System and method for reuse of communications spectrum for fixed and mobile applications with efficient method to mitigate interference
A communications system network that enables secondary use of spectrum on a non-interference basis is disclosed. Each secondary transceiver measures the background spectrum. The system uses a modulation method to measure the background signals that eliminates self-generated interference and also identifies the secondary signal to all primary users via on/off amplitude modulation, allowing easy resolution of interference claims. The system uses high-processing gain probe waveforms that enable propagation measurements to be made with minimal interference to the primary users. The system measures background signals and identifies the types of nearby receivers and modifies the local frequency assignments to minimize interference caused by a secondary system due to non-linear mixing interference and interference caused by out-of-band transmitted signals (phase noise, harmonics, and spurs). The system infers a secondary node's elevation and mobility (thus, its probability to cause interference) by analysis of the amplitude of background signals. Elevated or mobile nodes are given more conservative frequency assignments that stationary nodes.
Latest Shared Spectrum Company Patents:
This application is a divisional of U.S. application Ser. No. 12/326,755, which is a reissue of U.S. Pat. No. 7,146,176, which claims priority under 35 USC 119(e) based on of to U.S. Provisional Patent Applications Application Ser. No. 60/211,215 dated Jun. 13, 2000 and Ser. No. 60/264,265 dated Jan. 29, 2001. Both applications are incorporated by reference in entirety.
BACKGROUND1. Field of Invention
This invention relates to communications spectrum allocation and reuse on a non-interference basis in bands which have pre-existing spectrum users (both transmit/receive type and receive-only type).
2. Description of Prior Art
Communication systems commonly use methods to optimize the use of the spectrum. There are several approaches involving radio networks where channels are selected to optimize system capacity.
Cellular phone and other types of systems use low power transmissions and a cellular architecture that enables spectrum to be reused many times in a metropolitan area. These systems assume that within the allocated frequency band, the system is the primary user and that there is a control or signaling channel between all nodes. The goal of these systems is to maximize the number of calls system wide given a fixed amount of bandwidth. This problem is complex because of the nearly innumerable choices of frequency/channel combinations possible, the time varying nature of the calls, and the unpredictable propagation loses between all of the nodes. While global optimization schemes would give the highest capacities, limited communications capacity between the nodes, finite channel measuring capabilities in some of the nodes, and short decisions times require that distributed non-optimal methods be used. Examples are disclosed in U.S. Pat. Nos. 4,672,657 (1987), 4,736,453 (1988), 4,783,780 (1988), 4,878,238 (1989), 4,881,271 (1989), 4,977,612 (1990), 5,093,927 (1992), 5,203,012 (1993), 5,179,722 (1993), 5,239,676 (1993), 5,276,908 (1994), 5,375,123 (1994), 5,497,505 (1996), 5,608,727 (1997), 5,822,686 (1998), 5,828,948 (1998), 5,850,605 (1998), 5,943,622 (1999), 6,044090 (2000), and 6,049,717 (2000).
The above patents describe methods where current channel measurements (noise level, carrier-to-interference ratio (C/I)), previous channel measurement statistics, and traffic loading are used in different ways to optimize capacity while minimizing latency in channel assignment, equipment requirements, and dropped calls. All of these methods assume that the system is the primary spectrum user. This would allow the primary system to select channels where it was jammed, but it would create significant interference to another system.
Several methods to enable a system to operate as the secondary spectrum user with minimal impact to the primary user have been disclosed. The first type assume that there are predetermined spatial “exclusions zones” where if the secondary user avoids transmission while located in these areas, then there will be no interference to the primary user. U.S. Pat. No. 5,422,930 (1995) uses a telephone circuit based keying method where the telephone's location is known and when the secondary user is connected to the specific phone line, authorization is given for operation using a set of frequencies. U.S. Pat. No. 5,511,233 (1996) is similar method where an undefined position location system is used. U.S. Pat. No. 5,794,1511 (1998) uses a GPS (global positioning system) to locate the secondary user.
This geolocation exclusion method has significant short-falls. To determine the exclusion zones, propagation estimates or propagation methods would have to be made. There would be large uncertainties in the antenna type, antenna orientation, antenna height, and power level used by the secondary user. There would be uncertainties in the local propagation conditions between the secondary user and the primary user, and these propagation conditions might change because of ducting or other temporary atmospheric conditions. To mitigate these problems, the exclusion zones would have to have very large margins, which would greatly reduce system capacity, or some unintended interference would be created. These schemes do not address how the interference caused by one specific secondary user would be quickly and economically identified and eliminated.
A second type of secondary spectrum allocation method uses detailed propagation modeling of the primary and secondary communication systems and channel occupancy measurements made by the secondary system (U.S. Pat. No. 5,410,737 (1995) and U.S. Pat. No. 5,752,164 (1998)). The channel measurements are use to validate and improve the propagation modeling estimates. Using this information, the spectrum is allocated so that the primary user is not impacted.
Because of the large uncertainties in propagation estimates, the above method must use large margins to insure minimal interference. Using measurements of the propagation losses between the primary and secondary user can be directly used to reduce these margins only if the primary system transmits and receives using the same antenna, at the same frequency and at a known power level. In this case the secondary radio directly estimates it's impact on the primary system and can select its frequency and power level to avoid interference. However, most communication systems use different transmit and receive frequencies and often use different transmit and receive antennas. Hence, the measurements of the primary signal received by the secondary don't provide direct information on the impact the secondary transmitter has on the primary receiver. This method also doesn't describe how unintentional interference would be identified and mitigated.
A third approach insurers that the measurements of the primary signals made by the secondary user can be used to determine the available spectrum is to add a narrow bandwidth “marker” signal to every primary receiver antenna system (U.S. Pat. No. 5,412,658 (1995)). This approach has significant cost impact to the primary user and because the CW marker transmitter is collocated to the primary receiver, it will cause significant interference to the primary user.
A fourth method has the primary and secondary users sharing a spectrum band between the primary and secondary users to reserve bandwidth (U.S. Pat. No. 5,428,819 (1995)). An “etiquette” is observed between the users and each user makes measurements of the open channels to determine priority usage. This method has the disadvantage that the primary system must be modified to communicate with the secondary system, which is cost prohibitive if the primary user is already established. Also, the method will fail in many cases because of the well known “hidden node problem”. This occurs when the secondary nodes are unable to receive transmissions from a primary node because of the particular propagation conditions. Thus, the secondary user incorrectly believes the channel is available and his transmissions cause interference.
A fifth method assumes that the primary and secondary systems are controlled by a central controller (U.S. Pat. Nos. 5,040,238 (1991), 5,093,927 (1992), 5,142,691 (1992), and 5,247,701 (1993)). When interference occurs, the secondary system's power level and/or frequency list is adjusted. Some of the methods use channel measurements at the secondary system to detect changes in the frequency usage that would require a re-prioritization of channels. This method has obvious problems because the primary system would have to be highly modified to interact with the secondary system and to be able to make the required spectrum measurements. The spectrum is now fully allocated and there are primary users in every band. What is needed is a method that enables secondary operation without any modification to the existing primary user.
