Power headroom report method and apparatus for mobile communication system supporting carrier aggregation
A Power Headroom Report (PHR) method and apparatus for a mobile communication system supporting carrier aggregation are provided. The method for transmitting PHR of a terminal in a mobile communication system includes configuring, when a PHR is triggered for at least one activated serving cell, an extended PHR for the at least one activated serving cell, the PHR being triggered when a change of a downlink path loss in the at least one activated serving cell is greater than a predetermined threshold value, and transmitting the extended PHR.
Latest Samsung Electronics Patents:
- Display device packaging box
- Ink composition, light-emitting apparatus using ink composition, and method of manufacturing light-emitting apparatus
- Method and apparatus for performing random access procedure
- Method and apparatus for random access using PRACH in multi-dimensional structure in wireless communication system
- Method and apparatus for covering a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G)
This application claims the benefit under 35 U.S.C. §119(e) of a U.S. provisional patent application filed on Nov. 5, 2010, in the United States Patent and Trademark Office and assigned Ser. No. 61/410,493, and under 35 U.S.C. §119(a) of a Korean patent application filed on Nov. 2, 2011 in the Korean Intellectual Property Office and assigned Serial No. 10-2011-0113229, the entire disclosures of which are hereby incorporated by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a method and apparatus for a mobile communication system. More particularly, the present invention relates to an improved power headroom report method and apparatus for a mobile communication system supporting carrier aggregation.
2. Description of the Related Art
Mobile communication systems have been developed to provide subscribers with voice communication services on the move. With the advancements of various technologies, the mobile communication systems have evolved to support high speed data communication services as well as the voice communication services.
Recently, as a next generation mobile communication system of the 3rd Generation Partnership Project (3GPP), Long Term Evolution (LTE) is under development. The LTE system is a technology for realizing high-speed packet-based communication at about 100 Mbps. Regarding the commercialization of the LTE system, a discussion is being held on several schemes, namely one scheme for reducing the number of nodes located in a communication path by simplifying a configuration of the network, and another scheme for maximally approximating wireless protocols to wireless channels.
Unlike voice communication service, data communication service is characterized in that the resource is allocated according to the amount of data to be transmitted and channel conditions. Accordingly, in the wireless communication system, such as cellular communication system, a scheduler manages resource allocation in consideration of the amount of resources, channel conditions, and amount of data. It is also the case in the LTE system that the scheduler, which is located in the base station, manages and allocates the radio resources.
Recently, LTE-Advanced (LTE-A) is actively being discussed as an evolution of the LTE with new techniques to increase the data rate. Carrier Aggregation (CA) is one of the representative techniques that are newly adopted in LTE-A. Unlike data communication of the related art in which a User Equipment (UE) uses a single uplink carrier and a single downlink carrier, the carrier aggregation enables the UE to use multiple uplink and/or downlink carriers. Since the uplink transmission power determination algorithm of the related art is designed for the UE operating with one uplink carrier and one downlink carrier, it is difficult to apply the transmission power determination process of the related art for uplink transmission power determination of the UE supporting carrier aggregation. In particular, there is a need to define a procedure and method for reporting Power Headroom (PH) of the UE supporting carrier aggregation.
SUMMARY OF THE INVENTIONAspects of the present invention are to address at least the above-mentioned problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to provide a method and apparatus for transmitting and receiving Power Headroom (PH) information for multiple carriers efficiently in a mobile communication system supporting carrier aggregation.
It is another object of the present invention to provide a method and apparatus for triggering a PH Report (PHR) more efficiently in a mobile communication system supporting carrier aggregation.
In accordance with an aspect of the present invention, a method for transmitting a PHR of a terminal in a mobile communication system is provided. The method includes configuring, when a PHR is triggered for at least one activated serving cell, an extended PHR for the at least one activated serving cell, the PHR being triggered when a change of a downlink path loss in the at least one activated serving cell is greater than a predetermined threshold value, and transmitting the extended PHR.
