Ladder-type surface acoustic wave filter including series and parallel resonators
A ladder-type surface acoustic wave filter assembly includes a plurality of series resonators formed on a substrate and connected between an input terminal and an output terminal. A first series resonator has a lowest resonance frequency among the plurality of series resonator. A parallel resonator formed on the substrate and connected between the plurality of series resonators and the ground terminal. A dielectric film is coupled to at least one of the plurality of series resonators and has an inverse temperature coefficient of frequency to that of the substrate. A film thickness of the dielectric film in a region where the second series resonator is formed is smaller than a film thickness of the dielectric film in a region where the first series resonator is formed.
Latest SKYWORKS FILTER SOLUTIONS JAPAN CO., LTD. Patents:
- Acoustic wave device including multi-layer interdigital transducer electrodes
- Electronic package including cavity formed by removal of sacrificial material from within a cap
- Electronic package including cavity defined by resin and method of forming same
- Saw-based electronic elements and filter devices
- Electronic package including cavity formed by removal of sacrificial material from within a cap
This application claims the benefit under 35 U.S.C. §120 as a continuation of U.S. application Ser. No. 13/774,811, titled “LADDER-TYPE SURFACE ACOUSTIC WAVE FILTER AND DUPLEXER INCLUDING THE SAME,” filed on Feb. 22, 2013, now U.S. Pat. No. 9,203,376, which is incorporated herein by reference in its entirety for all purposes and which claims the benefit under 35 U.S.C. §120 as a continuation of PCT application No. PCT/JP2012/004030, titled “LADDER-TYPE SURFACE ACOUSTIC WAVE FILTER AND DUPLEXER INCLUDING THE SAME,” filed on Jun. 21, 2012, which claims priority to Japanese Patent Application No. 2011-139080, filed Jun. 23, 2011.
TECHNICAL FIELDThe present disclosure relates to a ladder-type surface acoustic wave filter and a duplexer including the filter.
BACKGROUNDAs shown in
In this configuration, film thickness Ha of dielectric film 106 is equal to film thickness Hb of dielectric film 107.
SUMMARYIn one general aspect, the instant application describes a ladder-type surface acoustic wave filter comprising a substrate, an input terminal, an output terminal, a ground terminal, a plurality of series resonators formed on the substrate and connected between the input terminal and the output terminal, a parallel resonator formed on the substrate and connected between the series resonators and the ground terminal, and a dielectric film coupled to at least one of the plurality of series resonators and having an inverse temperature coefficient of frequency to that of the substrate. The plurality of series resonators include a first series resonator and a second series resonator, the first series resonator having a lowest resonance frequency among the plurality of series resonators. The dielectric film is formed in a region where the first series resonator is formed. The dielectric film is not formed in a region where the second series resonator is formed or if the dielectric film is formed in the region where the second series resonator is formed, a film thickness of the dielectric film in the region where the second series resonator is formed is smaller than a film thickness of the dielectric film in the region where the first series resonator is formed.
The above general aspect may include one or more of the following features. The dielectric film may be made of silicon oxide. An antiresonant frequency of the first series resonator may be lower than an antiresonant frequency of the second series resonator. A capacitance of the first series resonator may be larger than a capacitance of the second series resonator. The first series resonator may have more interdigital transducer electrode fingers than the second series resonator. The first series resonator may be connected to a second or a subsequent stage from the input terminal.
The film thickness of the dielectric film in the region where the first series resonator is formed may be larger than the film thickness of the dielectric film in other regions on the substrate. The first series resonator may be disposed closer to the output terminal than to the input terminal. The first series resonator may be disposed closest to the output terminal among the plurality of series resonators. The first series resonator may have a smallest duty among the plurality of series resonators. The substrate may include a piezoelectric substrate.