A sixth method uses field monitors the measure the secondary signal strength at specific locations. One sub-method is intended to enable secondary usage inside buildings (U.S. Pat. Nos. 5,548,809 (1996) and 5,655,217 (1997)). Field monitors are located surrounding the secondary system nodes which determine what channels are not used by nearby primary systems or if the channels are in use, if the coupling between the primary to them where the coupling to detected. The second sub-method is intended to enable adjacent cellular based mobile communication systems (U.S. Pat. Nos. 5,862,487 (1999)).
OBJECTIVES AND ADVANTAGESAccordingly, several objects or advantages of my invention are:
- (a) to provide a method to determine what channels a newly installed secondary transceiver can use without causing interference to the primary system while the other secondary transceivers are using the same channels;
- (b) to provide a method to determine what channels a newly installed secondary transceiver can use without causing interference to the primary system that has minimal impact to the capacity of the secondary system;
- (c) to provide a method to determine what channels a secondary transceiver can use without causing interference to the primary system while the primary system is operating;
- (d) to provide a method to determine if a primary receiver is in close proximity to a secondary transceiver which greatly reduces that probability of adjacent channel or “IF image” interference to the proximate primary receiver;
- (e) to provide a method to measure propagation losses using a unique waveform that causes minimal interference to TV signals;
- (f) to provide a method to measure propagation losses using a unique waveform that causes minimal interference to data signals;
- (g) to provide a method to vary the secondary waveform type that improves the capacity of the secondary system while creating minimum interference to the primary system;
- (h) to provide a method to modulate the secondary signal so the primary user can quickly and positively determine if the reception problems are caused by the secondary signal or by other causes;
- (i) to provide a method to identify what secondary user is causing interference to a primary user; and
- (j) to provide a method to precisely and efficiently reduce the transmitter power level of a secondary user that is causing interference to a primary user to a level which doesn't cause interference;
- (k) to provide a method to determine if the secondary node is moving indicating that its frequency allocations needs to be checked more frequently or with a different method;
- (m) to provide a method to determine if the secondary node is at an elevated position indicating that it is more likely to cause interference to distant primary users and indicating that the very conservative frequency allocation methods should be used;
Further objects and advantages of my invention will become apparent from a consideration of the drawings and ensuing description.
- 10 primary receiver
- 12 primary transmitter
- 20 secondary transceiver
- 21 new secondary transceiver
- 22 secondary base station
- 24 secondary service area
- 26 primary service area A
- 28 primary service area B
- 30 secondary central controller
- 40 obstacle
- 50 antenna
- 52 amplifier
- 54 tuner
- 56 controller
- 58 programmable modem
- 60 user device
- 62 variable attenuator
- 64 preselect filter
This invention allows a secondary user to efficiently use the spectrum on a non-interference basis with an existing primary user.
Determining the secondary transceiver's maximum power level is very difficult since it depends on antennas, cable losses, locations, radio frequency (RF) propagation, and other factors which can't economically be reliably predicted. In the preferred embodiment, a combination of primary signal strength measurements, measurements of signals from nearby primary receivers, and secondary-to-secondary node coupling measurements are made to determine this power level.
The new secondary node 21 then measures the primary signal strength in each of the proposed channels. As will be described later, this measurement is coordinated with the secondary signals in the secondary service area 24. During the measurement interval the secondary signals are switched off to prevent the secondary signals from affecting the primary signal measurement. If the primary signal is below a certain value, then the new secondary node 21 is assumed to be located in a region where the channel is potentially available for spectrum reuse. If the primary signal is above another certain value, then the new secondary node 21 is assumed to be located in the primary service region B 28, the channel is not available for spectrum reuse by this node, and this node can be used to received signal probes.
However, there are a variety of factors which may reduce the propagation losses and create interference: (1) The primary or secondary users may have elevated antennas (100 m or more), (2) incorrect information on the secondary user's location, and (3) unusual propagation due to atmospheric conditions. These conditions are rare but exist often enough that the secondary system must mitigate them in order to operate on a non-interference basis. The conditions also vary with time so they must be mitigated on a regular basis.
Unfortunately, the signal level from each secondary transceiver 20 at each primary receiver 10 can't be measured directly because of the expense in deploying the measurement equipment and the location of the primary receivers 10 may be unknown. Simulations and analysis could be used to estimate these effects, they would require extensive detailed knowledge of all primary users, terrain features and atmospheric data, which is impractical to obtain.
Instead, the secondary signal level at the primary receivers 10 is estimated by the use of propagation models and measuring the secondary signal level at secondary transceiver 20 and secondary base stations 22 surrounding the primary receivers 10. In the example shown in
The secondary central controller 30 then tasks the new secondary transceiver 21 to transmit a probe signal for a brief period (several milliseconds). The secondary central controller 30 previously coordinates with the secondary transceivers 20 and secondary base stations 22 in service area B 28 so that they measure the probe signal amplitude. The central controller identifies which nodes are within service area B 28 by comparing the primary signal level measurements to a threshold value as previously described. These amplitude values are sent to the secondary central controller 30. If any of the probe signal amplitudes exceed a threshold value, then the maximum transmit power level that the new secondary transceiver 21 can use on channel B is reduced by the amount the maximum measurement exceeded the threshold. The value of the maximum transmission power level is thus equal to the following formula: P_transmission (dBm)=P_probe (dBm)−P_received (dBm)+“constant”, with “P_probe” the probe transmission power level, “P_received” the maximum received probe power level, and the value of the “constant” depending on the maximum interference level allowed in the “primary region” plus a safety margin.
These measurements are repeated at a regular interval (10's of minutes to a few hours) and the probe signal amplitudes are compared to previous values. If there is a significant change due to changes in the secondary equipment (new location, antenna rotations, changes to the system cabling . . .) or due to unusual propagation conditions, the maximum transmit power level that the new secondary transceiver 21 can use on channel B is changed so that the maximum measurement value equals the threshold value.
If the secondary equipment is mobile, than the measurements are made more frequently and the threshold value is set higher to account for lags in transmitting the data to the secondary central controller 30 and other system delays. The probe duration is adjusted to balance the probe measurement time versus probe waveform detection probability and depends on the number of secondary nodes and the node dynamics. In a secondary service area 26 or 28 with 10,000 users, 10% of the capacity allocated to probing, and probing done every hour, the probe duration is approximately 2 ms.
To decrease the amount of time spent probing, groups of secondary transceiver 20 and secondary base stations 22 can transmit the probe signals simultaneously. If the secondary transceivers 20 and secondary base stations 22 in service area B 28 measure a probe signal amplitude greater than the threshold value, then each of the secondary transceiver 20 and secondary base stations 22 can individually re-transmit the probe signal to determine which link will cause interference.
To minimize the interference to the primary system, the probe waveform is not the same as used to transmit data. The waveform is designed to have minimal effect on the primary waveform, to be easily and quickly acquired by the secondary system, and to have sufficient bandwidth across the channel of interest so that frequency selective fading doesn't introduce large errors. In the preferred embodiment of this invention, one of the following waveforms is used depending of the primary signal modulation.
The value of this waveform is that it has approximately the same level of impact to the TV signal as a broadband waveform used to send data, but this waveform can be received with a narrow bandwidth (˜10 Hz) receiver compared to a wide bandwidth (several MHz) broadband receiver, thus it can be transmitted at much lower (˜50 dB) amplitude and will have minimal impact to the primary signal.