In accordance with another aspect of the present invention, an apparatus for transmitting PHR of a terminal in a mobile communication system is provided. The apparatus includes a controller for detecting a PHR trigger, when a change of a downlink path loss in at least one activated serving cell becomes greater than a predetermined threshold value, and for configuring an extended PHR for the at least one activated serving cell, and a transmitter for transmitting the extended PHR.
In accordance with another aspect of the present invention, a method for receiving PHR of a base station in a mobile communication system is provided. The method includes receiving an extended PHR from a terminal, and determining a difference between a maximum transmission power of the terminal and an estimated uplink power per activated serving cell by analyzing the extended PHR, wherein the terminal configures and transmits the extended PHR when a change of a downlink path loss in the activated serving cell is greater than a predetermined threshold.
In accordance with still another aspect of the present invention, an apparatus for receiving PHR of a base station in a mobile communication system is provided. The apparatus includes a receiver for receiving an extended PHR transmitted by a terminal, and a controller for determining a difference between a maximum transmission power of the terminal and an estimated uplink power per activated serving cell by analyzing the extended PHR, wherein the terminal configures and transmits the extended PHR when a change of a downlink path loss in the activated serving cell is greater than a predetermined threshold.
Other aspects, advantages, and salient features of the invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.
The above and other aspects, features, and advantages of certain exemplary embodiments of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Throughout the drawings, it should be noted that like reference numbers are used to depict the same or similar elements, features, and structures.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTSThe following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiments of the invention as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the invention. Accordingly, it should be apparent to those skilled in the art that the following description of exemplary embodiments of the present invention is provided for illustration purpose only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
It is to be understood that the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component surface” includes reference to one or more of such surfaces.
Exemplary embodiments of the present invention relate to a method and apparatus for reporting Power Headroom (PH) information for multiple uplink carriers efficiently in a mobile communication system supporting carrier aggregation.
For convenience in description, the exemplary embodiments of the present invention are described in the context of a mobile communication system described below with reference to
Referring to
The eNBs 105, 110, 115, and 120 perform a similar function as legacy node Bs of a Universal Mobile Communications System (UMTS). However, as compared to the legacy node Bs, the eNBs 105, 110, 115, and 120 allow the UE to establish a radio link and are responsible for more complicated functions. In the LTE system, all the user traffic including real time services such as Voice over Internet Protocol (VoIP) are provided through a shared channel and thus there is a need for a device which is located in the eNB to schedule data based on the state information of the UEs. In order to implement a data rate of up to 100 Mbps, the LTE system adopts Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology. Also, the LTE system adopts Adaptive Modulation and Coding (AMC) to determine the modulation scheme and channel coding rate based on the channel conditions experienced by the UE. S-GW 130 is an entity to provide data bearers so as to establish and release data bearers under the control of the MME 125. MME 125 is responsible for various control functions and is connected to the plurality of eNBs 105, 110, 115, and 120.
Referring to
A description is made of Carrier Aggregation (CA) with reference to
Referring to
In a case where a cell is configured with one downlink carrier and one uplink carrier, the carrier aggregation can be understood as if the UE communicates data via multiple cells. With the use of carrier aggregation, the maximum data rate increases in proportion to the number of aggregated carriers. The aggregated carriers are configured via Radio Resource Control (RRC) signaling. In LTE, it is possible to add or remove a carrier to or from the carrier aggregation using an RRCConnectionReconfiguration message. Although a specific carrier is configured, data transmission is not yet performed. In order to use the corresponding carrier, the carrier is activated by MAC signaling. In LTE, the configured carrier is activated by a MAC Control Element (CE) in a MAC PDU. Since the service is provided through the multiple activated carriers, multiple serving cells exist.