In a second general aspect, the instant application describes a ladder-type surface acoustic wave filter comprising a substrate, an input terminal, an output terminal, a ground terminal, a plurality of series resonators formed on the substrate and connected between the input terminal and the output terminal, a parallel resonator formed on the substrate and connected between the series resonators and the ground terminal, and a dielectric film coupled to the series resonators and having an inverse temperature coefficient of frequency to that of the substrate. The plurality of series resonators include a first series resonator and a second series resonator, the first series resonator having a lowest resonance frequency among the plurality of series resonators. A duty of the first series resonator is smaller than a duty of the second series resonator.
The above second general aspect may include one or more of the following features. A capacitance of the first series resonator may be larger than a capacitance of the second series resonator. An antiresonant frequency of the first series resonator may be lower than an antiresonant frequency of the second series resonator. The first series resonator may be connected to a second or a subsequent stage from the input terminal. The substrate may include a piezoelectric substrate.
In a third general aspect, the instant application describes a ladder-type surface acoustic wave filter comprising a substrate, an input terminal, an output terminal, a ground terminal, a plurality of series resonators formed on the substrate and connected between the input terminal and the output terminal, and a parallel resonator formed on the substrate and connected between the series resonators and the ground terminal. The plurality of series resonators include a first series resonator and a second series resonator, the first series resonator having a lowest resonance frequency among the plurality of series resonators. A temperature coefficient of frequency of a characteristic of the first series resonator is smaller than that of the second series resonator.
The above third general aspect may include the following feature. The substrate may include a piezoelectric substrate.
In fourth general aspect, the instant application describes a duplexer comprising the ladder-type surface acoustic wave filter according to the first general aspect, and a second filter. A passband of the second filter is higher than that of the ladder-type surface acoustic wave filter.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and/or circuitry have been described at a relatively high level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
Referring again to
Hereinafter, a ladder-type surface acoustic wave filters of the present disclosure are described.
First Exemplary EmbodimentTable 1 describes characteristics of series resonators 2-5. The characteristics include (1) the number of stages dividing a resonator (the number of stages), (2) the pitch of electrode fingers of an interdigital transducer (IDT) (the pitch is assumed to be ½ of wavelength λ of the main acoustic wave), the number of the IDT electrode fingers, (4) the number of reflectors interposing IDTs, (5) the interdigitating width of IDT electrode fingers, and (6) the duty (electrode width/pitch).
Referring again to
Hereinafter, each component of ladder-type surface acoustic wave filter 1 of the first embodiment is described in detail.
In this embodiment, piezoelectric substrate 7 is based on lithium niobate (LiNbO3) with −10°≦φ≦10°, 33°≦θ≦43°, and −10°≦ψ≦10° in the Euler angle (φ, θ, ψ) notation, where φ and θ are cut angles and ψ is a propagation angle of substrate 7. However, substrate 7 may be made of other piezoelectric single-crystal medium such as a substrate or thin film based on crystal, lithium tantalate (LiTaO3), potassium niobate (KNbO3), or lithium niobate (LiNbO3) with another Euler angle.
To use a substrate based on lithium niobate (LiNbO3) within the range of −100°≦θ≦60° in the Euler angle (φ, θ, ψ) notation for piezoelectric substrate 7, the Euler angle (φ, θ, ψ) of substrate 7 may satisfy −100°≦θ≧60°, 1.194φ—2°≦ω≦1.194φ+2°, ψ≦—2φ—3°, as described in WO 2011/052218. This Euler angle may reduce unnecessary spurious emission due to a Rayleigh wave while reducing unnecessary spurious emission around a frequency band where fast transverse waves occur.
Resonators 2-5 and 8-10 are disposed so that one set of comb-shaped IDTs are engaged with each other viewed from above piezoelectric substrate 7 and are provided with reflectors at both ends of the IDTs. In this embodiment, each of resonators 2-5 and 8-10 includes a first electrode layer and a second electrode layer provided on the first electrode layer, in this order from piezoelectric substrate 7. The first layer primarily contains molybdenum with a film thickness of 0.04λ. The second layer primarily contains aluminum with a film thickness of 0.08λ. Resonator 2-5 and 8-10 may be formed of one of the following three types of metals for instance: a single metal such as aluminum, copper, silver, gold, titanium, tungsten, platinum, and chromium; an alloy primarily containing one of these metals; or a lamination of these metals. The resonators may have three- or four-layered electrodes with titanium or titanium nitride placed between piezoelectric substrate 7 and the first electrode layer or between the first electrode layer and the second electrode layer. Such a structure may increase the crystal orientation of the electrodes and may prevent deterioration due to migration.