The relative amplitudes of the CW tones in each zone are shown in
To receive this waveform, standard FFT processing techniques are used to measure the amplitude of each CW tone and the amplitudes are normalized by the 30 dB and 10 dB amounts described above. Selective fading will cause the relative amplitude of each tone to vary just as would occur with a data waveform and must be accounted for to estimate the interference caused by a data waveform. To account for fading, the largest of the four CW tone amplitudes is used to estimate the worse case channel conditions. The probability that all four tones are faded causing the propagation losses to be over estimated is very low.
If the primary signal is other than NTSC TV video signals, the probe signal is a conventional BPSK waveform with bandwidth approximately equal to the channel bandwidth. This sets the chip rate at approximately the inverse of the bandwidth (a 10 MHz bandwidth would have a chip rate of 10 Mcps). The waveform transmits a pseudo random sequence with the maximum length that can be coherently integrated when limited by channel conditions or receiver hardware complexity. In non-line-of-sight (LOS) propagation conditions, the maximum channel coherence time is approximately 100 ms. Current low cost receiver hardware is limited to sampling and processing approximately 10,000 samples. Assuming 2 samples per chip, the maximum sequence is approximately 5,000 samples. Thus, the sequence length is set to the minimum of the chip rate (symbols per second) times 100 ms (the maximum sequence duration) and 5,000.
To receive the BPSK probe signal, the secondary receiver samples the signal for a period equal to the transmit period and using a non-linear technique to measure the amplitude of probe signal. Each sample value is squared and the resulting series analyzed using an FFT. At the frequency corresponding to twice the chip rate, a narrow bandwidth spectral line will exist with amplitude that is related to the received probe signal amplitude. It is well known to those familiar in the art that this technique is able identify BPSK signals with amplitude well below the noise level and provides nearly optimal signal detection performance. Thus, the probe signal can be transmitted at a much lower power level than a regular data signal (which reduces interference to the primary signal) and can still be detected.
Once the probe signal amplitudes are measured at the secondary transceivers 20 and secondary base stations 22 in service area B 28, the values are sent to the secondary central controller 30 who then decides what the maximum power level each secondary transceiver 20 and secondary base station 22 can use with this channel as is described above.
In addition to measuring the primary background signal, each secondary transceiver 20 and secondary base station 22 will send data, receive probe signals and transmit probe signals. This information is sent to the central controller 30 via the high capacity network connecting the base stations 22. The notional time line for a transceiver is shown in
An additional innovation is a technique where the secondary transceivers 20 and base stations 22 modify their behavior when there are nearby primary receivers 10 or transmitters 12. Closely spaced (10's of meters) radios are susceptible to significant interference caused by non-linear mixing interference and interference caused by unintended out-of-band transmitted signals (phase noise, harmonics, and spurs). In the preferred approach, the secondary transceiver and base station (20 and 22) measure the spectrum and identify strong signals that indicate proximate primary transceivers. Each secondary node (20 and 22) will then avoid transmitting on frequencies likely to cause interference to that specific radio. The frequencies to avoid can be determined using a simple model that includes harmonically related signals and cross products of the primary signal with the secondary signal. For example, if a strong cell phone transmission is detected at 890 MHz, it can be inferred that a receiver is nearby tuned to 935 MHz (cell phone channels are paired). The secondary system may have a significant harmonic at 935 MHz when it transmits at 233.75 MHz (4th harmonic is 935 MHz) and at 467.5 MHz (2nd harmonic is 935 MHz). To avoid causing interference, this specific secondary node would restrict its transmitted power at these frequencies to low values or change to another frequency.
In broadcast bands (i.e. TV), the primary receiver's 10 local oscillator leakage will be detected to determine if there is a nearby receiver as shown in
To measure the LO signal amplitude, fast Fourier transform (FFT) methods are used to create a narrow (˜10 Hz) bandwidth receiver. The LO signals are detected by searching for stable, narrow bandwidth, continuous wave (CW) signals.
In the preferred embodiment of this invention, the secondary signal waveform is selected based on the interference measurements made by the secondary transceivers 20 and secondary base stations 22. If the interference measurements indicate that the primary signal is below the threshold value used to declare the channel open for use and the primary signal level is well above the noise level, then the secondary signal spectrum is reduced to fit into gaps of the primary spectrum (from 1.5 MHz above the channel start frequency to 5.5 MHz above the channel start frequency) as shown in
There are many types of waveforms that could be used to optimize performance in a high multipath link or in high quality (line-of-sight) link.
The primary user reports his location, the channel with interference and the time of the interference. The central controller identifies all secondary transceivers 20 and secondary base stations 22 within a distance X of the primary user active within the time period in question, and identifies what additional channels may have caused the interference due to adjacent channel or image rejection problems. Using propagation and interference models, the maximum power each secondary transceiver 20 and secondary base station 22 is allowed to transmit, the probability of each secondary node is calculated. The secondary nodes are sorted by this probability. If the interference is still present, a secondary central controller 30 tasks the most probable secondary node to temporarily cease transmitting and then asks the primary user if the problem has cleared. If not, the secondary central controller 30 goes to the next probable node and repeats this process (expanding the distance X as required) until the offending secondary node is identified.
If the primary user had reported the interference as intermittent (due to variations in the secondary traffic loading), the secondary central controller 30 commands the secondary nodes to transmit for each of the above tests instead of ceasing to transmit.
Once the secondary node causing the interference is identified, the maximum transmit power level that node can transmit in that channel is reduced until there is no interference. This is accomplished by the secondary central controller 30 iteratively tasking the secondary node to transmit signal at varying power levels until the primary user reports no interference.
Secondary transceivers 20 and base stations 22 that are highly elevated compared to the surrounding terrain have line-of-sight to a large area and will have much lower propagation losses to the surround primary nodes compared to secondary nodes that are at low altitude. Because they are more likely to cause interference, they are assigned frequencies that are the least likely to cause interference as determined by the probe measurements described above. To determine if a secondary node is elevated, the node measures the strength of several primary signals (at different frequencies) in the area as shown in
In some system applications, the frequency range of the secondary system will not include the standard broadcast bands. The elevation of a secondary node can still be inferred using signals from primary cellular, PCS, or other systems (that are not constant amplitude). These systems use frequency re-use schemes where channels are assigned to different cell towers. If the node is elevated, it will receive strong amplitude signals at many frequencies within the frequency re-use scheme. If the node is not elevated, it will receive strong amplitude signals at only one or two frequencies within the frequency re-use scheme.
As mentioned above, the system will use a slightly different scheme to allocate frequencies for mobile nodes. To determine if a node is stationary or mobile, the system will periodically (approximately once per second) measure the amplitude of background primary signals. As shown in
Accordingly, the reader will see that the method described above allows efficient secondary use of spectrum while causing minimum interference to the primary user. The method has minimal impact to the choices of the secondary system could be added as an applique to existing or planned communication systems. It requires no modification to the existing primary user. The technology can be economically built with existing component technology.
The invention will provide 100's of megahertz of spectrum to be used which before was unavailable to new uses and will provide this spectrum below 2 GHz which is the most useful portion for mobile and non-line-of-sight applications. Because the method has minimal effect on the present primary users, it allows a gradual transition from the present fixed frequency based, broadcast use of the spectrum set-up in the 1930's to the computer controlled, fully digital, packet based, frequency agile systems coming in the near future. With the advent of the Internet and the need for high-speed connectivity to rural and mobile users, the present spectrum use methods are inadequate and will not be able to meet this need. This invention will provide spectrum for the new Internet driven demand while not significantly impacting the present spectrum users.
