 | April 13, 2004 | Parker |
6725074 | April 20, 2004 | Kästle |
6725075 | April 20, 2004 | Al-Ali |
6731962 | May 4, 2004 | Katarow |
6731963 | May 4, 2004 | Finarov et al. |
6731967 | May 4, 2004 | Turcott |
6735459 | May 11, 2004 | Parker |
6745060 | June 1, 2004 | Diab et al. |
6745061 | June 1, 2004 | Hicks et al. |
6748253 | June 8, 2004 | Norris et al. |
6748254 | June 8, 2004 | O'Neill et al. |
6754515 | June 22, 2004 | Pologe |
6754516 | June 22, 2004 | Mannheimer |
6760607 | July 6, 2004 | Al-Ali |
6760609 | July 6, 2004 | Jacques |
6760610 | July 6, 2004 | Tschupp et al. |
6763255 | July 13, 2004 | DeLonzor et al. |
6763256 | July 13, 2004 | Kimball et al. |
6770028 | August 3, 2004 | Ali et al. |
6771994 | August 3, 2004 | Kiani et al. |
6773397 | August 10, 2004 | Kelly |
6778923 | August 17, 2004 | Norris et al. |
6780158 | August 24, 2004 | Yarita |
6791689 | September 14, 2004 | Weckstrom |
6792300 | September 14, 2004 | Diab et al. |
6801797 | October 5, 2004 | Mannheimer et al. |
6801798 | October 5, 2004 | Geddes et al. |
6801799 | October 5, 2004 | Mendelson |
6801802 | October 5, 2004 | Sitzman et al. |
6802812 | October 12, 2004 | Walker et al. |
6805673 | October 19, 2004 | Dekker |
6810277 | October 26, 2004 | Edgar, Jr. et al. |
6813511 | November 2, 2004 | Diab et al. |
6816741 | November 9, 2004 | Diab |
6819950 | November 16, 2004 | Mills |
6822564 | November 23, 2004 | Al-Ali |
6825619 | November 30, 2004 | Norris |
6826419 | November 30, 2004 | Diab et al. |
6829496 | December 7, 2004 | Nagai et al. |
6830549 | December 14, 2004 | Bui et al. |
6830711 | December 14, 2004 | Mills et al. |
6836679 | December 28, 2004 | Baker, Jr. et al. |
6839579 | January 4, 2005 | Chin |
6839580 | January 4, 2005 | Zonios et al. |
6839582 | January 4, 2005 | Heckel |
6839659 | January 4, 2005 | Tarassenko et al. |
6842635 | January 11, 2005 | Parker |
6845256 | January 18, 2005 | Chin et al. |
6850787 | February 1, 2005 | Weber et al. |
6850788 | February 1, 2005 | Al-Ali |
6850789 | February 1, 2005 | Schweitzer, Jr. et al. |
6861639 | March 1, 2005 | Al-Ali |
6863652 | March 8, 2005 | Huang et al. |
6865407 | March 8, 2005 | Kimball et al. |
6879850 | April 12, 2005 | Kimball |
6882874 | April 19, 2005 | Huiku |
6898452 | May 24, 2005 | Al-Ali et al. |
6909912 | June 21, 2005 | Melker et al. |
6912413 | June 28, 2005 | Rantala et al. |
6920345 | July 19, 2005 | Al-Ali et al. |
6931269 | August 16, 2005 | Terry |
6934570 | August 23, 2005 | Kiani et al. |
6941162 | September 6, 2005 | Fudge et al. |
6947781 | September 20, 2005 | Asada et al. |
6950687 | September 27, 2005 | Al-Ali |
6954664 | October 11, 2005 | Sweitzer |
6968221 | November 22, 2005 | Rosenthal |
6979812 | December 27, 2005 | Al-Ali |
6983178 | January 3, 2006 | Fine et al. |
6985762 | January 10, 2006 | Brashears et al. |
6985763 | January 10, 2006 | Boas et al. |
6985764 | January 10, 2006 | Mason et al. |
6987994 | January 17, 2006 | Mortz |
6990426 | January 24, 2006 | Yoon et al. |
6992751 | January 31, 2006 | Okita et al. |
6992772 | January 31, 2006 | Block |
6993371 | January 31, 2006 | Kiani et al. |
6993372 | January 31, 2006 | Fine et al. |
6996427 | February 7, 2006 | Ali et al. |
7003338 | February 21, 2006 | Weber et al. |
7003339 | February 21, 2006 | Diab et al. |
7006855 | February 28, 2006 | Sarussi |
7006856 | February 28, 2006 | Baker, Jr. et al. |
7016715 | March 21, 2006 | Stetson |
7020507 | March 28, 2006 | Scharf et al. |
7024233 | April 4, 2006 | Ali et al. |
7024235 | April 4, 2006 | Melker et al. |
7025728 | April 11, 2006 | Ito et al. |
7027849 | April 11, 2006 | Al-Ali |
7027850 | April 11, 2006 | Wasserman |
7039449 | May 2, 2006 | Al-Ali |
7039538 | May 2, 2006 | Baker |
7043289 | May 9, 2006 | Fine et al. |
7047055 | May 16, 2006 | Boas et al. |
7060035 | June 13, 2006 | Wasserman |
7062307 | June 13, 2006 | Norris et al. |
7067893 | June 27, 2006 | Mills et al. |
7072701 | July 4, 2006 | Chen et al. |
7072702 | July 4, 2006 | Edgar, Jr. et al. |
7079880 | July 18, 2006 | Stetson |
7085597 | August 1, 2006 | Fein et al. |
7096052 | August 22, 2006 | Mason et al. |
7096054 | August 22, 2006 | Abdul-Hafiz et al. |
7107088 | September 12, 2006 | Aceti |
7113815 | September 26, 2006 | O'Neil et al. |
7123950 | October 17, 2006 | Mannheimer |
7127278 | October 24, 2006 | Melker et al. |
7130671 | October 31, 2006 | Baker, Jr. et al. |
7132641 | November 7, 2006 | Schulz et al. |
7133711 | November 7, 2006 | Chernoguz et al. |
7139559 | November 21, 2006 | Kenagy et al. |
7142901 | November 28, 2006 | Kiani et al. |
7162288 | January 9, 2007 | Nordstrom et al. |
7190987 | March 13, 2007 | Kindekugel et al. |
7194293 | March 20, 2007 | Baker |
7198778 | April 3, 2007 | Achilefu et al. |
7209774 | April 24, 2007 | Baker |
7215984 | May 8, 2007 | Diab et al. |
7225006 | May 29, 2007 | Al-Ali et al. |
7228161 | June 5, 2007 | Chin |
7236881 | June 26, 2007 | Schmitt et al. |