Dielectric film 6 is a thin film having inverse temperature coefficient of frequency to that of piezoelectric substrate 7. Dielectric film 6 may be made of silicon oxide (SiO2), for instance.
In a case where piezoelectric substrate 7 is made of lithium niobate (LiNbO3) and dielectric film 6 is made of silicon oxide, film thickness Ha of resonator 4 in the region where resonator 3 is formed may be at least 0.29λ and less than 0.34λ and film thickness Hb of dielectric film 6 in the region where resonators 2, 4, 5, 8, 9, and 10 are formed may be at least 0.24λ and less than 0.29λ, in view of reducing temperature coefficient of frequency and achieving an appropriate electromechanical coupling factor of series resonators 2-5, and parallel resonators 8-10. Meanwhile, film thickness Ha of dielectric film 6 in the region where first series resonator 3 is formed may be larger than film thickness Hb of dielectric film 6 in the region where resonators 2, 4, 5, 8, 9, and 10 are formed by 0.02λ or more. This structure may reduce the temperature coefficient of frequency of first series resonator 3 by approximately 4 ppm/° C. or more as compared to those of the other resonators.
The above description shows that the film thickness of dielectric film 6 in the region where first series resonator 3 is formed is larger than that in the region where other series resonators 2, 4, and 5, and parallel resonators 8, 9, and 10 are formed. In another implementation, the dielectric film 6 in the region where first series resonator 3 and series resonator 5 with the next highest resonance frequency are formed may be thicker than that in the region where other series resonators 2 and 4, and parallel resonators 8, 9, and 10 are formed. In another implementation, the dielectric film 6 in the region where second series resonator 4 with the highest resonance frequency among the series resonators is formed may be thinner than that in the region where other series resonators 2, 3, and 5 and parallel resonators 8, 9, and 10 are formed. In yet another implementation, no dielectric film 6 may be formed in the region where second series resonator 4 with the highest resonance frequency among the series resonators is formed. To this end, the film thickness of the dielectric film 6 in this region may be zero.
The above structure may make the temperature coefficient of frequency of the characteristics of first series resonator 3 lower than that of second series resonator 4. Consequently, even if first series resonator 3 consumes more power, thereby generating more heat than second series resonator 4, frequency fluctuations of the characteristics of first series resonator 3 may be reduced. This may prevent deterioration of the pass characteristics of ladder-type surface acoustic wave filter 1.
Furthermore, first series resonator 3 with the relatively thick portion of dielectric film 6 formed thereon may have an antiresonant frequency lower than that of second series resonator 4 with the relatively thin portion of dielectric film 6 formed thereon. In other words, dielectric film 6 made of silicon oxide in the region where first series resonator 3 with a relatively low antiresonant frequency is formed may have a larger film thickness than that of dielectric film 6 made of silicon oxide in the region where second series resonator 4 with a relatively high antiresonant frequency is formed. The reason for this configuration is described below.
First series resonator 3 may have a relatively low antiresonant frequency. Thus, the electromechanical coupling factor of first series resonator 3 may largely influence steepness around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1. Meanwhile, second series resonator 4 may have a relatively high antiresonant frequency. Thus, the electromechanical coupling factor of second series resonator 4 may influence the steepness around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1 to a limited degree. Here, a larger film thickness of dielectric film 6 made of silicon oxide attached to a resonator makes the electromechanical coupling factor of the resonator smaller. The characteristics may be used to (1) control the electromechanical coupling factors of first series resonator 3 and second series resonator 4 and (2) increase steepness around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1 while reducing loss in the passband.