The invention described here has many advantages. The technique used by each secondary node uses multiple effective ways (propagation models, measuring the primary signal level and probing) to identify what channels are available. The technique of amplitude modulating the secondary signals allows accurate measurement of the primary signal levels while the secondary system is operating. Using the special probe waveforms allows these measurements to me made with minimal impact to the primary system. Varying the secondary waveform greatly reduces the impact to the primary system while increasing the capacity of the secondary system. The methods to detect node elevation and node motion allow for rapid checking and adjustment of spectrum allocations making this technique applicable to mobile applications.
Although the description above contains many specifications, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. For example, the primary system could be the present broadcast TV system. However, the methods described here would be equally effective with sharing between commercial and military systems, with sharing between radar and communications systems and others.
Thus the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given.
Claims
1. A method for a network of secondary communication devices consisting of transceivers, base stations and a central controller sharing a radio frequency channel with existing primary users with minimal interference to the primary users comprising the steps of:
- each secondary transceiver and secondary base station measuring the primary signal level in the channel,
- each secondary transceiver communicating the signal level to the central controller, and
- the central controller determining which channels each node may potentially use by comparing the primary signal level to a threshold value,
- wherein a portion of the secondary transceivers and secondary base stations in a region distant from where the channel is being used sequentially transmit a short duration probe signal with a certain power level (P_probe),
- the secondary transceivers and secondary base stations within a primary region where the channel is being used measure the probe signal amplitude value (P_received) and send these values to the central controller, and
- the central controller determines the maximum power level for each secondary transceivers and secondary base stations in the distant region by the formula: P_transmission (dBm)=P_probe (dBm)−P_received (dBm)+constant, with the value of the constant depending on the maximum interference level allowed in the primary region plus a safety margin, and
- the above steps are repeated at regular intervals.
2. The method according to claim 1, further comprising the step of:
- using high processing gain probe waveforms such as, but not limited to, direct sequence waveforms, single or multiple continuous wave (CW) tones.
3. The method of claim 2, wherein the high processing gain probe waveform is either multiple CW waveforms or combinations of narrowband waveforms, each with energy in a frequency zone within the NTSC six MHz channel width and minimal energy at other frequencies in the channel, the frequency zone being in the lower and upper guard bands, between the video carrier and the color-subcarrier, or between the color-subcarrier and the sound carrier.
4. A method for a network of secondary communication devices consisting of transceivers, base stations and a central controller sharing a radio frequency channel with existing primary users with minimal interference to the primary users comprising the steps of:
- each secondary transceiver and secondary base station measuring the primary signal level in the channel,
- each secondary transceiver communicating the signal level to the central controller,
- the central controller determining which channels each node may potentially use by comparing the primary signal level to a threshold value,
- wherein a modulation scheme where each secondary transceiver and secondary base station transmits and receives data for a certain time period, then simultaneously halts transmissions, making measurements of the background signals for a time period, and then either transmitting or receiving probe signals.
5. A method for a network of secondary communication devices consisting of transceivers, base stations and a central controller sharing a radio frequency channel with existing primary users with minimal interference to the primary users comprising the steps of:
- each secondary transceiver and secondary base station measuring the primary signal level in the channel,
- each secondary transceiver communicating the signal level to the central controller,
- the central controller determining which channels each node may potentially use by comparing the primary signal level to a threshold value,
- wherein proximate primary receivers are identified to each secondary transceivers and secondary base stations by having each secondary transceiver and secondary base station measure the strength of all strong signals within a certain range of the spectrum, and
- those signals with a power level above a threshold value declare that these are proximate nodes, and
- determine the proximate radio's receive frequency using well-known standards information, and
- restricting the secondary transceiver's or secondary base station's transmit frequency list from harmonically related values, adjacent channel values, or image related values compared to the primary signal.
6. A method for a network of secondary communication devices consisting of transceivers, base stations and a central controller sharing a radio frequency channel with existing primary users with minimal interference to the primary users comprising the steps of:
- each secondary transceiver and secondary base station measuring the primary signal level in the channel,
- each secondary transceiver communicating the signal level to the central controller, and
- the central controller determining which channels each node may potentially use by comparing the primary signal level to a threshold value,
- wherein proximate primary receive only radios are identified to each secondary transceivers and secondary base stations by having each secondary transceivers and secondary base stations measure the strength of the primary receiver's local oscillator leakage, and
- and those signals above a threshold value declare that these is a proximate receive-only node, and
- determine the proximate receiver's frequency using well-known standards information, and
- restricting the secondary transceivers or secondary base station's transmit frequency list from harmonically related values, adjacent channel values, or image related values compared to the primary signal.
7. A method for a network of secondary communication devices to share the analog TV spectrum consisting of the steps of,
- each secondary transceivers and secondary base stations measuring the strength of the background TV signal strength, and
- if the primary TV signal strength is greater than a certain level above the noise level but less than another higher level, then
- the secondary system will use a waveform with energy between 1.5 MHz above the channel start frequency and 4.5 MHz above the channel start frequency to avoid interference caused by the analog video and sound carriers.
8. A method for a network of secondary communication devices consisting of transceivers, base stations and a central controller to identify which device is causing Interference to a primary user comprising of the steps of, a method to unambiguously marking the secondary system's signal when received by the primary receiver such as, but not limited to, amplitude modulating the secondary signal, and
- provide a method for the affected primary user to communicate with the secondary system's central controller and communicate the primary receiver's location and the channel frequency, and
- the central controller determine the closest secondary transceiver or secondary base station to the primary node and the likely frequencies being transmitted that might cause the interference, and
- command the secondary transceiver or secondary base station to transmit data, and
- sequentially reducing the power of the closet secondary transceiver or base station until the primary user reports that the problem is resolved, and
- if the interference to the primary receiver continues, determine the next closest secondary transceiver or secondary base station to the primary node and repeating the previous step until the secondary node causing the Interference is located.
9. A method for a network of secondary communication devices consisting of transceivers, base stations and a central controller sharing a radio frequency channel with existing primary users with minimal interference to the primary users comprising the steps of: if the secondary transceiver or secondary base station is moving or elevated, then the node will use more conservative spectrum assignments that include one or more of the following: reducing the node's maximum transmitted power, Increasing the repetition rate of the node's probing and primary signal level measurements, and use of another channel.
- each secondary transceiver and secondary base station measuring the primary signal level in the channel,
- each secondary transceiver communicating the signal level to the central controller, and
- the central controller determining which channels each node may potentially use by comparing the primary signal level to a threshold value,
- wherein each secondary transceivers arid secondary base stations measures the strength of multiple signals from several other stationary transmitters and by analysis of these signal level amplitudes and if there is significant co-channel interference determines if the secondary transceiver or secondary base station is moving or elevated, and
10. A method of allocating channels in a wireless communication system, the method comprising:
- coordinating a measurement interval with a plurality of transceivers during which each of the plurality of transceivers halts transmissions;
- receiving a signal strength measurement made during the measurement interval from each of the plurality of transceivers; and
- allocating a channel to at least one of the plurality of transceivers based at least in part on the signal strength measurements.