7248910 | July 24, 2007 | Li et al. |
7254433 | August 7, 2007 | Diab et al. |
7254434 | August 7, 2007 | Schulz et al. |
7280858 | October 9, 2007 | Al-Ali et al. |
7295866 | November 13, 2007 | Al-Ali |
7305262 | December 4, 2007 | Brodnick et al. |
7315753 | January 1, 2008 | Baker, Jr. et al. |
7389131 | June 17, 2008 | Kanayama |
7392075 | June 24, 2008 | Baker |
7471969 | December 30, 2008 | Diab et al. |
7474907 | January 6, 2009 | Baker |
7500950 | March 10, 2009 | Al-Ali et al. |
20020016537 | February 7, 2002 | Muz et al. |
20020026109 | February 28, 2002 | Diab et al. |
20020028990 | March 7, 2002 | Shepherd et al. |
20020038078 | March 28, 2002 | Ito |
20020042558 | April 11, 2002 | Mendelson |
20020068859 | June 6, 2002 | Knopp |
20020072681 | June 13, 2002 | Schnali |
20020103423 | August 1, 2002 | Chin et al. |
20020116797 | August 29, 2002 | Modgil et al. |
20020128544 | September 12, 2002 | Diab et al. |
20020133067 | September 19, 2002 | Jackson, III |
20020156354 | October 24, 2002 | Larson |
20020173706 | November 21, 2002 | Takatani |
20020190863 | December 19, 2002 | Lynn |
20030018243 | January 23, 2003 | Gerhardt et al. |
20030036690 | February 20, 2003 | Geddes et al. |
20030045785 | March 6, 2003 | Diab et al. |
20030073889 | April 17, 2003 | Keilbach et al. |
20030073890 | April 17, 2003 | Hanna |
20030100840 | May 29, 2003 | Sugiura et al. |
20030187337 | October 2, 2003 | Tarassenko et al. |
20030197679 | October 23, 2003 | Ali et al. |
20030212316 | November 13, 2003 | Leiden et al. |
20030225323 | December 4, 2003 | Kiani et al. |
20040006261 | January 8, 2004 | Swedlow et al. |
20040024326 | February 5, 2004 | Yeo et al. |
20040039272 | February 26, 2004 | Abdul-Hafiz et al. |
20040039273 | February 26, 2004 | Terry |
20040054291 | March 18, 2004 | Schulz et al. |
20040068164 | April 8, 2004 | Diab et al. |
20040092805 | May 13, 2004 | Yarita |
20040097797 | May 20, 2004 | Porges et al. |
20040098009 | May 20, 2004 | Boecker et al. |
20040117891 | June 24, 2004 | Hannula et al. |
20040147824 | July 29, 2004 | Diab et al. |
20040158134 | August 12, 2004 | Diab et al. |
20040162472 | August 19, 2004 | Berson et al. |
20040167381 | August 26, 2004 | Lichter |
20040186358 | September 23, 2004 | Chernow et al. |
20040204637 | October 14, 2004 | Diab et al. |
20040204638 | October 14, 2004 | Diab et al. |
20040204639 | October 14, 2004 | Casciani et al. |
20040204865 | October 14, 2004 | Lee et al. |
20040210146 | October 21, 2004 | Diab et al. |
20040215085 | October 28, 2004 | Schnall |
20040236196 | November 25, 2004 | Diab et al. |
20050004479 | January 6, 2005 | Townsend et al. |
20050014999 | January 20, 2005 | Rahe-Meyer |
20050020887 | January 27, 2005 | Goldberg |
20050033131 | February 10, 2005 | Chen |
20050043599 | February 24, 2005 | O'Mara |
20050043600 | February 24, 2005 | Diab et al. |
20050049468 | March 3, 2005 | Carlson |
20050070773 | March 31, 2005 | Chin |
20050075546 | April 7, 2005 | Samsoondar |
20050075548 | April 7, 2005 | Al-Ali et al. |
20050075550 | April 7, 2005 | Lindekugel |
20050085704 | April 21, 2005 | Schulz |
20050090720 | April 28, 2005 | Wu |
20050197548 | September 8, 2005 | Dietiker |
20050197579 | September 8, 2005 | Baker |
20050197793 | September 8, 2005 | Baker |
20050228248 | October 13, 2005 | Dietiker |
20050250998 | November 10, 2005 | Huiku |
20050256386 | November 17, 2005 | Chan |
20050272986 | December 8, 2005 | Smith |
20050277819 | December 15, 2005 | Kiani et al. |
20060020179 | January 26, 2006 | Anderson |
20060030764 | February 9, 2006 | Porges |
20060058594 | March 16, 2006 | Ishizuka et al. |
20060074280 | April 6, 2006 | Martis |
20060084852 | April 20, 2006 | Mason et al. |
20060084878 | April 20, 2006 | Banet |
20060089547 | April 27, 2006 | Sarussi |
20060106294 | May 18, 2006 | Maser et al. |
20060122476 | June 8, 2006 | Van Slyke |
20060122517 | June 8, 2006 | Banet |
20060129039 | June 15, 2006 | Lindner |
20060155198 | July 13, 2006 | Schmid |
20060173257 | August 3, 2006 | Nagai |
20060195280 | August 31, 2006 | Baker |
20060211925 | September 21, 2006 | Lamego et al. |
20060211932 | September 21, 2006 | Al-Ali et al. |
20060217604 | September 28, 2006 | Fein et al. |
20060217605 | September 28, 2006 | Fein et al. |
20060217606 | September 28, 2006 | Fein et al. |
20060217607 | September 28, 2006 | Fein et al. |
20060217608 | September 28, 2006 | Fein et al. |
20060220881 | October 5, 2006 | Al-Ali et al. |
20060224059 | October 5, 2006 | Swedlow et al. |
20060226992 | October 12, 2006 | Al-Ali et al. |
20060229510 | October 12, 2006 | Fein et al. |
20060229511 | October 12, 2006 | Fein et al. |
20060238358 | October 26, 2006 | Al-Ali et al. |
20070027376 | February 1, 2007 | Todokoro et al. |
20070032710 | February 8, 2007 | Raridan et al. |
20070032712 | February 8, 2007 | Raridan et al. |
20070032715 | February 8, 2007 | Eghbal et al. |
20070043269 | February 22, 2007 | Mannheimer et al. |