Meanwhile, in order to mitigate interference, the uplink transmission power should be maintained below an appropriate level. For this purpose, the UE calculates the uplink transmission power using a predetermined function and performs uplink transmission at the calculated uplink transmission power. For example, the UE calculates the required uplink transmission power value by inputting the input values such as the scheduling information including an amount of resources and a Modulation and Coding Scheme (MCS) allocated to the UE, and information used for estimating the channel condition such as a path loss, and performs uplink transmission by applying the calculated uplink transmission power value. The available uplink transmission power value of the UE is limited to the maximum transmission power value of the UE such that when the calculated transmission power value exceeds the maximum transmission power value the UE performs the uplink transmission at the maximum transmission power. In this case, the uplink transmission power is not enough, resulting in uplink transmission quality degradation. Accordingly, it is preferred that the eNB performs scheduling such that the required transmission power does not exceed the maximum transmission power. However, since a few parameters such as path loss cannot be determined by the eNB, the UE has to report its PH value to the eNB by means of a PH Report (PHR).
There are several factors influencing power headroom: 1) an amount of allocated transmission resources, 2) an MCS to be applied to uplink transmission, 3) a Path Loss (PL) of the related downlink carrier, and 4) an accumulated value of transmission power control command. Among them, the path loss and the accumulated transmission power control command value are variable according to the uplink carrier such that, when multiple uplink carriers are aggregated, it is preferred to configure the transmission of PHR per carrier. However, in order to transmit the PHR efficiently, it can be advantageous to report the PHs of all the uplink carriers on one uplink carrier. Depending on the management policy, it may be necessary to transmit the PH of the carrier on which no Physical Uplink Shared CHannel (PUSCH) transmission takes place. In this case, it can be more efficient to report the PHs of the multiple uplink carriers on a single uplink carrier. For this purpose, the PHR of the related art should be extended. The multiple PHs carried by a PHR can be arranged in a predetermined order.
Referring to
PHR is triggered when the path loss of the connected downlink carrier is equal to or greater than a predetermined threshold value, a prohibit PHR time expires, or a predetermined time period elapses after the PHR generation. Once a PHR has been triggered, the UE waits until the time for the uplink transmission arrives, e.g., the time for which the uplink transmission resource is allocated, rather than transmitting the PHR immediately. This is because PHR is not information that is very sensitive to delay. The UE transmits PHR at the first uplink transmission. A PHR is MAC layer control information and has the length of 8 bits. The first two bits of a PHR are reserved for future use, and the remaining 6 bits are used to indicate the value in the range between −23 dB and 40 dB as the PH of the UE. The UE calculates the PH using the following equation:
PH(i)=PCMAX,c(i)−{10 log10(MPUSCH,c(i))+PO
The PH(i) of the ith subframe in the serving cell c is calculated with the maximum uplink transmission power PCMAX,c(i), number of resource blocks MPUSCH,c(i), power offset derived from MCS ΔTF,c, Path Loss PLc, and accumulated TPC commands fc(i). In equation (1), PLc denotes the pass loss of cell which provides information on the path loss in the service cell c. The path loss used to determine uplink transmission power of a certain serving cell is the path loss of the downlink channel of the corresponding cell or the path loss of a downlink channel of another cell. The cell of which path loss is to be used is selected by the eNB and notified to the UE in the call setup process. In equation (1), fc(i) is the accumulated value of the accumulated Transmission Power Control (TPC) commands of the serving cell c. PO
In the mobile communication system supporting carrier aggregation, there can be a serving cell in which no PUSCH transmission takes place and a serving cell in which PUSCH transmission takes place. Also, the PH for a serving cell can be reported in another serving cell. In the mobile communication system supporting carrier aggregation, when the PHs of multiple serving cells are to be reported, the UE can transmit the PHs in a single PHR. This method is advantageous in that it reduces the signaling overhead as compared to the method of transmitting the PHs individually, and the eNB can acquire the PH for the carrier on which no PUSCH is transmitted.
Referring to
Typically, PHR is triggered when the path loss on the downlink carrier associated with an uplink carrier becomes equal to or greater than a predetermined threshold value or a predetermined time period has elapsed after creating a PHR in a serving cell.
