Hemodialysis and vascular access system
A hemodialysis and vascular access system comprises a subcutaneous composite PTFE silastic arteriovenous fistula having an indwelling silastic venous end which is inserted percutaneously into a vein and a PTFE arterial end which is anastomosed to an artery. Access to a blood stream within the system is gained by direct puncture of needle(s) into a needle receiving site having a tubular passage within a metal or plastic frame and a silicone upper surface through which needle(s) are inserted. In an alternate embodiment of the invention, percutaneous access to a blood stream may be gained by placing needles directly into the system (i.e. into the PTFE arterial end). The invention also proposes an additional embodiment having an arterialized indwelling venous catheter where blood flows from an artery through a tube and a port into an arterial reservoir and is returned to a vein via a port and a venous outlet tube distinct and distant from the area where the blood from the artery enters the arterial reservoir. The site where blood is returned to the vein is not directly fixed to the venous wall but is free floating within the vein. This system provides a hemodialysis and venous access graft which has superior longevity and performance, is easier to implant and is much more user friendly.
Latest Hemosphere, Inc. Patents:
This application is a CONTINUATION REISSUE APPLICATION of U.S. application Ser. No. 10/219,998 now U.S. Pat. No. Re. 41,448, which is a REISSUE APPLICATIONS of U.S. Pat. No. 6,102,884, which issued on Aug. 15, 2000, and which claims benefit under 35 U.S.C. Section 119(e) to U.S. Application No. 60/037,094, filed on Feb. 3, 1997, all of which are incorporated herein by reference in their entirety.
Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,102,884. The reissue applications include this application, U.S. application Ser. No. 11/417,658, and U.S. application Ser. No. 10/219,998. This application is a CONTINUATION REISSUE APPLICATON of Ser. No. 10/219,998, which is a REISSUE APPLICATION of U.S. Pat. No. 6,102,884.
BACKGROUND OF THE INVENTIONCurrently, HD (hemodialysis) and vascular access for chemotherapy and plasmapheresis is achieved in one of several ways. Applicant's invention involves a new method and instrumentation for HD and vascular access designed to eliminate the problems of the prior methods and create a new, more durable, easier to use, vascular access system.
One prior art method involves a primary arteriovenous fistula. In this method, a native artery is sewn to a native vein creating a high flow system of blood in a vein which over time can be accessed with two hemodialysis needles attached to a dialysis machine. The problem with this method is that few patients are candidates secondary to anatomy and in others the veins or shunt fail to enlarge and mature properly even if the primary fistula remains patent. These arteriovenous fistulas also become aneursymol over time requiring revision.
Another method involves a subcutaneous prosthetic conduit (PTFE) in the shape of a tube which is sewn at either end to openings made in an artery and vein. This method causes recurrent stenosis at the venous outflow leading to thrombosis (i.e., graft closure) secondary to intimal hyperplasia at venous anastomosis. Thrombosis also occurs at needle puncture sites along the PTFE.
Another method involves a “tunneled” percutaneous dual lumen catheter which is inserted into a central vein. This causes recurrent thrombosis secondary to stasis of blood in the lumen (i.e., not a continuous flow system like an A-V fistula) and build up of fibrinous debris at the venous end. Further, the access end of the catheter protrudes through the skin making it cosmetically unappealing, cumbersome to live with, as well as more likely to become infected.
A further method involves the use of the Sorenson Catheter. This is a percutaneous (not tunneled) dual lumen catheter, placed into the central venous system, which is used to provide temporary access for the purposes of hemodialysis. These catheters are prone to kinking, clotting, infection, and poor flow rates.
A still further method of vascular access involves the “Porta-a-cath”. This system of venous access, which utilizes a subcutaneous reservoir attached to a central venous catheter, is used for long term intervenous access for chemotherapy etc. (It is not intended for HD.) The ports are prone to clotting and must be continually flushed since they are a stagnant system.