20070043270 | February 22, 2007 | Mannheimer et al. |
20070043271 | February 22, 2007 | Mannheimer et al. |
20070043272 | February 22, 2007 | Mannheimer et al. |
20070043273 | February 22, 2007 | Mannheimer et al. |
20070043274 | February 22, 2007 | Mannheimer et al. |
20070043275 | February 22, 2007 | Manheimer et al. |
20070043276 | February 22, 2007 | Mannheimer et al. |
20070043277 | February 22, 2007 | Mannheimer et al. |
20070043278 | February 22, 2007 | Mannheimer et al. |
20070043279 | February 22, 2007 | Mannheimer et al. |
20070043280 | February 22, 2007 | Mannheimer et al. |
20070043282 | February 22, 2007 | Mannheimer et al. |
20070049810 | March 1, 2007 | Mannheimer et al. |
20070060808 | March 15, 2007 | Hoarau |
20070073117 | March 29, 2007 | Raridan |
20070073121 | March 29, 2007 | Hoarau et al. |
20070073122 | March 29, 2007 | Hoarau |
20070073123 | March 29, 2007 | Raridan |
20070073125 | March 29, 2007 | Hoarau et al. |
20070073126 | March 29, 2007 | Raridan |
20070073128 | March 29, 2007 | Hoarau |
20070078315 | April 5, 2007 | Kling et al. |
20070078316 | April 5, 2007 | Hoarau |
20070088207 | April 19, 2007 | Mannheimer et al. |
20070100220 | May 3, 2007 | Baker et al. |
20070106137 | May 10, 2007 | Baker et al. |
20070129616 | June 7, 2007 | Rantala |
20070208240 | September 6, 2007 | Nordstrom et al. |
20070225614 | September 27, 2007 | Naghavi et al. |
20070260129 | November 8, 2007 | Chin |
20070260130 | November 8, 2007 | Chin |
20070260131 | November 8, 2007 | Chin |
20070282478 | December 6, 2007 | Al-Ali et al. |
20070299328 | December 27, 2007 | Chin et al. |
20080081974 | April 3, 2008 | Pav |
20080088467 | April 17, 2008 | Al-Ali |
20080097175 | April 24, 2008 | Boyce et al. |
20080103375 | May 1, 2008 | Kiani |
20080108884 | May 8, 2008 | Kiani |
20080183057 | July 31, 2008 | Taube |
20080188733 | August 7, 2008 | Al-Ali et al. |
20080221418 | September 11, 2008 | Al-Ali et al. |
20080255436 | October 16, 2008 | Baker |
20080262326 | October 23, 2008 | Hete et al. |
20080262328 | October 23, 2008 | Adams |
20080287757 | November 20, 2008 | Berson et al. |
34/05444 | August 1985 | DE |
35/16338 | November 1986 | DE |
37/03458 | August 1988 | DE |
39/38759 | May 1991 | DE |
4210102 | September 1993 | DE |
44/23597 | August 1995 | DE |
19/632361 | February 1997 | DE |
69/123448 | May 1997 | DE |
19/703220 | July 1997 | DE |
19640807 | September 1997 | DE |
19647877 | April 1998 | DE |
10030862 | January 2002 | DE |
20318882 | April 2004 | DE |
0127947 | May 1984 | EP |
00194105 | September 1986 | EP |
00204459 | December 1986 | EP |
02/62779 | April 1988 | EP |
0315040 | October 1988 | EP |
0314331 | May 1989 | EP |
00352923 | January 1990 | EP |
03/60977 | April 1990 | EP |
00430340 | June 1991 | EP |
04/35500 | July 1991 | EP |
0572684 | May 1992 | EP |
00497021 | August 1992 | EP |
0529412 | August 1992 | EP |
0531631 | September 1992 | EP |
0566354 | April 1993 | EP |
0587009 | August 1993 | EP |
00630203 | September 1993 | EP |
05/72684 | December 1993 | EP |
00615723 | September 1994 | EP |
00702931 | March 1996 | EP |
00724860 | August 1996 | EP |
00793942 | September 1997 | EP |
08/64293 | September 1998 | EP |
01006863 | October 1998 | EP |
01006864 | October 1998 | EP |
0875199 | November 1998 | EP |
00998214 | December 1998 | EP |
0/898933 | March 1999 | EP |
0898933 | March 1999 | EP |
01332713 | August 2003 | EP |
01469773 | August 2003 | EP |
1502529 | July 2004 | EP |
01491135 | December 2004 | EP |
1807001 | July 2007 | EP |
2685865 | January 1992 | FR |
22/59545 | March 1993 | GB |
63275325 | November 1988 | JP |
2013450 | January 1990 | JP |
2111343 | April 1990 | JP |
02/191434 | July 1990 | JP |
2237544 | September 1990 | JP |
03/173536 | July 1991 | JP |
3170866 | July 1991 | JP |
3245042 | October 1991 | JP |
4174648 | June 1992 | JP |
4191642 | July 1992 | JP |
4332536 | November 1992 | JP |
3124073 | March 1993 | JP |
5049624 | March 1993 | JP |
5049625 | March 1993 | JP |
3115374 | April 1993 | JP |
05/200031 | August 1993 | JP |
2005/200031 | August 1993 | JP |
5212016 | August 1993 | JP |
06/014906 | January 1994 | JP |
06014906 | January 1994 | JP |
6016774 | March 1994 | JP |
3116255 | April 1994 | JP |
6029504 | April 1994 | JP |
6098881 | April 1994 | JP |
06/154177 | June 1994 | JP |
6269430 | September 1994 | JP |
6285048 | October 1994 | JP |
7001273 | January 1995 | JP |
7124138 | May 1995 | JP |
7136150 | May 1995 | JP |
3116259 | June 1995 | JP |
3116260 | June 1995 | JP |
7155311 | June 1995 | JP |
7155313 | June 1995 | JP |
3238813 | July 1995 | JP |
7171139 | July 1995 | JP |
3134144 | September 1995 | JP |
7236625 | September 1995 | JP |
7246191 | September 1995 | JP |
8256996 | October 1996 | JP |
9192120 | July 1997 | JP |
10216113 | August 1998 | JP |
10216114 | August 1998 | JP |
10216115 | August 1998 | JP |
10337282 | December 1998 | JP |
11019074 | January 1999 | JP |
11155841 | June 1999 | JP |
11/188019 | July 1999 | JP |