The eNB provides a UE with the parameters related to the PHR trigger operation. The parameters include periodicPHR-Timer, prohibitPHR-Timer, and dl-PathlossChange. The periodicPHR-Timer is a timer for triggering PHR periodically. In order to prevent PHR from being triggered too frequently, the prohibitPHR-Timer is used. Also, PHR is triggered when the path loss of the downlink carrier associated with an uplink carrier becomes equal to or greater than a predetermined threshold value, which is referred to as dl-PathlossChange. In the PHR procedure of the related art, the downlink carrier associated with an uplink carrier is determined and fixed to a specific one. This means that the path loss on the downlink carrier associated with the corresponding uplink carrier is also fixed. In the system supporting carrier aggregation, however, there can be multiple downlink carriers that can be associated with one uplink carrier. In particular, the downlink carrier of which path loss is referenced can be a downlink carrier of another serving cell other than the same serving cell. At this time, the eNB notifies the UE of the cell in which path loss is referenced for determining uplink transmission power through an RRC signaling message. In the present exemplary embodiment, the eNB notifies the UE of the serving cell of which downlink carrier's path loss is to be referenced for a PHR trigger through an RRC control message. The serving cell of which the downlink carrier's path loss is referenced for uplink transmission power configuration for a certain serving cell and the serving cell of which downlink carrier's path loss is to be referenced for determining a PHR trigger can be identical with each other. In this case, it is possible to inform of the two items of information simultaneously rather than separately. In a case where a plurality of serving cells is managed by an eNB, the eNB notifies the UE of the use of extended PHR (or REL-10 PHR) and other information.
Referring to
Referring to
If PHR is triggered, the UE calculates PHs for individual uplink carriers and configures an extended PHR. Even when there is no real PUSCH transmission, the eNB can trigger PHR to acquire path loss information on a specific uplink carrier. If PHR is triggered for a specific serving cell, the UE determines a PH calculation scheme depending on whether PUSCH is transmitted. If there is a PUSCH transmission in the corresponding serving cell, the UE calculates a PH according to the method of the related art using equation (1). If there is no PUSCH transmission in the serving cell, this means no transmission resource is allocated such that it is not clear to determine the values of MPUSCH and ΔTF and, as a consequence, a device allowing for the eNB and UE to calculate and interpret the PH using the same MPUSCH and ΔTF. This can be addressed with a fixed transmission format (e.g., a transmission resource amount and MCS level) for use in PH calculation in a case of no PUSCH transmission, the transmission format being agreed upon between the UE and the eNB. Assuming that the reference transmission format is a combination of 1 Resource Block (RB) and a lowest MCS level, both the MPUSCH and ΔTF are set to 0 and this is the same as omitting these parameters in equation (1). That is, since there is no real data transmission in the corresponding serving cell, no PCMAX,c(i) exists. Accordingly, the value of PCMAX,c(i) should be determined. For such a virtual transmission, virtual PCMAX,c(i) is defined and adopted. PCMAX,c(i) can be determined using the maximum allowed UE output power PEMAX and nominal UE power PPowerClass. For example, PCMAX,c(i) can be determined as equation (2):
PCMAX,c=min{PEMAX,PPowerClass} (2)
PCMAX has the relationship of PCMAX
Accordingly, when there is no PUSCH transmission in the corresponding serving cell, PH is defined as equation (3):
PH(i)=min{PEMAX,PPowerClass}−{PO
where PO
Referring to
The transceiver 805 receives data and control signals on the downlink carriers and transmits data and control signals on the uplink carriers. In a case where a plurality of carriers is aggregated, the transceiver 805 can transmit/receive the data and control signals over a plurality of carriers.