11. The method of claim 10, further comprising the step of coordinating a test interval for each of the plurality of transceivers, during which each of the plurality of transceivers transmits a predetermined test signal.
12. The method of claim 11, wherein the test signal is a probe signal.
13. The method of claim 10, further comprising the step of receiving a measurement of the amplitude of at least one probe signal from each of the plurality of transceivers, and
- wherein the step of allocating the channel is further based in part on the measurements of the at least one probe signal amplitude.
14. The method of claim 13, further comprising the steps of:
- determining a maximum transmit power associated with the allocated channel based on the measurements of the at least one signal amplitude; and
- communicating the maximum transmit power to the at least one of the plurality of transceivers for which the channel is allocated.
15. The method of claim 10, further comprising the step of:
- determining whether at least one of the plurality of transceivers is mobile, and
- wherein allocating the channel is based in part on the mobility of the transceiver.
16. The method of claim 10, further comprising the step of:
- determining whether the at least one of the plurality of transceivers is elevated, and
- wherein the step of allocating the channel is based in part on whether the at least one of the plurality of transceivers is elevated.
17. The method of claim 10, wherein the step of coordinating the measurement interval comprises synchronizing the measurement interval to substantially a same time period.
18. The method of claim 10, wherein the step of coordinating the measurement interval comprises coordinating a duration of the measurement interval such that each of the plurality of transceivers operates within the measurement interval for not more than one percent of operating time.
19. The method of claim 10, wherein the step of receiving the signal strength measurement comprises receiving a signal strength measurement of a signal from a network distinct from the wireless communication system.
20. The method of claim 10, wherein the step of receiving the signal strength measurement comprises receiving a signal strength measurement of a television signal.
21. The method of claim 10, wherein the step of receiving the signal strength measurement comprises:
- providing a list of proposed channels to a first transceiver; and
- receiving the signal strength measurement of a channel from the list of proposed channels from the first transceiver.
22. The method of claim 21, wherein the step of allocating the channel to at least one of the plurality of transceivers comprises allocating at least one channel from the list of proposed channels to the first transceiver.
23. The method of claim 10, wherein the step of allocating the channel to at least one of the plurality of transceivers comprises:
- comparing each of the signal strength measurements to a predetermined threshold;
- determining an allocation list based in part on the comparisons; and
- allocating a channel from the allocation list.
24. The method of claim 23, wherein the allocation list is determined based at least in part on a regulatory database of emitters.
25. A method of accessing channels in a wireless communication system, the method comprising:
- synchronizing a measurement interval with a plurality of transceivers during which each of the plurality of transceivers halts transmissions;
- measuring a signal strength of a signal from a network distinct from the wireless communication system during the measurement interval; and
- receiving a channel allocation based at least in part on the signal strength.
26. The method of claim 25, further comprising the step of communicating the signal strength to a central controller, wherein the channel allocation is received from the central controller.
27. The method of claim 25, further comprising the step of receiving a channel allocation list from a central controller, and
- wherein the step of measuring the signal strength comprises measuring the signal strength in each channel of the channel allocation list.
28. The method of claim 25, wherein the step of measuring the signal strength comprises measuring a signal strength in a channel outside of a bandwidth of the channel.
29. The method of claim 25, further comprising receiving a test interval assignment from the central controller.
30. The method of claim 29, further comprising transmitting a predetermined probe signal during the test interval assignment.
31. The method of claim 30, wherein the predetermined probe signal comprises at least one continuous wave (CW) signal.
32. The method of claim 30, wherein the predetermined probe signal comprises a BPSK waveform.
33. The method of claim 29, further comprising:
- receiving a test signal transmitted by one of the plurality of transceivers during the test interval;
- determining a metric value based on the received test signal; and
- communicating the metric value to the central controller.
34. The method of claim 33, wherein the metric value comprises an amplitude of the received test signal.
35. The method of claim 25, further comprising the steps of:
- receiving a test interval assignment from the central controller;
- determining a test channel frequency; and
- transmitting a predetermined test signal during the test interval assignment and at the test channel frequency.
36. The method of claim 25, further comprising the step of performing at least one transmitting or receiving information over the allocated channel.
37. The method of claim 25, further comprising the step of transmitting a signal of a predetermined waveform type over the allocated channel.
38. The method of claim 37, wherein the predetermined waveform type comprises an orthogonal frequency division multiplex (OFDM) signal.
39. The method of claim 37, further comprising the step of amplitude modulating the signal of a predetermined waveform type.
40. A method of accessing channels in a wireless communication system, the method comprising:
- coordinating a test interval with a plurality of transceivers;
- receiving a first test signal transmitted by one of the plurality of transceivers during at least a first portion of the test interval;
- determining a metric based on the received test signal; and
- receiving a channel allocation based at least in part on the metric.
41. The method of claim 40, wherein the test signal is a probe signal.
42. The method of claim 40, further comprising:
- determining a test channel frequency; and
- receiving the first test signal during the first portion of the test interval and at the test channel frequency.
43. The method of claim 40, further comprising transmitting a second test signal during at least a second portion of the test interval.
44. The method of claim 40, further comprising:
- determining a test channel frequency; and
- transmitting a second test signal during at least a second of the test interval and at the test channel frequency.
45. The method of claim 40, wherein receiving the first test signal comprises receiving a plurality of continuous wave (CW) tones.
46. The method of claim 40, wherein receiving the first test signal comprises receiving a BPSK waveform.
47. The method of claim 46, wherein the BPSK waveform comprises a pseudo random sequence.
48. The method of claim 46, wherein the BPSK waveform comprises a signal having a bandwidth that is approximately equal to a channel allocation bandwidth.
49. The method of claim 40, wherein the step of determining the metric comprises determining an amplitude.
50. The method of claim 40, wherein determining the metric comprises the steps of:
- sampling the received first test signal to generate a plurality of samples; and
- performing FFT processing on the samples.
51. The method of claim 40, wherein determining the metric comprises the steps of:
- sampling the received first test signal to generate a plurality of samples; and
- coherently integrating the samples over a coherence time.
52. A method of accessing channels in a wireless communication system, the method comprising:
- receiving a channel allocation list;
- synchronizing a measurement interval with a plurality of transceivers during which each of the plurality of transceivers halts transmissions;
- measuring a received signal metric during the measurement interval;
- associating the received signal metric with a channel from the channel allocation list; and
- determining a channel allocation from the channel allocation list based at least in part on the received signal metric.
53. The method of claim 52, wherein measuring the received signal metric comprises:
- determining a channel from the channel allocation list; and
- determining the received signal metric based in part on a signal received outside of a bandwidth of the channel.
54. The method of claim 53, wherein the signal received outside of the bandwidth of the channel comprises a signal received at a harmonic of the channel.
55. The method of claim 53, wherein the signal received outside of the bandwidth of the channel comprises a signal received at frequency determined based on a cross product of a primary signal with a secondary signal.
56. The method of claim 53, wherein signal received outside of the bandwidth of the channel comprises a signal received at a predetermined frequency offset from the channel.
57. The method of claim 56, further comprising the step of restricting transmitted power based at least in part on the received signal metric.