11244268 | September 1999 | JP |
20107157 | April 2000 | JP |
20237170 | September 2000 | JP |
21245871 | September 2001 | JP |
22224088 | August 2002 | JP |
22282242 | October 2002 | JP |
23153881 | May 2003 | JP |
23153882 | May 2003 | JP |
23169791 | June 2003 | JP |
23194714 | July 2003 | JP |
23210438 | July 2003 | JP |
23275192 | September 2003 | JP |
23339678 | December 2003 | JP |
24008572 | January 2004 | JP |
24089546 | March 2004 | JP |
24113353 | April 2004 | JP |
24135854 | May 2004 | JP |
24148069 | May 2004 | JP |
24148070 | May 2004 | JP |
24159810 | June 2004 | JP |
24166775 | June 2004 | JP |
24194908 | July 2004 | JP |
24202190 | July 2004 | JP |
24248819 | September 2004 | JP |
24248820 | September 2004 | JP |
24261364 | September 2004 | JP |
24290412 | October 2004 | JP |
24290544 | October 2004 | JP |
24290545 | October 2004 | JP |
24329406 | November 2004 | JP |
24329607 | November 2004 | JP |
24329928 | November 2004 | JP |
24337605 | December 2004 | JP |
24344367 | December 2004 | JP |
24351107 | December 2004 | JP |
25034472 | February 2005 | JP |
WO 98/09566 | October 1989 | WO |
WO 90/01293 | February 1990 | WO |
WO9001293 | February 1990 | WO |
WO 90/04352 | May 1990 | WO |
WO 91/01678 | February 1991 | WO |
WO 91/11137 | August 1991 | WO |
WO 92/00513 | January 1992 | WO |
WO 92/21281 | December 1992 | WO |
WO 93/09711 | May 1993 | WO |
WO 93/13706 | July 1993 | WO |
WO 93/16629 | September 1993 | WO |
WO 94/03102 | February 1994 | WO |
WO 94/23643 | October 1994 | WO |
WO 95/02358 | January 1995 | WO |
WO 95/12349 | May 1995 | WO |
WO 95/16970 | June 1995 | WO |
WO 96/13208 | May 1996 | WO |
WO 96/39927 | December 1996 | WO |
WO 97/36536 | October 1997 | WO |
WO 97/36538 | October 1997 | WO |
WO 97/49330 | December 1997 | WO |
WO 98/17174 | April 1998 | WO |
WO 98/18382 | May 1998 | WO |
WO 98/43071 | October 1998 | WO |
WO 98/51212 | November 1998 | WO |
WO 98/57577 | December 1998 | WO |
WO 99/00053 | January 1999 | WO |
WO 99/32030 | July 1999 | WO |
WO 99/47039 | September 1999 | WO |
WO 99/63884 | December 1999 | WO |
WO 00/21438 | April 2000 | WO |
WO 00/28888 | May 2000 | WO |
WO 00/59374 | October 2000 | WO |
WO 01/13790 | March 2001 | WO |
WO 01/16577 | March 2001 | WO |
WO 01/17421 | March 2001 | WO |
WO 01/47426 | March 2001 | WO |
WO 01/40776 | June 2001 | WO |
WO 01/76461 | October 2001 | WO |
WO 02/14793 | February 2002 | WO |
WO 02/35999 | May 2002 | WO |
WO 02/062213 | August 2002 | WO |
WO 02/074162 | September 2002 | WO |
WO 03/000125 | January 2003 | WO |
WO 03/001180 | January 2003 | WO |
WO 03/009750 | February 2003 | WO |
WO 03/011127 | February 2003 | WO |
WO 03/039326 | May 2003 | WO |
WO 03/063697 | August 2003 | WO |
WO 03/073924 | September 2003 | WO |
WO 2004/000114 | December 2003 | WO |
WO 2004/006748 | January 2004 | WO |
WO 2004/075746 | September 2004 | WO |
WO 2005/002434 | January 2005 | WO |
WO 2005/009221 | February 2005 | WO |
WO 2005/010567 | February 2005 | WO |
WO 2005/010568 | February 2005 | WO |
WO 2005/020120 | March 2005 | WO |
WO 2005/065540 | July 2005 | WO |
- U.S. Appl. No. 11/507,814, filed Aug. 22, 2006, Baker et al.
- U.S. Appl. No. 11/525,396, filed Sep. 22, 2006, Hoarau.
- U.S. Appl. No. 11/525,693, filed Sep. 22, 2006, Hoarau.
- U.S. Appl. No. 11/525,635, filed Sep. 22, 2006, Hoarau.
- U.S. Appl. No. 11/525,636, filed Sep. 22, 2006, Hoarau.
- U.S. Appl. No. 11/525,704, filed Sep. 22, 2006, Hoarau.
- U.S. Appl. No. 11/527,762, filed Sep. 26, 2006, Ollerdessen et al.
- U.S. Appl. No. 11/716,770, filed Mar. 9, 2007, Hoarau et al.
- U.S. Appl. No. 12/005,023, filed Dec. 21, 2007, Bowman et al.
- Rheineck-Leyssius, Aart t., et al.; “Advanced Pulse Oximeter Signal Processing Technology Compared to Simple Averaging: I. Effect on Frequency of Alarms in the Operating Room,” Journal of clinical Anestesia, vol. 11, pp. 192-195 (1990).
- Zahar, N., et al.; “Automatic Feedback Control of Oxygen Therapy Using Pulse Oximetry, Annual International Conference of the IEEE Engineering in Medicine and Biology Society,” vol. 13, No. 4, pp. 1614-1615(1991).
- Aoyagi, T., et al.; “Analysis of Motion Artifacts in Pulse Oximetry,” Japanese Society ME, vol. 42, p. 20 (1993) (Article in Japanese—contains English summary of article).
- Barreto, A.B., et al.; “Adaptive Cancelation of Motion artifact in Photoplethysmographic Blood Volume Pulse Measurements for Exercise Evaluation,” IEEE-EMBC and CMBEC—Theme 4: Signal Processing, pp. 983-984 (1995).
- Vincente, L.M., et al.; “Adaptive Pre-Processing of Photoplethysmographic Blood Volume Pulse Measurements,” pp. 114-117 (1996).
- Plummer, John L., et al.; “Identification of Movement Artifact by the Nellcor N-200 and N-3000 Pulse Oximeters,” Journal of clinical Monitoring, vol. 13, pp. 109-113 (1997).
- Barnum, P.T., et al.; “Novel Pulse Oximetry Technology Capable of Reliable Bradycardia Monitoring in the Neonate,” Respiratory Care, vol. 42, No. 1, p. 1072 (Nov. 1997).