Applicant's invention involves a vascular access system, known as the Squitieri Hemodialysis and Vascular Access System, which creates a continuous blood flow and which is easily accessed and resistant to clotting. These advantages provide ideal access for long term HD, chemo or blood draws. An example, would be patients who are on coumadin which require weekly blood draws. This new system becomes less painful over time as the skin over the “needle access” site become less sensitive. The veins are spared repeated blood draws which results in vein thrombosis to such a degree that some patients “have no veins left” making routine blood draws impossible.
Among the more relevant prior art patents are U.S. Pat. Nos. 4,898,669; 4,822,341; 5,041,098; and, 4,790,826. None of the foregoing patents disclose a system having the features of this inventions
SUMMARY OF THE INVENTIONA hemodialysis and vascular access system comprises a PTFE end which is sutured to an opening in an artery at one end and the other end is placed into a vein using any technique which avoids the need for an anastomosis between the silicone “venous” end of the catheter and the vein wall. The system comprises any material, synthetic or natural (i.e. vein) which can be sutured to the artery (i.e. preferably PTFE) at one end while the other end is composed of a material which is suitable for placement into a vein in such a way that the openings in the “venous” end of the system are away from the site where the graft enters the vein. The system may also be constructed of multiple layers of materials i.e. PTFE on the inside with silastic on the outside. The “Needle Receiving Site” may also be covered with PTFE to encourage self sealing and tissue ingrowth.
A preferred embodiment comprises a combination of PTFE conduit sewn to an artery on one end of the system with the other end connected to a silastic-plastic catheter which can be percutaneously inserted into a vein via an introducer. The venous end may also be placed via open cut down. The seal around the system where it enters the vein may be “self sealing” when placed in percutaneous technique; it may be achieved with a purse string when done by open technique “cut down”; or, it may be sewn to the vein to create a seal with a “cuff” while the system continues downstream within the venous system to return the arterial blood away from the site of entry into the vein. The entire system can be positioned subcutaneously at the completion of insertion. This design is a significant improvement over existing methods because it avoids the most frequent complication of current HD access methods. By utilizing an indwelling venous end, one avoids creating a sewn anastomosis on a vein which is prone to stenosis secondary to neointimal hyperplasia. By having continuous flow through the silastic end of the catheter, thrombosis of these catheters can be avoided. Dialysis is made more efficient by decreasing recirculation of blood which accompanies the use of side by side dual lumen catheters inserted into a central vein. This invention not only benefits the patient but it also speeds dialysis thus saving time and money.
To summarize, the Squitieri Access System comprises a tube composed of PTFE and a silastic catheter. This tube is used to create an arteriovenous fistula. The PTFE end (arterial end) of the tube is sewn to an artery while the silastic catheter end is placed into the venous system by the Seldinger technique much like a standard central line. The entire system is subcutaneous at the completion of insertion. This system is a composite of the arterial end of a “gortex graft” joined to the venous end of a “permacath”. This system enjoys strengths of each type of access and at the same time avoids their weaknesses.
Accordingly, an object of this invention is to provide a new and improved vascular access system.
Another object of this invention is to provide a new and improved hemodialysis and vascular access system including an easily replaceable needle receiving site which has superior longevity and performance, is more easily implanted, more easily replaced, and is “user friendly” i.e. easily and safely accessed by a nurse or patient which is ideal for home hemodialysis.
A more specific object of this invention is to provide a new and improved Squitieri hemodialysis and vascular access system including a subcutaneous composite PTFE/Silastic arteriovenous fistula.
A further object of this invention is to provide a new and improved hemodialysis and vascular access system including a fistula utilizing an indwelling silastic end which is inserted percutaneously into the venous system and a PTFE arterial end which is anastomosed to an artery and including a unique needle receiving sites which are positioned anywhere between the ends and which have superior longevity and performance.
A further object of this invention is to provide a system constructed to preserve laminar flow within the system and at the venous outflow end to reduce turbulence and shear force in the vascular system to the degree possible.