The controller 810 controls the multiplexer/demultiplexer 820 to generate MAC PDUs according to the control signal received by means of the transceiver 805, e.g., the scheduling information in the uplink grant. The controller detects the PHR trigger. If a PHR trigger is detected, the controller 810 controls the PH calculator 815 to calculate the PH. Whether PHR is triggered can be determined by checking the PHR parameter provided by the control message processor 835. In a case where the PHs of multiple uplink carriers are configured into a PHR, the controller 810 controls the multiplexer/demultiplexer 820 to insert into the MAC PDU an indicator indicating whether the PH for each carrier is derived from a real PCMAX or a virtual PCMAX. The controller 810 generates the PHR with the PHs provided by the PH calculator 815 and sends the PHR to the multiplexer/demultiplexer 820. The PH calculator 815 calculates PH according to the control signal from the controller 810 and sends the PH to the controller 810. In a case where a plurality of carriers is aggregated, the PH calculator 815 can calculate PHs for the respective carriers, and especially the PH for the carrier having the PUSCH transmission being calculated using a virtual PCMAX.
The multiplexer/demultiplexer 820 multiplexes the data from the higher layer devices 825 and 830 and/or control message processor 835 and demultiplexes the data received by the transceiver 805 to the higher layer devices 825 and 830 and/or the control message processor 835.
The control message processor 835 processes the control message transmitted by the network and performs a corresponding action. The control message processor 835 forwards the PHR parameter carried in the control message to the controller 810 or the information on the newly activated carriers to the transceiver 805 to set the carriers. The higher layer devices 825 and 830 can be implemented for the respective services so as to deliver the data generated by the user service such as File Transfer Protocol (FTP) and VoIP to the multiplexer/demultiplexer 820 or process and deliver the data from the multiplexer/demultiplexer 820 to the service applications of the higher layer.
Although not depicted, the base station apparatus of an exemplary embodiment of the present invention can include a transceiver, a controller, and a scheduler. The transceiver receives the extended PHR transmitted by the UE. The controller analyzes the extended PHR to determine PH per serving cell. The scheduler allocates uplink resources according to the PH per serving cell.
As described above, the PHR method and apparatus of exemplary embodiments of the present invention are capable of reporting PHs for multiple carriers efficiently in the mobile communication supporting carrier aggregation. The power headroom report method and apparatus of the present invention is capable of improving PH reporting efficiency in the mobile communication system supporting carrier aggregation.
While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims and their equivalents.
Claims
1. A method for obtaining power headroom information of a terminal in a mobile communication system, the method comprising:
- receiving information for a path loss reference of at least one cell;
- triggering a power headroom report (PHR) if a path loss is changed more than a threshold for at least one activated cell which is used as the path loss reference; and
- obtaining power headroom information for each activated serving cell based on if there is an uplink resource allocated for new transmission.
2. The method of claim 1, wherein the information for the path loss reference indicates a reference downlink carrier of an uplink carrier of a secondary cell (SCell) of the terminal.
3. The method of claim 1, wherein the information for the path loss reference of the at least one cell indicates one of a primary cell (PCell) or a secondary cell (SCell).
4. The method of claim 3, wherein, if the information for the path loss reference indicates the PCell, a reference downlink carrier for an uplink carrier is a downlink carrier of the PCell, and
- if the information indicates the SCell, the reference downlink carrier for the uplink carrier is downlink carrier of the SCell linked to the uplink carrier.
5. The method of claim 3, wherein a downlink carrier of the SCell linked to an uplink carrier is indicated by the information for the path loss reference for adding the SCell.
6. The method of claim 1, wherein the information for the path loss reference indicating a reference downlink carrier for an uplink carrier is included in a radio resource control (RRC) message.
7. The method of claim 1, wherein the PHR is triggered if a downlink path loss of a reference downlink carrier is more than the threshold and a prohibit PHR timer expires or has expired.
8. A terminal for obtaining power headroom information in a mobile communication system, the terminal comprising:
- a controller configured to: receive information for a path loss reference of at least one cell, and trigger a power headroom report (PHR), if a path loss is changed more than a threshold for at least one activated cell which is used as the path loss reference; and
- a transmitter configured to transmit the PHR.