- Poets, C. F., et al.; “Detection of movement artifact in recorded pulse oximeter saturation,” Eur. J. Pediatr.; vol. 156, pp. 808-811 (1997).
- Masin, Donald I., et al.; “Fetal Transmission Pulse Oximetry,” Proceedings 19th International Conference IEEE/EMBS, Oct. 30-Nov. 2, 1997; pp. 2326-2329.
- Block, Frank E., Jr., et al.; “Technology evaluation report: Obtaining pulse oximeter signals when the usual probe cannot be used,” International journal of clinical Monitoring and Computing, vol. 14, pp. 23-28 (1997).
- Nijland, Roel, et al.; “Validation of Reflectance Pulse Oximetry: An Evaluation of a new Sensor in Piglets,” Journal of Clinical Monitoring, vol. 13, pp. 43-49 (1997).
- Soto, Denise A.; “A Comparative Study of Pulse Oximeter Measurements: Digit Versus Earlobe,” Master of Science Thesis, California State University Dominguez Hills, May 1997, 46 pgs.
- Faisst, Karin, et al.; “Intrapartum Reflectance Pulse Oximetry: Effects of Sensor Location and Fixation Duration on Oxygen Saturation Readings,” Journal of Clinical Monitoring, vol. 13, pp. 299-302 (1997).
- Izumi, Akio, et al.; “Accuracy and Utility of a New Reflectance Pulse Oximeter for Fetal Monitoring During Labor,” Journal of Clinical Monitoring, vol. 13, pp. 103-108 (1997).
- Mannheimer, Paul D., et al.; “Wavelength Selection for Low-Saturation Pulse Oximetry,” IEEE Transactions on Biomedical Engineering, vol. 44, No. 3, pp. 148-158 (Mar. 1997).
- “Smaller Product, Tighter Tolerances Pose Dispensing Challenges for Medical Device Manufacturer,” Adhesives Age, pp. 40-41 (Oct. 1997).
- Buschman, J.P., et al.; “Principles and Problems of Calibration of Fetal Oximeters,” Biomedizinische Technik, vol. 42, pp. 265-266 (1997).
- Pickett, John, et al.; “Pulse OXimetry and PPG Measurements in Plastic Surgery,” Proceedings—19th International Conference—IEEE/EMBS, Chicago, Illinois, Oct. 30-Nov. 2, 1997, pp. 2330-2332.
- Leahy, Martin J., et al.; “Sensor Validation in Biomedical Applications,” IFAC Modelling and Control in Biomedical Systems, Warwick, UK; pp. 221-226 (1997).
- Barreto, Armando B., et al.; “Adaptive LMS Delay Measurement in dual Blood Volume Pulse Signals for Non-Invasive Monitoring,” IEEE, pp. 117-120 (1997).
- Crilly, Paul B., et al.; “An Integrated Pulse Oximeter System for Telemedicine Applications,” IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada; May 19-21, 1997; pp. 102-104.
- DeKock, Marc; “Pulse Oximetry Probe Adhesive Disks: a Potential for Infant Aspiration,” Anesthesiology, vol. 89, pp. 1603-1604 (1998).
- East, Christine E., et al.; “Fetal Oxygen Saturation and Uterine Contractions During Labor,” American Journal of Perinatology, vol. 15, No. 6, pp. 345-349 (Jun. 1998).
- Rhee, Sokwoo, et al.; “The Ring Sensor: a New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring,” Proceedings of the 20th annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 4, pp. 1906-1909 (Oct. 1998).
- Yang, Boo-Ho, et al.; “A Twenty-Four Hour Tele-Nursing System Using a Ring Sensor,” Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leaven, Belgium, May 1998; pp. 387-392.
- König, Volker, et al.; “Reflectance Pulse Oximetry—Principles and Obstetric Application in the Zurich System,” Journal of Clinical Monitoring and Computing, vol. 14, pp. 403-412 (1998).
- Nogawa, Masamichi, et al.; “A Novel Hybrid Reflectance Pulse Oximater Sensor with improved Linearity and General Applicability to Various Portions of the Body,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 4, pp. 1858-1861 (1998).
- Hayes, Matthew J., et al.; “Quantitative evaluation of photoplethysmographic artifact reduction for pulse oximetry,” SPIE, vol. 3570, pp. 138-147 (Sep. 1998).
- Edrich, Thomas, et al.; “Can the Blood Content of the Tissues be Determined Optically During Pulse Oximetry Without Knowledge of the Oxygen Saturation?—An In-Vitro Investigation,” Proceedings of the 20th Annual International conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 6, pp. 3072-3075 (1998).
- Hayes, Matthew J., et al.; “Artifact reduction in photoplethysmography,” Applied Optics, vol. 37, No. 31, pp. 7437-7446 (Nov. 1998).
- Such, Hans Olaf; “Optoelectronic Non-invasive Vascular Diagnostics Using multiple Wavelength and Imaging Approach,” Dissertation, (1998).
- Lutter, N., et al.; “Comparison of Different Evaluation Methods for a Multi-wavelength Pulse Oximeter,” Biomedizinische Technik, vol. 43, (1998).
- Ferrell, T.L., et al.; “Medical Telesensors,” SPIE, vol. 3253, pp. 193-198 (1998).
- Todd, Bryan, et al.; “The Identification of Peaks in Physiological Signals,” Computers and Biomedical Research, vol. 32, pp. 322-335 (1999).
- Rhee, Sokwoo, et al.; “Design of a Artifact-Free Wearable Plethysmographic Sensor,” Proceedings of the First joint BMES/EMBS Conference, Oct. 13-16, 1999, Altanta, Georgia, p. 786.
- Rohling, Roman, et, al.; “Clinical Investigation of a New Combined Pulse Oximetry and Carbon Dioxide Tension Sensor in Adult Anaesthesia,” Journal o Clinical Monitoring and Computing, vol. 15; pp. 23-27 (1999).
- Ikeda, Kenji, et al.; “Improvement of Photo-Electric Plethysmograph Applying Newly Developed Opto-Electronic Devices,” IEEE Tencon, pp. 1109-1112 (1999).
- Kaestle, S.; “An Algorithm for Reliable Processing of Pulse Oximetry Signals Under strong Noise Conditions,” Dissertation Book, Lubeck University, Germany (1999).
- Seelbach-Gobel, Birgit, et al.; “The prediction of fetal acidosis by means of intrapartum fetal pulse oximetry,” Am J. Obstet. Gynecol., vol. 180, No. 1, Part 1, pp. 73-81 (1999).