A still further object of this invention is to provide a system wherein the arterial end (PTFE) may also be placed by percutaneous technique including one where blood entry holes are distant from the site where blood enters the veins.
The above and other objects of this invention may be more clearly seen when viewed in conjunction with the accompanying drawings wherein:
Referring to the drawings the Squitieri hemodialysis and vascular system, as shown in
The access site 20 includes an in line aperture 16, see
Along the length of the catheter specially constructed access segments 20 are located to receive specially designed needles 15 into the system to gain access to the blood stream which flows through aperture 16. This method avoids perigraft bleeding which leads to thrombosis either by compression of the graft by hematoma or by manual pressure applied to the graft in an attempt to control the bleeding.
The needle access areas 20 which are designed to receive needles 15 etc. to allow access to the system are in line conduits with self-sealing material 17 such as silicone located beneath the skin surface. The silicone member 25 comprises an oval configuration exposed within the frame 26 for ease of puncture. The system may be accessed immediately after insertion without having to wait for the graft to incorporate into the tissues as is the case with the current methods of subcutaneous fistulas. These access areas 20 will protect the graft since they are uniformly and easily utilized requiring little training or experience. The “needle receiving” sites 20 are designed in such a way to preserve laminar flow as far as possible (i.e. not a reservoir arrangement). Needle receiver sites 20 may be connected to a system via “quick couple” 45 for easy exchangability, see
The free end 19 of the PTFE tube 10 is sewn to an opening in an artery 30, see
In this invention, the materials used may vary as specified herein. The system may be constructed of one or more specific materials. The arteries and veins used may also vary. Material may also be covered with thrombus resistant coatings (heparin, etc.) or biologic tissue. The system may in specific cases be “ringed” for support.
The same concept of using an arterialized venous access catheter may be applied to the use of long term indwelling catheters used to give chemotherapy etc., making the current ports obsolete as these new access systems will have a decreased thrombosis rate and they will no longer need to be flushed as continuous blood flow through the system makes thrombus formation unlikely. This will definitely cut down on costs since it will decrease nursing requirements in out patient settings, etc.
In alternate embodiments shown in
The upper member 86 includes an oval silicone access site 90 with an outer housing 91 which includes an aperture 92 surrounds the silicone oval 90. This embodiment provides a quick assembly for a needle access site 71.
The Squitieri Hemodialysis/Vascular Access System avoids creation of a venous anastomosis, a revolutionary advancement, i.e. there is no site for neointimal hyperplasia at a venous anastomosis which accounts for the vast majority of PTFE arteriovenous graft failures (60-80%). This is accomplished by returning the blood into a larger vein via an indwelling venous catheter 42. The site of blood return to the venous system is not fixed to the vein wall where neointimal hyperplasia occurs with the standard PTFE bridge graft. This feature represents a tremendous advantage over the present grafts.
As a further advantage, the system is not stagnant and prone to thrombosis, i.e. constant flow through the new system avoids the problem of clotting inherent in indwelling dual lumen venous catheters which remain stagnant when not in use. It also avoids need to flush catheters with heplock thereby reducing nursing costs to maintain the catheter.
The Squitieri system avoids externalization of components which are prone to infection. Since dual lumen catheters exit the skin 14, they frequently lead to sepsis requiring catheter removal despite subcutaneous tunneling. This new access is entirely subcutaneous.
Very importantly the system proposed herein, avoids problems with the aspiration of blood from the venous system and “positional” placement through continuous flow. A frequent problem with dual lumen catheters is their inability to draw blood from the venous system due to clot and fibrinous debris ball-valving at the tip of a catheter. This new system receives blood directly from arterial inflow which ensures high flow rates needed for shorter, more efficient dialysis runs. It also avoids the frequent problem of the catheter tip “sucking” on the vein wall inhibiting flow to the dialysis machine and rendering the access ineffective.
The system avoids recirculation seen with dual lumen catheters resulting in more efficient and more cost effective dialysis.