58. The method of claim 56, further comprising the step of changing to another frequency.
59. The method of claim 56, wherein the predetermined frequency offset is a harmonically-related frequency offset.
60. The method of claim 56, wherein the predetermined frequency offset comprises an adjacent channel offset.
61. The method of claim 56, wherein the predetermined frequency offset comprises a local oscillator frequency offset.
62. The method of claim 56, wherein the predetermined frequency offset comprises an IF image related offset.
63. The method of claim 56, wherein the predetermined frequency offset comprises a transmit/receive pair frequency offset.
64. A system comprising:
- a plurality of transceivers, each of the plurality of transceivers configured to halt transmissions during a measurement interval; and
- a controller configured to receive a signal strength measurement made during the measurement interval from each of the plurality of transceivers;
- the controller further configured to allocate a channel to at least one of the plurality of transceivers based at least in part on the signal strength measurements.
65. The system of claim 64, wherein the controller is one of the plurality of transceivers.
66. The system of claim 64, said controller further configured to coordinate a test interval for each of the plurality of transceivers, during which each of the plurality of transceivers transmits a predetermined test signal.
67. The system of claim 64, said controller further configured to receive a measurement of the amplitude of at least one probe signal from each of the plurality of transceivers, and to allocate the channel based in part on the measurements of the at least one probe signal amplitude.
68. The system of claim 67, said controller further configured to:
- determine a maximum transmit power associated with the allocated channel based on the measurements of the at least one signal amplitude; and
- communicate the maximum transmit power to the at least one of the plurality of transceivers for which the channel is allocated.
69. The system of claim 64, wherein the step of coordinating the measurement interval comprises synchronizing the measurement interval to substantially a same time period.
70. The system of claim 64, wherein the signal strength measurement comprises a measurement of a signal from a network distinct from the wireless communication system.
71. The system of claim 64, said controller further configured to allocate the channel based at least in part on a regulatory database of emitters.
72. A transceiver configured to:
- coordinate a measurement interval with at least one other transceiver during which each of the transceivers halts transmissions;
- receive a signal strength measurement made during the measurement interval from the at least one other transceiver; and
- allocate a channel to the at least one other transceiver based at least in part on the signal strength measurements.
73. The transceiver of claim 72, further configured to communicate the signal strength to a central controller, wherein the channel allocation is received from the central controller.
74. The transceiver of claim 72, further configured to measure the signal strength in a channel outside of a bandwidth of the channel.
75. The system of claim 72, further configured to perform at least one transmitting or receiving information over the allocated channel.
76. The system of claim 72, further configured to transmit a signal of a predetermined waveform type over the allocated channel.
77. A device configured to:
- receive a channel allocation list;
- synchronize a measurement interval with a plurality of transceivers during which each of the plurality of transceivers halts transmissions;
- measure a received signal metric during the measurement interval;
- associate the received signal metric with a channel from the channel allocation list; and
- determine a channel allocation from the channel allocation list based at least in part on the received signal metric.
78. The device of claim 77, further configure to measure the received signal metric by:
- determining a channel from the channel allocation list; and
- determining the received signal metric based in part on a signal received outside of a bandwidth of the channel.
79. The device of claim 78, wherein the signal received outside of the bandwidth of the channel comprises a type selected from the group consisting of: a signal received at a harmonic of the channel, a signal received at frequency determined based on a cross product of a primary signal with a secondary signal, and a signal received at a predetermined frequency offset from the channel.
80. The device of claim 78, wherein the signal received outside of the bandwidth of the channel comprises a signal received at a predetermined frequency offset from the channel, wherein the predetermined frequency offset is selected from the group consisting of: a harmonically-related frequency offset, an adjacent channel offset, a local oscillator frequency offset, an IF image related offset, and a transmit/receive pair frequency offset.
3893064 | July 1975 | Nishihara et al. |
3935572 | January 27, 1976 | Broniwitz et al. |
4119964 | October 10, 1978 | Fletcher et al. |
4227255 | October 7, 1980 | Carrick et al. |
4305150 | December 8, 1981 | Richmond et al. |
4398220 | August 9, 1983 | Satoh |
4501020 | February 19, 1985 | Wakeman |
4672657 | June 9, 1987 | Dershowitz |
4736453 | April 5, 1988 | Schloemer |
4783780 | November 8, 1988 | Alexis |
4803703 | February 7, 1989 | Deluca et al. |
4878238 | October 31, 1989 | Rash et al. |
4881271 | November 14, 1989 | Yamauchi |
4918730 | April 17, 1990 | Schulze |
4977612 | December 11, 1990 | Wilson |
5040238 | August 13, 1991 | Comroe et al. |
5093924 | March 3, 1992 | Toshiyuki et al. |
5093927 | March 3, 1992 | Shanley |
5142690 | August 25, 1992 | McMullan et al. |
5142691 | August 25, 1992 | Freeburg et al. |
5151747 | September 29, 1992 | Nourrcier et al. |
5155590 | October 13, 1992 | Beyers et al. |
5162937 | November 10, 1992 | Heidemann et al. |
5177604 | January 5, 1993 | Martinez |
5177767 | January 5, 1993 | Kato |
5179722 | January 12, 1993 | Gunmar et al. |
5203012 | April 13, 1993 | Patsiokas et al. |
5225902 | July 6, 1993 | McMullan, Jr. |
5239676 | August 24, 1993 | Strawczynski et al. |
5247701 | September 21, 1993 | Comroe et al. |
5260974 | November 9, 1993 | Johnson et al. |
5271036 | December 14, 1993 | Lobert et al. |
5276908 | January 4, 1994 | Koohgoli et al. |
5325088 | June 28, 1994 | Willard et al. |
5375123 | December 20, 1994 | Andersson et al. |
5402523 | March 28, 1995 | Berg |
5410737 | April 25, 1995 | Jones |
5412658 | May 2, 1995 | Arnold et al. |
5422912 | June 6, 1995 | Asser et al. |
5422930 | June 6, 1995 | McDonald et al. |
5428819 | June 27, 1995 | Wang et al. |
5448753 | September 5, 1995 | Ahl et al. |
5475868 | December 12, 1995 | Duque-Anton et al. |
5497505 | March 5, 1996 | Koohgoli et al. |
5502688 | March 26, 1996 | Recchione et al. |
5511233 | April 23, 1996 | Otten |
5548809 | August 20, 1996 | Lemson |
5553081 | September 3, 1996 | Downey et al. |