- Yang, Boo-Ho, et al.; “Development of the ring sensor for healthcare automation,” Robotics and Autonomous Systems, vol. 30, pp. 273-281 (2000).
- Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor—Part I: Design and Analysis,” Proceedings of the 22nd Annual EMBS International Conference, Chicago, Illinois; Jul. 23-28;2000; pp. 2792-2795.
- Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor—Part II: Prototyping and Benchmarking,” Proceedings of the 22nd Annual EMBS International Conference, Chicago, Illinois; Jul. 23-28, 2000; pp. 2796-2799.
- Vicenzi, Martin N.; “Transesophageal versus surface pulse oximetry in intensive care unit patients,” Crit. Care Med.; vol. 28, No. 7, pp. 2268-2270 (2000).
- Goldman, Julian M.; “Masimo Signal Extraction Pulse Oximetry,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 475-483 (2000).
- Coetzee, Frans M.; “Noise-Resistant Pulse Oximetry Using a Synthetic Reference Signal,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 8, Aug. 2000, pp. 1018-1026.
- Nilsson, Lena, et al.; “Monitoring of Respiratory Rate in Postoperative Care Using a New Photoplethysmographic Technique,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 309-315 (2000).
- Nijland, Mark J.M., et al.; “Assessment of fetal scalp oxygen saturation determination in the sheep by transmission pulse oximetry,” Am. J. Obstet Gynecol., vol. 183, No. 6, pp. 1549-1553 (Dec. 2000).
- Edrich, Thomas, et al.; “Pulse Oximetry: An Improved In Vitro Model that Reduces Blood Flow-Related Artifacts,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 3, pp. 338-343 (Mar. 2000).
- Schulz, Christian Eric; “Design of a Pulse Oximetry Sensor Housing Assembly,” California State University Master's Thesis, UMI Dissertation Services, UMI No. 1401306, (May 2000) 63 pages.
- Yao, Jianchu, et al.; “Design of a Plug-and-Play Pulse Oximeter,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas, Oct. 23-26, 2002; pp. 1752-1753.
- Aoyagi, T., et al.; “Pulse Oximeters: background, present and future,” Neonatal Care, vol. 13, No. 7, pp. 21-27 (2000) (Article in Japanese—contains English summary of article).
- Yokota, Nakaura, Takahashi, et al.; “Pilot Model of a Reflectance—Type Pulse Oximeter for Pre-hospital Evaluation,” Journal of the Japanese Society of Emergency Medicine, Kanto Region, vol. 21, pp. 26-27 (2000) (Article in Japanese—contains English summary of article).
- Kaestle, S.; “Determining Artefact Sensitivity of New Pulse Oximeters in Laboratory Using Signals Obtained from Patient,” Biomedizinische Technik, vol. 45 (2000).
- Cubeddu, Rinaldo, et al.; “Portable 8-channel time-resolved optical imager for functional studies of biological tissues,” Photon Migration, Optical Coherence Tomography, and Microscopy, Proceedings of SPIE, vol. 4431, pp. 260-265 (2001).
- Gisiger, P.A., et al.; “OxiCarbo®, a single sensor for the non-invasive measurement of arterial oxygen saturation and CO2 partial pressure at the ear lobe,” Sensor and Actuators, vol. B-76, pp. 527-530 (2001).
- Cysewska-Sobusaik, Anna; “Metrological Problems With noninvasive Transillumination of Living Tissues,” Proceedings of SPIE, vol. 4515, pp. 15-24 (2001).
- Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 7, pp. 795-805 (Jul. 2001).
- Belal, Suliman Yousef, et al.; “A fuzzy system for detecting distorted plethysmogram pulses in neonates and paediatric patients,” Physiol. Meas., vol. 22, pp. 397-412 (2001).
- Hayes, Matthew J., et al.; “A New Method for Pulse Oximetry Possessing Inherent Insensitivity to Artifact,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 4, pp. 452-461 (Apr. 2001).
- Gosney, S., et al.; “An alternative position for the pulse oximeter probe,” Anaesthesia, vol. 56, p. 493 (2001).
- Silva, Sonnia Maria Lopez, et al.; “NIR transmittance pulse oximetry system with laser diodes,” Clinical Diagnostic Systems, Proceedings of SPIE, vol. 4255, pp. 80-87 (2001).
- Maletras, Francois-Xavier, et al.; “Construction and calibration of a new design of Fiber Optic Respiratory Plethysmograph (FORP),” Optomechanical Design and Engineering, Proceedings of SPIE, vol. 4444, pp. 285-293 (2001).
- Earthrowl-Gould, T., et al.; “Chest and abdominal surface motion measurement for continuous monitoring of respiratory function,” Proc. lnstn Mech Engrs, V215, Part H; pp. 515-520 (2001).
- Gehring, Harmut, et al.; “The Effects of Motion Artifact and Low Perfusion on the Performance of a New Generation of Pulse Oximeters in Volunteers Undergoing Hypoxemia,” Respiratory Care, Vo. 47, No. 1, pp. 48-60 (Jan. 2002).
- Jopling, Michae W., et al.; “Issues in the Laboratory Evaluation of Pulse Oximeter Performance,” Anesth Analg, vol. 94, pp. S62-S68 (2002).
- Gostt, R., et al.; “Pulse Oximetry Artifact Recognition Algorithm for Computerized Anaesthetic Records,” Journal of Clinical Monitoring and Computing Abstracts, p. 471 (2002).
- Chan, K.W., et al.; “17.3: Adaptive Reduction of Motion Artifact from Photoplethysmographic Recordings using a Variable Step-Size LMS Filter,” IEEE, pp. 1343-1346 (2002).
- Relente, A.R., et al.; “Characterization and Adaptive Filtering of Motion Artifacts in Pulse Oximetry using Accelerometers,” Proceedings of the Second joint EMBS/BMES Conference, Houston, Texas, Oct. 2326, 2002; pp. 1769-1770.
- Yamaya, Yoshiki, et al.; “Validity of pulse oximetry during maximal exercise in normoxia, hypoxia, and hyperoxia,”J. Appl. Physiol., vol. 92, pp. 162-168 (2002).
- Lutter, Norbert O., et al.; “False Alarm Rates of Three Third-Generation Pulse Oximeters in PACU, ICU and IABP Patients,” Anesth Analg, vol. 94, pp. S69-S75 (2002).