That is, making first series resonator 3 with a relatively low antiresonant frequency to have a relatively small electromechanical coupling factor may increase steepness around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1. Moreover, making second series resonator 4 with a relatively high antiresonant frequency to have a large electromechanical coupling factor may increase the passband width of filter 1, thereby reducing loss over a wide passband. Such structure may increase steepness around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1 while reducing loss in the passband.
Meanwhile, first series resonator 3 may have a capacitance larger than that of second series resonator 4. As described above, first series resonator 3 may consume more power than second series resonator 4 around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1. Thus, first series resonator 3 may be more likely to deteriorate due to heat generation than second series resonator 4. Hence, making first series resonator 3 to have a capacitance larger than second series resonator 4 may increase power durability of ladder-type surface acoustic wave filter 1.
The capacitance of a resonator may be proportional to the product of the interdigitating width of IDT electrode fingers and the number of IDT electrode fingers. To make the capacitance of first series resonator 3 higher than that of second series resonator 4, the number of IDT electrode fingers of first series resonator 3 may be larger than that of second series resonator 4. Because more IDT electrode fingers of first series resonator 3 may make electric resistance of first series resonator 3 lower, this may reduce heat generated by first series resonator 3, which in turn may increase power durability of ladder-type surface acoustic wave filter 1.
The first series resonator may be a series resonator at the second or the subsequent stage, like series resonator 2 in this embodiment, which is not connected directly to input terminal 11 of the ladder-type surface acoustic wave filter. In a ladder-type surface acoustic wave filter, a resonator at the input stage may be applied with the maximum power, followed by a lower power at a further subsequent stage. On the other hand, each resonator of a ladder-type surface acoustic wave filter may consume power proportional to the applied power. As described above, first series resonator 3 may consume more power than the other series resonators around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1. Thus, resonator 3 may be more likely to deteriorate due to heat generation than the other resonators. Hence, placing first series resonator 3 at the second or the subsequent stage from input terminal 11 may reduce power consumption in first series resonator 3, which may increase power durability of ladder-type surface acoustic wave filter 1.
The ladder-type surface acoustic wave filter 1 may include four series resonators and three parallel resonators as described above. However, the ladder-type surface acoustic wave filter 1 is not limited to such configuration and may have more or less than four series resonators and more or less than three parallel resonators. It may be adequate that the ladder-type surface acoustic wave filter has at least series resonators with different resonance frequencies.
The ladder-type surface acoustic wave filter 1 may be a surface acoustic wave filter in one implementation. However, other implementations are contemplated. For example, as shown in
Hereinafter, a ladder-type surface acoustic wave filter according to the second exemplary embodiment of the present disclosure is described with reference to the related drawings. The configuration is the same as that of the first embodiment unless particularly described.
In the second embodiment, the film thickness of dielectric film 6 in the region where first series resonator 3 is formed is equal to that in the region where second series resonator 4 is formed, and the duty (electrode width/pitch) of first series resonator 3 is smaller than that of second series resonator 4.
The ladder-type surface acoustic wave filter 1 of the second embodiment includes piezoelectric substrate 7, series resonators formed on piezoelectric substrate 7 and connected between the input and output terminals, at least one parallel resonator formed on piezoelectric substrate 7 and connected between the series resonators and the ground terminal, and dielectric film 6 attached to at least one of the series resonators and having inverse temperature coefficient of frequency to that of piezoelectric substrate 7. The series resonators include first series resonator 3 having the lowest resonance frequency among the series resonators and second series resonator 4 having a resonance frequency higher than that of resonator 3. The duty (electrode width/pitch) of first series resonator 3 is smaller than that of second series resonator 4. Here, it may be adequate that first series resonator 3 having the lowest resonance frequency among the series resonators has a duty (electrode width/pitch) smaller than at least one of other series resonators 2, 4, and 5.