5585850 | December 17, 1996 | Schwaller |
5608727 | March 4, 1997 | Perreault et al. |
5655217 | August 5, 1997 | Lemson |
5668747 | September 16, 1997 | Ohashi |
5748678 | May 5, 1998 | Valentine et al. |
5752164 | May 12, 1998 | Jones |
5794151 | August 11, 1998 | McDonald et al. |
5822686 | October 13, 1998 | Lundberg et al. |
5828948 | October 27, 1998 | Almgren et al. |
5850605 | December 15, 1998 | Souissi et al. |
5862487 | January 19, 1999 | Fujii et al. |
5884181 | March 16, 1999 | Arnold et al. |
5889821 | March 30, 1999 | Arnstein et al. |
5939887 | August 17, 1999 | Schmidt et al. |
5943622 | August 24, 1999 | Yamashita |
5960351 | September 28, 1999 | Przelomiec |
5999561 | December 7, 1999 | Naden et al. |
6011970 | January 4, 2000 | McCarthy |
6044090 | March 28, 2000 | Grau et al. |
6047175 | April 4, 2000 | Trompower |
6049707 | April 11, 2000 | Buer et al. |
6049717 | April 11, 2000 | Dufour et al. |
6141557 | October 31, 2000 | Dipiazza |
6147553 | November 14, 2000 | Kolanek |
6154501 | November 28, 2000 | Friedman |
6157811 | December 5, 2000 | Dent |
6178328 | January 23, 2001 | Tang et al. |
6188873 | February 13, 2001 | Wickman et al. |
6208858 | March 27, 2001 | Antonio et al. |
6240274 | May 29, 2001 | Izadpanah |
6269331 | July 31, 2001 | Alanara et al. |
6295289 | September 25, 2001 | Ionescu et al. |
6304140 | October 16, 2001 | Thron et al. |
6356555 | March 12, 2002 | Rakib et al. |
6380879 | April 30, 2002 | Kober et al. |
6522885 | February 18, 2003 | Tang et al. |
6526264 | February 25, 2003 | Sugar et al. |
6529715 | March 4, 2003 | Kitko et al. |
6570444 | May 27, 2003 | Wright |
6597301 | July 22, 2003 | Cerra |
6606593 | August 12, 2003 | Jarvinen et al. |
6615040 | September 2, 2003 | Benveniste |
6625111 | September 23, 2003 | Sudo |
6671503 | December 30, 2003 | Niwamoto |
6675012 | January 6, 2004 | Gray |
6687492 | February 3, 2004 | Sugar et al. |
6690746 | February 10, 2004 | Sills et al. |
6697436 | February 24, 2004 | Wright et al. |
6700450 | March 2, 2004 | Rogers |
6714605 | March 30, 2004 | Sugar et al. |
6714780 | March 30, 2004 | Antonio et al. |
6728517 | April 27, 2004 | Sugar et al. |
6771957 | August 3, 2004 | Chitrapu |
6785520 | August 31, 2004 | Sugar et al. |
6792268 | September 14, 2004 | Benveniste et al. |
6799020 | September 28, 2004 | Heidmann et al. |
6816832 | November 9, 2004 | Alanara et al. |
6847678 | January 25, 2005 | Berezdivin et al. |
6850735 | February 1, 2005 | Sugar et al. |
6850764 | February 1, 2005 | Patel |
6862456 | March 1, 2005 | Sugar et al. |
6904269 | June 7, 2005 | Deshpande et al. |
6941110 | September 6, 2005 | Kloper et al. |
6952563 | October 4, 2005 | Brown et al. |
6959178 | October 25, 2005 | Macedo et al. |
6965762 | November 15, 2005 | Sugar et al. |
6990087 | January 24, 2006 | Rao et al. |
6993440 | January 31, 2006 | Anderson et al. |
7013345 | March 14, 2006 | Brown et al. |
7035593 | April 25, 2006 | Miller et al. |
7054625 | May 30, 2006 | Kawasaki et al. |
7058383 | June 6, 2006 | Sugar et al. |
7089014 | August 8, 2006 | Brown et al. |
7227974 | June 5, 2007 | Kamijo et al. |
7260156 | August 21, 2007 | Krupezevic et al. |
7269151 | September 11, 2007 | Diener et al. |
7313393 | December 25, 2007 | Chitrapu |
7342876 | March 11, 2008 | Bellur et al. |
7424268 | September 9, 2008 | Diener et al. |
7428270 | September 23, 2008 | Dubuc et al. |
7457295 | November 25, 2008 | Saunders et al. |
7463952 | December 9, 2008 | Bidou et al. |
7483700 | January 27, 2009 | Buchwald et al. |
7532857 | May 12, 2009 | Simon |
7564816 | July 21, 2009 | McHenry et al. |
7610036 | October 27, 2009 | Teo et al. |
7613148 | November 3, 2009 | Hong et al. |
7742764 | June 22, 2010 | Gillig et al. |
7826839 | November 2, 2010 | Nicholas |
20010013834 | August 16, 2001 | Yamazaki |
20010046843 | November 29, 2001 | Alanara et al. |
20020002052 | January 3, 2002 | McHenry |
20020196842 | December 26, 2002 | Onggosanusi et al. |
20030027577 | February 6, 2003 | Brown et al. |
20030081628 | May 1, 2003 | Sugar et al. |
20030099218 | May 29, 2003 | Tillotson |
20030165187 | September 4, 2003 | Tesfai et al. |
20030181173 | September 25, 2003 | Sugar et al. |
20030181211 | September 25, 2003 | Razavilar et al. |
20030181213 | September 25, 2003 | Sugar et al. |
20030198200 | October 23, 2003 | Diener et al. |
20030203743 | October 30, 2003 | Sugar et al. |
20040017268 | January 29, 2004 | Rogers |
20040023674 | February 5, 2004 | Miller et al. |
20040047324 | March 11, 2004 | Diener |
20040072546 | April 15, 2004 | Sugar et al. |
20040121753 | June 24, 2004 | Sugar et al. |
20040136466 | July 15, 2004 | Tesfai et al. |
20040142696 | July 22, 2004 | Saunders et al. |
20040203474 | October 14, 2004 | Miller et al. |
20050070294 | March 31, 2005 | Lyle et al. |
20050119006 | June 2, 2005 | Cave et al. |
20050192011 | September 1, 2005 | Hong et al. |
20050213580 | September 29, 2005 | Mayer et al. |
20050213763 | September 29, 2005 | Owen et al. |
20050270218 | December 8, 2005 | Chiodini |
20060075467 | April 6, 2006 | Sanda et al. |
20060211395 | September 21, 2006 | Waltho |
20060220944 | October 5, 2006 | Ikeda |
20060234716 | October 19, 2006 | Vesterinen et al. |
20060246836 | November 2, 2006 | Simon |
20070008875 | January 11, 2007 | Gerhardt et al. |
20070019603 | January 25, 2007 | Gerhardt et al. |
20070046467 | March 1, 2007 | Chakraborty et al. |
20070053410 | March 8, 2007 | Mahonen et al. |
20070076745 | April 5, 2007 | Manjeshwar et al. |
20070091998 | April 26, 2007 | Woo et al. |
20070100922 | May 3, 2007 | Ashish |
20070165664 | July 19, 2007 | Gerhardt et al. |
20070165695 | July 19, 2007 | Gerhardt et al. |
20070183338 | August 9, 2007 | Singh et al. |
20070253394 | November 1, 2007 | Horiguchi et al. |
20080010040 | January 10, 2008 | McGehee |
20080014880 | January 17, 2008 | Hyon et al. |
20080031143 | February 7, 2008 | Ostrosky |
20080069079 | March 20, 2008 | Jacobs |
20080228446 | September 18, 2008 | Baraniuk et al. |
20080261537 | October 23, 2008 | Chen |
20080267259 | October 30, 2008 | Budampati et al. |
20080284648 | November 20, 2008 | Takada et al. |
20090074033 | March 19, 2009 | Kattwinkel |
20090161610 | June 25, 2009 | Kang et al. |
20090190508 | July 30, 2009 | Kattwinkel |
20090252178 | October 8, 2009 | Huttunen et al. |
20100008312 | January 14, 2010 | Viswanath |
20100220618 | September 2, 2010 | Kwon et al. |
20100296078 | November 25, 2010 | Forrer et al. |
20110051645 | March 3, 2011 | Hong et al. |
0769884 | April 1997 | EP |
0924879 | June 1999 | EP |
1220499 | March 2002 | EP |
2260879 | April 1993 | GB |
09307942 | November 1997 | JP |
92/08324 | May 1992 | WO |
WO 2004/054280 | June 2004 | WO |
WO 2006-101489 | September 2006 | WO |
WO 2007-034461 | March 2007 | WO |
WO 2007/058490 | May 2007 | WO |
WO 2007/094804 | August 2007 | WO |
WO 2007/098819 | August 2007 | WO |
WO 2007/108963 | September 2007 | WO |
WO 2007/108966 | September 2007 | WO |
WO 2007/109169 | September 2007 | WO |
WO 2007/109170 | September 2007 | WO |
- Ditri “Dynamic spectrum access moves to the forefront” (2008).