- Lutter, N., et al.; “Accuracy of Noninvasive Continuous Blood Pressure; Measurement Utilising the Pulse Transit Time,” Journal of clinical Monitoring and Computing, vol. 17, Nos. 7-8, pp. 469 (2002).
- Liu, Ying, et al.; “Sensor design of new type reflectance pulse oximetry,” Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, Proceedings of SPIE, vol. 4916, pp. 98-102 (2002).
- Kyriacou, Panayiotis A., et al.; “Esophageal Pulse Oximetry Utilizing Reflectance Photoplethysmography,” IEEE Transactions on Biomedical Engineering, vol. 49, No. 11, pp. 1360-1368 (Nov. 2002).
- Kyriacou, P. A., et al.; “Investication of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients,” Physiological Measurement, vol. 23, No. 3, pp. 533-545 (Aug. 2002).
- Tobata, H., et al.; “Study of Ambient Light Affecting Pulse Oximeter Probes,” Ikigaku (Medical Technology), vol. 71, No. 10, pp. 475-476 (2002) (Article in Japanese—contains English summary of article).
- Irie, A., et al.; “Respiration Monitors—Pulse Oximeters,” Neonatal Care, vol. 15, No. 12, pp. 78-83 (2002) (Article in Japanese—contains English summary of article).
- Koga, I., et al.; “Sigmoid colonic reflectance pulse oximetry and tonometry in a porcine experimental hypoperfusion shock model,” Acta Anaesthesiol Scand, vol. 46, pp. 1212-1216 (2002).
- Shaltis, Phillip, et al.; “Implementation and Validation of a Power-Efficient, High-Speed Modulation Design for Wireless Oxygen Saturation Measurement Systems,” IEEE, pp. 193-194 (2002).
- Warren, Steve, et al.; “Wearable Sensors and Component-Based Design for Home Health Care,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas; Oct. 23-26, 2002; pp. 1871-1872.
- Ericson, M.N., et al.; “In vivo application of a minimally invasive oximetry based perfusion sensor,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas; Oct. 23-26, 2002, pp. 1789-1790.
- Yoon, Gilwon, et al.; Multiple diagnosis based on Photo-plethysmography: hematocrib, SpO2, pulse and respiration, Optics in Health Care and Biomedical optics: Diagnostics and Treatment; Proceedings of the SPIE, vol. 4916; pp. 185-188 (2002).
- Hase, Kentaro, et al.; “Continuous Measurement of Blood Oxygen Pressure Using a Fiber Optic Sensor Based on Phosphorescense Quenching,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas; Oct. 23-26, 2002, pp. 1777-1778.
- Pothisarn, W., et al.; “A non-invasive hemoglobin measurement based pulse oximetry,” Optics in Health Care and Biomedical Optics: Diagnostics and Treatment; Proceedings of SPIE, vol. 4916; pp. 498-504 (2002).
- Tremper, K.K.; “A Second Generation Technique for Evaluating Accuracy and Reliability of Second Generation Pulse Oximeters,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 473-474 (2002).
- Silva, Sonnia Maria Lopez, et al.; “Near-infrared transmittance pulse oximetry with laser diodes,” Journal of Biomedical Optics, vol. 8, No. 3, pp. 525-533 (Jul. 2003).
- Cyrill, D., et al.; “Adaptive Comb Filter for Quasi-Periodic Physiologic Signals,” Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 2439-2442.
- Matthews, Nora S. et al.; “An evaluation of pulse oximeters in dogs, cats and horses,” Veterinary Anaesthesia and Analgesia, vol. 30, pp. 3-14 (2003).
- Stetson, Paul F.; “Determining Heart Rate from Noisey Pulse Oximeter Signals Using Fuzzy Logic,” The IEEE International Conference on Fuzzy Systems, St. Louis, Missouri, May 25-28, 2003; pp. 1053-1058.
- Aoyagi, Takuo; “Pulse oximetry: its invention, theory, and future,” Journal of Anesthesia, vol. 17, pp. 259-266 (2003).
- Avidan, A.; “Pulse oximeter ear probe,” Anaesthesia, vol. 58, pp. 726 (2003).
- Lee, C.M., et al.; “Reduction of motion artifacts from photoplethysmographic recordings using wavelet denoising approach,” IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, Oct. 20-22, 2003; pp. 194-195.
- Mendelson, Y., et al.; “Measurement Site and Photodetector Size Considerations in Optimizing Power Consumption of a Wearable Reflectance Pulse Oximeter,” Proceedings of the 25th Annual International conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 3016-3019.
- Itoh, K., et al.; “Pulse Oximeter,” Toyaku Zasshi (Toyaku Journal), vol. 25, No. 8, pp. 50-54 (2003) (Article in Japanese—contains English summary of article).
- Matsui, A., et al.; “Pulse Oximeter,” Neonatal Care, vol. 16, No. 3, pp. 38-45 (2003) (Article in Japanese—contains English summary of article).
- Nakagawa, M., et al.; “Oxygen Saturation Monitor,” Neonatal Monitoring, vol. 26, No. 5, pp. 536-539 (2003) (Article in Japanese—contains English summary of article).
- Kubota, H., et al.; “Simultaneous Monitoring of PtcCO2 and SpO2 using a Miniature earlobe sensor,” Jinko Kokyo (Aritificial Respiration), vol. 20, No. 1, pp. 24-29 (2003).
- Lebak, J.W., et al.; “Implementation of a Standards-Based Pulse Oximeter on a Wearable, Embedded Platform,” Proceeding of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 3196-3198.
- Nagl, L., et al.; “Wearable Sensor System for Wireless State-of-Health Determination in Cattle,” Proceeding of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 3012-3015.
- Ostmark, Ake, et al.; “Mobile Medical Applications Made Feasible Through Use of EIS Platforms,” IMTC—Instrumentation and Measurement Technology Conference, Vail, Colorado; May 20-22, 2003; pp. 292-295.
- Warren, Steve, et al.; “A Distributed Infrastructure for Veterinary Telemedicine,” Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico; Sep. 17-21, 2003; pp. 1394-1397.
- Pujary, C., et al.; “Photodetector Size Considerations in the Design of a Noninvasive Reflectance Pulse Oximeter for Telemedicine Applications,” IEEE, pp. 148-149 (2003).
- A. Johansson; “Neural network for photoplethysmographic respiratory rate monitoring,” Medical & Biological Engineering & Computing, vol. 41, pp. 242-248 (2003).
- Reuss, James L.; “Factors Influencing Fetal Pulse Oximetry Performance,” Journal of clinical Monitoring and Computing, vol. 18, pp. 13-14 (2004).