With the duty of a resonator decreasing, the energy distribution of the main acoustic wave may move from piezoelectric substrate 7 to dielectric film 6, which may lower temperature coefficient of frequency of the characteristics of the resonator. That is, the above configuration may make temperature coefficient of frequency of the characteristics of first series resonator 3 lower than that of second series resonator 4. Consequently, even if first series resonator 3 consumes more power, thereby generating more heat than second series resonator 4, frequency fluctuations of the characteristics of resonator 3 may be reduced. This may prevent deterioration of the pass characteristics of ladder-type surface acoustic wave filter 1.
The first series resonator 3 may have a capacitance larger than second series resonator 4. As described above, first series resonator 3 may consume more power than second series resonator 4 around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1. Thus, first series resonator 3 may be more likely to deteriorate due to heat generation than second series resonator 4. Hence, making first series resonator 3 to have larger capacitance than second series resonator 4 may increase power durability of ladder-type surface acoustic wave filter 1.
Here, the capacitance of a resonator is proportional to the product of the interdigitating width of IDT electrode fingers and the number of IDT electrode fingers. To make the capacitance of first series resonator 3 larger than second series resonator 4, the number of IDT electrode fingers of first series resonator 3 may be larger than second series resonator 4. Because more IDT electrode fingers of resonator 3 may make electric resistance of first series resonator 3 lower, this may reduce heat generated by first series resonator 3, which in turn may increase power durability of ladder-type surface acoustic wave filter 1.
The first series resonator is a series resonator at the second or the subsequent stage, such as series resonator 2 in this embodiment, which is not connected directly to input terminal 11 of the ladder-type surface acoustic wave filter. In a ladder-type surface acoustic wave filter, a resonator at the input stage may be applied with the maximum power, followed by a lower power at a further subsequent stage. On the other hand, each resonator of a ladder-type surface acoustic wave filter may consume power proportional to the applied power. As described above, first series resonator 3 may consume more power than the other resonators around the cutoff frequency at the high-frequency side of the passband of ladder-type surface acoustic wave filter 1. Thus, first series resonator 3 may be more likely to deteriorate due to heat generation than the other resonators. Hence, disposing the first series resonator at the second or the subsequent stage may reduce power consumption in first series resonator 3, which may increase power durability of ladder-type surface acoustic wave filter 1.
First series resonator 3 with a duty smaller than that of the other series resonators may have power durability lower than the other series resonators. Accordingly, from the aspect of increasing power durability of ladder-type surface acoustic wave filter 1, first series resonator 3 may be placed at a series arm (at the position of series resonator 4 or 5) closer to output terminal 12 than to input terminal 11. Alternatively, first series resonator 3 may be placed at the series arm (at the position of series resonator 5) closest to output terminal 12. Such configuration may increases power durability of ladder-type surface acoustic wave filter 1.
Other implementations are contemplated. For example, in another implementation, the ladder-type surface acoustic wave filter may include a plurality of series resonators formed on the piezoelectric substrate and connected between the input terminal and the output terminal, and at least one parallel resonator formed on the piezoelectric substrate and connected between the series resonators and the ground terminal. The plurality of series resonators may include a first series resonator having a lowest resonance frequency among the series resonators, and a second series resonator having a resonance frequency higher than the first series resonator. A temperature coefficient of frequency of a characteristic of the first series resonator is smaller than that of the second series resonator. To this end, the ladder-type surface acoustic wave filter includes a first dielectric film on the first series resonator, and a second dielectric film on the series resonator. A material of the first dielectric film differs from a material of the second dielectric film to make a temperature coefficient of frequency of a characteristic of the first series resonator smaller than that of the second series resonator. Other implementations are contemplated.
Third Exemplary EmbodimentHereinafter, the third exemplary embodiment of the present disclosure is described with reference to the related drawings. The configuration is the same as that of the first embodiment unless particularly described.
The third embodiment relates to a duplexer including ladder-type surface acoustic wave filter 1 of the first embodiment as a transmit filter.