9. The terminal of claim 8, wherein the controller is further configured to determine, when an uplink resource is assigned for a new transmission, whether a change of a downlink path loss of a reference downlink carrier is greater than the threshold.
10. The terminal of claim 8, wherein the information for the path loss reference indicates a reference downlink carrier of an uplink carrier of a secondary cell (SCell) of the terminal.
11. The terminal of claim 8, wherein the information for the path loss reference of the at least one cell indicates one of a primary cell (PCell) or a secondary cell (SCell).
12. The terminal of claim 11, wherein, if the information for the path loss reference indicates the PCell, a reference downlink carrier for an uplink carrier is a downlink carrier of the PCell, and
- wherein, if the information for the path loss reference indicates the SCell, a reference downlink carrier for the uplink carrier is a downlink carrier of the SCell linked to the uplink carrier.
13. The terminal of claim 11, wherein a downlink carrier of the SCell linked to an uplink carrier is indicated by the information for the path loss reference for adding the SCell.
14. The terminal of claim 8, wherein the information for the path loss reference indicating a reference downlink carrier for an uplink carrier is included in a radio resource control (RRC) message.
15. The terminal of claim 8, wherein the PHR is triggered if a downlink path loss of a reference downlink carrier is more than the threshold and a prohibit PHR timer expires or has expired.
16. A method for receiving a power headroom report (PHR) by a base station in a mobile communication system, the method comprising:
- transmitting information for a path loss reference of at least one cell to a terminal;
- receiving the PHR from the terminal; and
- determining a difference between a maximum transmission power of the terminal and an estimated uplink power per activated serving cell by analyzing the PHR,
- wherein the PHR is triggered when a change of a downlink path loss of a reference downlink carrier indicated by the information for the path loss reference is more than a threshold.
17. The method of claim 16, wherein the terminal determines, when an uplink resource is assigned for a new transmission, whether the change of the downlink path loss of the reference downlink carrier is more than the threshold.
18. The method of claim 16, wherein the information for the path loss reference indicates the reference downlink carrier of an uplink carrier of a secondary cell (SCell) of the terminal.
19. The method of claim 16, wherein the information for the path loss reference of the at least one cell indicates one of a primary cell (PCell) or a secondary cell (SCell).
20. The method of claim 19, wherein, if the information for the path loss reference indicates the PCell, the reference downlink carrier for an uplink carrier is a downlink carrier of the PCell, and
- wherein, if the information for the path loss reference indicates the SCell, the reference downlink carrier for the uplink carrier is a downlink carrier of the SCell linked to the uplink carrier.
21. The method of claim 19, wherein a downlink carrier of the SCell linked to an uplink carrier is indicated by the information for the path loss reference for adding the SCell.
22. The method of claim 16, wherein the information for the path loss reference indicating the reference downlink carrier for an uplink carrier is included in a radio resource control (RRC) message.
23. The method of claim 16, wherein the PHR is triggered if the downlink path loss of the reference downlink carrier is more than the threshold and a prohibit PHR timer expires or has expired.
24. A base station for receiving a power headroom report (PHR) in a mobile communication system, the base station comprising:
- a transceiver configured to transmit and receive a signal; and
- a controller configured to: transmit information for a path loss reference of at least one cell to a terminal, receive the PHR from the terminal, and determine a difference between a maximum transmission power of the terminal and an estimated uplink power per activated serving cell by analyzing the PHR,
- wherein the PHR is triggered when a change of a downlink path loss of a reference downlink carrier indicated by the information for the path loss reference is more than a threshold.
25. The base station of claim 24, wherein the controller is further configured to determines, when an uplink resource is assigned for a new transmission, whether the change of downlink path loss of the reference downlink carrier is more than the threshold.
26. The base station of claim 24, wherein the information for the path loss reference indicates the reference downlink carrier of an uplink carrier of a secondary cell (SCell) of the terminal.