- Mannheimer, Paul D., et al.; “The influence of Larger Subcutaneous Blood Vessels on Pulse Oximetry,” Journal of clinical Monitoring and Computing, vol. 18, pp. 179-188 (2004).
- Wendelken, Suzanne, et al.; “The Feasibility of Using a Forehead Reflectance Pulse Oximeter for Automated Remote Triage,” IEEE, pp. 180-181 (2004).
- Lopez-Silva, S.M., et al.; “Transmittance Photoplethysmography and Pulse Oximetry With Near Infrared Laser Diodes,” IMTC 2004—Instrumentation and Measurement Technology Conference, Como, Italy, May 18-20, 2004; pp. 718-723.
- Sugino, Shigekzau, et al.; “Forehead is as sensitive as finger pulse oximetry during general anesthesia,” Can J. Anesth; General Anesthesia, vol. 51, No. 5; pp. 432-436 (2004).
- Addison, Paul S., et al.; “A novel time-frequency-based 3D Lissajous figure method and its application to the determination of oxygen saturation from the photoplethysmogram,” Institute of Physic Publishing, Meas. Sci. Technol., vol. 15, pp. L15-L18 (2004).
- Jovanov, E., et al.; “Reconfigurable intelligent Sensors for Health Monitoring: A case Study of Pulse Oximeter Sensor,” Proceedings o the 26th Annual International conference of the IEEE EMBS, San Francisco, California, Sep. 1-5, 2004, pp. 4759-4762.
- Kocher, Serge, et al.; “Performance of a Digital PCO2/SPO2 Ear Sensor,” Journal of Clinical Monitoring and Computing, vol. 18, pp. 75-59 (2004).
- Yao, Jianchu, et al.; “A Novel Algorithm to Separate Motion Artifacts from Photoplethysmographic Signals Obtained With a Reflectance Pulse Oximeter,” Proceedings of the 26th Annual International conference of the IEEE EMBS, San Francisco, California, Sep. 1-5, 2004; pp. 2153-2156.
- Nuhr, M., et al.: “Forehead SpO2 monitoring compared to finger SpO2 recording in emergency transport,” Anaesthesia, vol. 59, pp. 390-393 (2004).
- Johnston, William S., et al.; “Effects of Motion Artifacts on helmet-Mounted Pulse Oximeter Sensors,” 2 pgs. (2004).
- Branche, Paul C., et al.; “Measurement Reproducibility and Sensor Placement Considerations in Designing a Wearable Pulse Oximeter for Military Applications,” 2 pgs. (2004).
- Kocher, Serge, et al.; “Performance of a Digital PCO2/SPO2 Ear Sensor,” Journal of Clinical Monitoring and Computing, vol. 18, pp. 75-79 (2004).
- Heuss, Ludwig T., et al.; “Combined Pulse Oximetry / Cutaneous Carbon dioxide Tension Monitoring During Colonoscopies: Pilot study with a Smart Ear Clip,” Digestion, vol. 70, pp. 152-158 (2004).
- Matsuzawa, Y., et al.; “Pulse Oximeter,” Home Care Medicine, pp. 42-45 (Jul. 2004); (Article in Japanese—contains English summary of article).
- Crespi, F., et al.; “Near infrared oxymeter prototype for non-invasive analysis of rat brain oxygenation,” Optical Sensing, Proceedings of SPIE, vol. 5459, pp. 38-45 (2004).
- Johnston, W.S., et al.; “Extracting Breathing Rate Infromation from a Wearable Reflectance Pulse Oximeter Sensor,” Proceedings of the 26th Annual International conference of the IEEE EMBS, San Francisco, California; Sep. 1-5, 2004; pp. 5388-5391.
- Spigulis, Janis, et al.; “Optical multi-channel sensing of skin blood pulsations,” Optical Sensing, Proceedings of SPIE, vol. 5459, pp. 46-53 (2004).
- Yan, Yong-sheng, et al.; “Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution,” Journal of NeuroEngineering and Rehabilitation, vol. 2, No. 3 (9 pages) (Mar. 2005).
- Urquhart, C., et al.; “Ear probe pulse oximeters and neonates,” Anaesthesia, vol. 60, p. 294 (2005).
- J. Hayoz, et al.; “World's First Combined digital Pulse Oximetry Pulse Oximetry and Carbon Dioxide Tension Ear Sensor”, Abstracts, A6, p. S103. (undated).
- J. Huang, et al.; “Low Power Motion Tolerant Pulse Oximetry,” Abstracts, A7, p. S103. (undated).
- P. Lang, et al.; “Signal Identification and Quality Indicator™ for Motion Resistant Pulse Oximetry,” Abstracts, A10, p. S105. (undated).
- Hamilton, Patrick S., et al.; “Effect of Adaptive Motion-Artifact Reduction on QRS Detection,” Biomedical Instrumentation & Technology, pp. 197-202 (undated).
- Kim, J.M., et al.; “Signal Processing Using Fourier & Wavelet Transform,” pp. II-310-II-311 (undated).
- Lee, C.M., et al.; “Reduction of Motion Artifacts from Photoplethysmographic Records Using a Wavelet Denoising Approach,” IEEE, pp. 194-195 (undated).
- Nogawa, Masamichi, et al.; “A New Hybrid Reflectance Optical Pulse Oximetry Sensor for Lower Oxygen Saturation Measurement and for Broader Clinical Application,” SPIE, vol. 2976, pp. 78-87 (undated).
- Odagiri, Y.; “Pulse Wave Measuring Device,” Micromechatronics, vol. 42, No. 3, pp. 6-11 (undated) (Article in Japanese—contains English summary of article).
- Yamazaki, Nakaji, et al.; “Motion Artifact Resistant Pulse Oximeter (Durapulse PA 2100),” Journal of Oral Cavity Medicine, vol. 69, No. 4, pp. 53 (date unknown) (Article in Japanese—contains English summary of article).
Type: Grant
Filed: Dec 21, 2007
Date of Patent: Jan 1, 2013
Patent Publication Number: 20090163783
Assignee: Covidien LP (Mansfield, MA)
Inventors: Paul D. Mannheimer (Danville, CA), Bruce R. Bowman (Eden Prairie, MN), Lee M. Middleman (Portola Valley, CA), Clark R. Baker, Jr. (Newman, CA)
Primary Examiner: Eric Winakur
Assistant Examiner: Marjan Fardanesh
Attorney: Fletcher Yoder
Application Number: 12/004,816
International Classification: A61B 5/1455 (20060101);