The transmit filter 15 of duplexer 14 may require to have both low loss over a wide band and high steepness around the cutoff frequency at the crossband side (at the high-frequency side of the passband). The antiresonant frequency of first series resonator 3 with a relatively large film thickness of dielectric film 6 attached thereto may be made lower than that of second series resonator 4 with a relatively small film thickness. This may result in both higher steepness around the cutoff frequency at the crossband side and lower loss in the passband. In other words, the film thickness of dielectric film 6 made of silicon oxide in the region where first series resonator 3 with a relatively low antiresonant frequency is formed may be made larger than that in the region where second series resonator 4 with a relatively high antiresonant frequency is formed, thus providing the above advantages.
First series resonator 3 may have a relatively low antiresonant frequency. Thus, the electromechanical coupling factor of first series resonator 3 may influence steepness around the cutoff frequency at the crossband side to a large degree. On the other hand, second series resonator 4 may have a relatively high antiresonant frequency. Thus, the electromechanical coupling factor of second series resonator 4 may influence the steepness to a limited degree. Here, a larger film thickness of dielectric film 6 made of silicon oxide attached to a resonator may make the electromechanical coupling factor of the resonator smaller. The characteristics are used to control the electromechanical coupling factors of first series resonator 3 and second series resonator 4 so as to increase steepness around the cutoff frequency at the crossband side while reducing loss in the passband.
That is, making first series resonator 3 with a relatively low antiresonant frequency to have a relatively small electromechanical coupling factor may increase steepness around the cutoff frequency at the crossband side. Meanwhile, making second series resonator 4 with a relatively high antiresonant frequency to have a large electromechanical coupling factor may increase the passband width of transmit filter 15, thereby reducing loss over a wide passband. That is, the structure may increase steepness around the cutoff frequency at the crossband side while reducing loss in the passband.
A ladder-type surface acoustic wave filter and a duplexer including the filter advantageously prevent deterioration of the pass characteristics of the filter and are applicable to an electronic device such as a mobile phone.
Other implementations are contemplated.
Claims
1. A ladder-type surface acoustic wave filter assembly comprising:
- a substrate for receiving a plurality of components;
- an input terminal, an output terminal, and a ground terminal;
- a plurality of series resonators formed on the substrate and connected between the input terminal and the output terminal, the plurality of series resonators including a first series resonator and a second series resonator, each of the first series resonator and the second series resonator having interdigital transducer (IDT) electrode fingers, the first series resonator having a lowest resonance frequency among the plurality of series resonators, at least one of i) a capacitance of the first series resonator being larger than a capacitance of the second series resonator, ii) the first series resonator having more interdigital transducer electrode fingers than the second series resonator, and iii) the first series resonator being separated from the input terminal by at least one series resonator of the plurality of series resonators;
- a parallel resonator formed on the substrate and connected between the plurality of series resonators and the ground terminal; and
- a dielectric film coupled to at least one of the plurality of series resonators and having an inverse temperature coefficient of frequency to that of the substrate, a film thickness of the dielectric film in a region where the second series resonator is formed being smaller than a film thickness of the dielectric film in a region where the first series resonator is formed, top surfaces of interdigital transducer (IDT) electrode fingers of the second series resonator being exposed from the dielectric film.
2. The ladder-type surface acoustic wave filter assembly of claim 1 wherein the dielectric film includes silicon oxide.
3. The ladder-type surface acoustic wave filter assembly of claim 1 wherein a top surface of the dielectric film above the IDT electrode fingers of the first series resonator includes projections.
4. The ladder-type surface acoustic wave filter assembly of claim 1 wherein a film thickness of the dielectric film in the region where the first series resonator is formed is larger than the film thickness of the dielectric film in other regions on the substrate.
5. The ladder-type surface acoustic wave filter assembly of claim 1 wherein an antiresonant frequency of the first series resonator is lower than an antiresonant frequency of the second series resonator.
6. A duplexer comprising:
- the ladder-type surface acoustic wave filter assembly of claim 5; and
- a second filter assembly having a passband higher than a passband of the ladder-type surface acoustic wave filter assembly.
7. The duplexer of claim 6 wherein the ladder-type surface acoustic wave filter assembly comprises a transmit filter of the duplexer.