27. The base station of claim 24, wherein the information for the path loss reference of the at least one cell indicates one of a primary cell (PCell) or a secondary cell (SCell).
28. The base station of claim 27, wherein, if the information for the path loss reference indicates the PCell, the reference downlink carrier for an uplink carrier is a downlink carrier of the PCell, and
- wherein, if the information for the path loss reference indicates the SCell, the reference downlink carrier for the uplink carrier is a downlink carrier of the SCell linked to the uplink carrier.
29. The base station of claim 27, wherein a downlink carrier of the SCell linked to an uplink carrier is indicated by the information for the path loss reference for adding the SCell.
30. The base station of claim 24, wherein the information for the path loss reference indicating the reference downlink carrier for an uplink carrier is included in a radio resource control (RRC) message.
31. The base station of claim 24, wherein the PHR is triggered if the downlink path loss of the reference downlink carrier is more than the threshold and a prohibit PHR timer expires or has expired.
8249091 | August 21, 2012 | Kim et al. |
8315661 | November 20, 2012 | Zong |
8594718 | November 26, 2013 | Yang et al. |
8605614 | December 10, 2013 | Nishio et al. |
8954107 | February 10, 2015 | Kim et al. |
20100158147 | June 24, 2010 | Zhang et al. |
20100232385 | September 16, 2010 | Hsu |
20100273515 | October 28, 2010 | Fabien et al. |
20110092217 | April 21, 2011 | Kim et al. |
20110292874 | December 1, 2011 | Ho et al. |
20120040707 | February 16, 2012 | Kim et al. |
20120040708 | February 16, 2012 | Jeong et al. |
20120087317 | April 12, 2012 | Bostrom et al. |
20120113845 | May 10, 2012 | Kim et al. |
20130051259 | February 28, 2013 | Kim et al. |
101340711 | January 2009 | CN |
101841844 | September 2010 | CN |
101925105 | December 2010 | CN |
- 3GPP, ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (Th˜C) protocol specification (Release 9),’ 3GPP TS 36.321 V9.3.0, Jun. 2010. (Retrieved from the Internet on Apr. 24, 2012: < URL: http:/Λ˜v.3gpp.org/ftp/Specs/html-info/36321.htm>).
- HTC, ‘Power Headroom Reporting,’ 3GPP TSG-RAN WG1 #61, R1-102732, May 10-14, 2010. (Retrieved from the Internet on 24 Apr. 1, 2012: < URL: http:/Λvww.3gpp.org/ftp/ts˜ran/WG1—RL1/TSGR1—61/Docs>).
- Mediatek, ‘Per UE PHR for carrier aggregation,’ 3GPP TSG-RAN WG1 Meeting #61bis, R1-103743, Jun. 28-Jul. 2, 2010. (Retrieved from the Internet on Apr. 24, 2012: < URL: http://www.3gpp.org/ftp/tsgjan/wgLrll/tsgrL61b/docs> ).
- “LS on power headroom reporting for carrier aggregation”, 3GPP TSG RAN WG1 Meeting #61 R1-103405 Montreal, Canada, May 10-14, 2010.
- “PUSCH/PUCCH power headroom reporting”, 3GPP TSG RAN WG1 Meeting #61 R1-103007 Montreal, Canada, May 10-14, 2010.
Type: Grant
Filed: Nov 4, 2011
Date of Patent: Sep 22, 2015
Patent Publication Number: 20120113818
Assignee: Samsung Electronics Co., Ltd. (Suwon-si)
Inventors: Soeng Hun Kim (Suwon-si), Kyeong In Jeong (Hwaseong-si), Sang Bum Kim (Seoul), Gert-Jan Van Lieshout (Middlesex)
Primary Examiner: Tri H Phan
Application Number: 13/289,602
International Classification: H04B 7/204 (20060101); H04W 4/00 (20090101); H04B 7/208 (20060101); H04J 1/00 (20060101); H04B 7/00 (20060101); H04W 52/36 (20090101); H04W 72/04 (20090101);