- McHenry “XG DSA Radio System” 2008, pp. 1-10.
- Perich “Experimental Field Test Results on Feasibility of Declarative Spectrum Management” 3rd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (2008).
- Tenhula “Update on XG and Follow-on Programs: Cognitive Radio for Tactical and Public Safety Communications” (2008).
- Tenhula “Spectrum Access Control for Public Safety Cognitive Radio Systems” (2008).
- Erpek “Location-based Propagation Modeling for Opportunistic Spectrum Access in Wireless Networks” (2007).
- Perich “Policy-Based Network Management for NeXt Generation Spectrum Access Control” 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (2007).
- Seelig “A Description of the Aug. 2006 XG Demonstrations at Fort A.P. Hill 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks” (2007).
- SSC Products 2009.
- SSC Press Release “Shared Spectrum Company to Demonstrate XG Radio Technology at IEEE Dyspan Conference” (2007).
- SSC “Shared Spectrum Company to Introduce Dynamic Spectrum Access Technology at WIMAX Conference” (2007).
- SSC “Thales Communications and Shared Spectrum Company Team to Add Dynamic Spectrum Access Technology to Military Radios” (2007).
- Steadman “Dynamic Spectrum Sharing Detectors” 2nd IEEE International Symposium in New Frontiers in Dynamic Spectrum Access Networks (2007).
- Zeng “Maximum-Minimum Eigenvalue Detection for Cognitive Radio” Personal Indoor and Mobile Radio Communications EEE 18th International Symposium on pp. 1-5, 2007.
- Adaptive Spectrum Technology: Findings From the DARPA XG Project (2007).
- McHenry “XG dynamic spectrum access field test results [Topics in Radio Communications” Communications Magazine IEEE vol. 45: 6 (2007).
- McHenry “Creation of a Spectrum Sharing Innovation Test-Bed and The President's Spectrum Policy Initiative Spectrum Sharing Innovation Test-Bed” (2006).
- SSC “Shared Spectrum Company Successfully Demonstrates neXt Generation (XG) Wireless Communications System” (2006).
- Tenhula “Shared Spectrum Company Successfully Demonstrates Next Generation (XG) Wireless System” (2006).
- Anticipated XG VIP Demo Invitees (2006).
- Tenhula, Dynamic Spectrum Sharing Bid Lease & MVNO/MVNE: Spectrum Options For Operators (2006).
- Tenhula, Secondary Markets & Spectrum Leasing UTC Telecom 2006 Tampa FL, May 23, 2006.
- XG Dynamic Spectrum Experiments Findings and Plans Panel (2006).
- Zheng “Device-centric spectrum management New Frontiers in Dynamic Spectrum Access Networks” (2005) “DySPAN 2005” 2005 First IEEE International Symposium on pp. 56-65, (2005).
- Ackland “High Performance Cognitive Radio Platform with Integrated Physical and Network Layer Capabilities” Network Centric Cognitive Radio (2005).
- Leu “Ultra sensitive TV detector measurements” New Frontiers in Dynamic Spectrum Access Networks (2005).
- McHenry “The probe spectrum access method” New Frontiers in Dynamic Spectrum Access Networks (2005), “DySPAN 2005” First IEEE International Symposium on 2005, pp. 346-351 (2005).
- Next Generation (XG) Architecture and Protocol Development (XAP) (2005).
- Steenstrup “Channel Selection among Frequency-Agile Nodes in Multihop Wireless Networks” (2005).
- Zhao “Distributed coordination in dynamic spectrum allocation networks” New Frontiers in Dynamic Spectrum Access Networks (2005). “DySPAN 2005” First IEEE International Symposium, pp. 259-268 (2005).
- Dynamic Spectrum Sharing Presentation 2005.
- Supplementary European Search Report in the European Application No. 01 94 5944 dated Apr. 24, 2009.
- PCT Office Communication in the PCT application No. PCT/US2008/073193 dated Jun. 2, 2009.
- Cabric et al. “Implementation issues in spectrum sensing for cognitive radios” Signals Systems and Computers, 2004. Conference record of the 38th Asilomar Conference on Pacific Grove, CA, USA, Nov. 7-10, 2004, NJ, USA, vol. 1, pp. 772-776, sections I-IV, Nov. 7, 2004.
- Ning Han et al., “Spectral correlation based on signal detection method for spectrum sensing in IEEE 802.22 WRAN systems” Advanced Communication Technology, 2006. ICACT 2006. The 8th International Conference, vol. 3, Feb. 20-22, 2006, NJ, USA, pp. 1765-1770.
- Falconer, D. et al., “Frequency Domain Equalization for Single-Carrier Broadband Wireless Systems”, IEEE Communications Magazine (Apr. 2002).
- Rohde, U. L. et al., “Rf/Microwave Circuit Design for Wireless Applications”, published by Wiley-Interscience (Mar. 2000).
- The International Search Report, mailed Mar. 25, 2005, in related International Application No. PCT/US04/17883, filed Jun. 9, 2004.
- The International Search Report mailed Oct. 6, 2008, issued in corresponding International Application No. PCT/US07/22356, filed Oct. 19, 2007.
- The International Search Report mailed Feb. 8, 2002, issued in corresponding International Application No. PCT/US01/14853.
- The International Search Report mailed Mar. 18, 2008, issued in corresponding International Application No. PCT/US07/11414.
- The International Search Report mailed Sep. 28, 2009, issued in corresponding International Application No. PCT/US08/073194.
- The International Search Report mailed Feb. 14, 2008, issued in corresponding International Application No. PCT/US07/21940.
- Zhou et al, “Detection timing and channel selection for periodic spectrum sensing in cognitive radio”, 2008 IEEE, p. 1-5.
- European Search Report, EP Application No. 11187976.3, mailed Mar. 28, 2013.
- Qiu et al.,“Dynamic Resource Allocation with Interference Avoidance for Fixed Wireless Systems”, AT&T Laboratories—Research, New Jersey, 1998.
- European Search Report, EP app No. 11187974.8, mailed May 11, 2012.
Type: Grant
Filed: Apr 19, 2011
Date of Patent: Sep 10, 2013
Assignee: Shared Spectrum Company (Vienna, VA)
Inventor: Mark Allen McHenry (McLean, VA)
Primary Examiner: Minh D Dao
Application Number: 13/089,492
International Classification: H04W 72/00 (20090101);