8. The ladder-type surface acoustic wave filter assembly of claim 1 wherein the substrate includes a piezoelectric substrate.
9. A ladder-type surface acoustic wave filter assembly comprising:
- a substrate for receiving a plurality of components;
- an input terminal, an output terminal, and a ground terminal;
- a plurality of series resonators formed on the substrate and connected between the input terminal and the output terminal, the plurality of series resonators including a first series resonator and a second series resonator, the first series resonator having a lowest resonance frequency among the plurality of series resonators, at least one of i) the first series resonator being disposed closer to the output terminal than to the input terminal, ii) the first series resonator being disposed closest to the output terminal among the plurality of series resonators, and iii) the first series resonator having a smallest duty among the plurality of series resonators;
- a parallel resonator formed on the substrate and connected between the plurality of series resonators and the ground terminal;
- a dielectric film coupled to at least one of the plurality of series resonators and having an inverse temperature coefficient of frequency to that of the substrate, a film thickness of the dielectric film in a region where the second series resonator is formed being smaller than a film thickness of the dielectric film in a region where the first series resonator is formed; and
- a second dielectric film disposed on an upper surface of the dielectric film.
10. The ladder-type surface acoustic wave filter assembly of claim 9 wherein the film thickness of the dielectric film in the region where the first series resonator is formed is larger than the film thickness of the dielectric film in other regions on the substrate.
11. The ladder-type surface acoustic wave filter assembly of claim 9 wherein an antiresonant frequency of the first series resonator is lower than an antiresonant frequency of the second series resonator.
12. A ladder-type surface acoustic wave filter assembly comprising:
- a substrate for receiving a plurality of components;
- an input terminal, an output terminal, and a ground terminal;
- a plurality of series resonators formed on the substrate and connected between the input terminal and the output terminal, the plurality of series resonators including a first series resonator and a second series resonator, the first series resonator having a lowest resonance frequency among the plurality of series resonators;
- a parallel resonator formed on the substrate and connected between the plurality of series resonators and the ground terminal; and
- a dielectric film coupled to at least one of the plurality of series resonators and having an inverse temperature coefficient of frequency to that of the substrate, a film thickness of the dielectric film in a region where the second series resonator is formed being smaller than a film thickness of the dielectric film in a region where the first series resonator is formed, top surfaces of interdigital transducer electrode fingers of the second series resonator being exposed from the dielectric film.
13. The ladder-type surface acoustic wave filter assembly of claim 12 wherein the dielectric film includes silicon oxide.
14. The ladder-type surface acoustic wave filter assembly of claim 12 wherein the substrate includes a piezoelectric substrate.
15. A ladder-type surface acoustic wave filter assembly comprising:
- a substrate for receiving a plurality of components;
- an input terminal, an output terminal, and a ground terminal;
- a plurality of series resonators formed on the substrate and connected between the input terminal and the output terminal, the plurality of series resonators including a first series resonator and a second series resonator, the first series resonator having a lowest resonance frequency among the plurality of series resonators;
- a parallel resonator formed on the substrate and connected between the plurality of series resonators and the ground terminal;
- a dielectric film coupled to at least one of the plurality of series resonators and having an inverse temperature coefficient of frequency to that of the substrate, a film thickness of the dielectric film in a region where the second series resonator is formed being smaller than a film thickness of the dielectric film in a region where the first series resonator is formed; and
- a second dielectric film disposed on an upper surface of the dielectric film.
16. The ladder-type surface acoustic wave filter assembly of claim 15 wherein a film thickness of the dielectric film in a region where the first series resonator is formed is larger than the film thickness of the dielectric film in other regions on the substrate.
17. The ladder-type surface acoustic wave filter assembly of claim 15 wherein an antiresonant frequency of the first series resonator is lower than an antiresonant frequency of the second series resonator.
18. A ladder-type surface acoustic wave filter assembly comprising:
- a substrate for receiving a plurality of components;
- an input terminal, an output terminal, and a ground terminal;
- a plurality of series resonators formed on the substrate and connected between the input terminal and the output terminal, the plurality of series resonators including a first series resonator and a second series resonator, each of the first series resonator and the second series resonator having interdigital transducer (IDT) electrode fingers, the first series resonator having a lowest resonance frequency among the plurality of series resonators, at least one of i) a capacitance of the first series resonator being larger than a capacitance of the second series resonator, ii) the first series resonator having more interdigital transducer electrode fingers than the second series resonator, and iii) the first series resonator being separated from the input terminal by at least one series resonator of the plurality of series resonators;
- a parallel resonator formed on the substrate and connected between the plurality of series resonators and the ground terminal;
- a dielectric film coupled to at least one of the plurality of series resonators and having an inverse temperature coefficient of frequency to that of the substrate, a film thickness of the dielectric film in a region where the second series resonator is formed being smaller than a film thickness of the dielectric film in a region where the first series resonator is formed; and
- a second dielectric film disposed on an upper surface of the dielectric film.
19. The ladder-type surface acoustic wave filter assembly of claim 18 wherein a film thickness of the dielectric film in a region where the first series resonator is formed is larger than the film thickness of the dielectric film in other regions on the substrate.
20. The ladder-type surface acoustic wave filter assembly of claim 18 wherein an antiresonant frequency of the first series resonator is lower than an antiresonant frequency of the second series resonator.
5726610 | March 10, 1998 | Allen et al. |
6201457 | March 13, 2001 | Hickernell |
6570470 | May 27, 2003 | Maehara et al. |
6717487 | April 6, 2004 | Takata |
6975185 | December 13, 2005 | Tsutsumi et al. |
7327205 | February 5, 2008 | Taniguchi |
7456705 | November 25, 2008 | Ito |
7498898 | March 3, 2009 | Nakanishi et al. |
8072293 | December 6, 2011 | Nakamura et al. |
9203376 | December 1, 2015 | Tsurunari |
20050025324 | February 3, 2005 | Takata |
20050046520 | March 3, 2005 | Nishizawa |
20070241841 | October 18, 2007 | Hauser et al. |
20080074212 | March 27, 2008 | Matsuda et al. |
20080116993 | May 22, 2008 | Yamakawa |
20080246557 | October 9, 2008 | Kiwitt et al. |
20090115554 | May 7, 2009 | Takayama et al. |
20100207707 | August 19, 2010 | Yata |
20110090026 | April 21, 2011 | Nakahashi |
20120019102 | January 26, 2012 | Seki et al. |
20120086521 | April 12, 2012 | Tsurunari et al. |
20120139662 | June 7, 2012 | Fujiwara et al. |
2000068784 | March 2000 | JP |
2000196409 | July 2000 | JP |
2002232264 | August 2002 | JP |
2004007094 | January 2004 | JP |
2005045475 | February 2005 | JP |
2008079227 | April 2008 | JP |
2010146826 | December 2010 | WO |
2011052218 | May 2011 | WO |
- International Search Report dated Aug. 14, 2012 issued in corresponding International Application No. PCT/JP2012/004030.
- R. Takayama et al.; “US-PCS SAW Duplexer Using High-Q SAW Resonator with SiO2 Coat for Stabilizing Temperature Characteristics”; 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference Aug. 23-27, 2004, vol. 2, pp. 959-962 and one IEEE Xplore abstract page.
Type: Grant
Filed: Oct 26, 2015
Date of Patent: Nov 14, 2017
Patent Publication Number: 20160056793
Assignee: SKYWORKS FILTER SOLUTIONS JAPAN CO., LTD. (Kadoma-Shi)
Inventors: Tetsuya Tsurunari (Osaka-Fu), Joji Fujiwara (Osaka-Fu), Hiroyuki Nakamura (Osaka-Fu), Hidekazu Nakanishi (Osaka-Fu)
Primary Examiner: Barbara Summons
Application Number: 14/922,343
International Classification: H03H 9/72 (20060101); H03H 9/64 (20060101); H03H 9/25 (20060101); H03H 9/02 (20060101);