The system avoids the need for temporary access with incorporation of “Needle Access Sites” 20. A-V fistulas and gortex grafts must “mature” for several weeks before use. This creates a huge strain on the patient as well as the doctor to achieve temporary access while waiting to use the permanent access. Temporary access is very prone to infection, malfunction and vein destruction. By placing sites 20 designed to receive needles 15 along the new access, the system may be used the day it is inserted.
The system avoids PTFE needle site damage with the incorporation of “Needle Access Sites” 20. Needle access directly into PTFE is presently uncontrolled and user dependent. Often, PTFE is lacerated by access needles. While this system may be accessed via the PTFE segment, the needle receiving sites are the preferred method. This leads to excessive bleeding which requires excessive pressure to halt the bleeding causing thrombosis of the graft. “Needle Access Sites” 20 on the Squitieri access system allow safe, quick, and easy entry into the system and avoid the complications inherent in placing needles directly into PTFE. It also avoids perigraft bleeding which will compress and thrombose the graft. By eliminating the long time needed to compress bleeding at the needle site, the system shortens dialysis runs.
The Squitieri system permits an easier, faster insertion technique. Only one anastomosis at the arterial end and a percutaneous placement of the venous end is required. A modification allows the system to be sutured to the vein wall while the system tubing is floated down stream from this site where the system enters the vein 40. This saves operating room time at thousands of dollars per hour. The technique is easier with faster replacement. It avoids difficult and time consuming revision of venous anastomosis required to repair venous outflow occluded by neointimal hyperplasia. If the system malfunctions, the silastic catheter end 65 slips out easily and the arterial PTFE end 53 is thrombectomized. New access sewn to the thrombectomized PTFE at the arterial end and the silastic venous end is replaced percutaneously via Seldinger technique or “open technique”.
The end result of the above advantages translates into superior patency rates and a decreased complication rate with this new system. Patients are spared the repeated painful hospitalizations for failed access as well as the emotional trauma associated with this difficult condition. The physicians are spared the dilemma of how to best treat these patients. This system will have a large impact on the current practice of vascular access in areas such as hemodialysis; plasmapheresis; chemotherapy; hyperalimentation; and chronic blood draws.
While the invention has been explained by a detailed description of certain specific embodiments, it is understood that various modifications and substitutions can be made in any of them within the scope of the appended claims which are intended also to include equivalents of such embodiments.
Claims
1. A Squitieri hemodialysis and vascular access system to shunt blood between a vein and an artery the system comprising:
- (a) a first tube having a first end adapted to be connected to the artery and a second end;
- (b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end; and
- (c) a needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path, wherein the needle access port includes: an outer frame member having an upper surface including an aperture extending therethrough and downwardly extending walls about its periphery having inlet and outlet apertures, wherein the upper surface includes a lower portion having a plurality of teeth; a silicone member mounted within the frame having a surface engaged by the frame teeth and an upwardly protruding portion extending through the frame aperture; and a second frame member having a transverse conduit extending between the inlet and outlet apertures, an upper surface having a plurality of teeth engaging the silicone member to effect a seal and wherein the second frame member is positioned within the walls of the first frame member.
2. The Squitieri hemodialysis and vascular access system of claim 1, wherein:
- the first tube corresponds to PTFE tubing;
- the second tube corresponds to silicone tubing; and
- the protruding silicone member has an oval configuration.
3. The Squitieri hemodialysis and vascular access system of claim 1, wherein the first tube includes rings mounted thereabout to provide additional strength.
4. The Squitieri hemodialysis and vascular access system of claim 1 further comprising:
- a second needle access port having an inlet and an outlet and silastic tubing coupling the inlet of the second needle access port to the outlet of the other needle access port and wherein the outlet of the second access port is coupled to the second end of the second tube.
5. The Squitieri hemodialysis and vascular access system of claim 1 wherein:
- the first tube is provided as PTFE tubing which is adapted for attachment to the artery at one end and coupled to the access port at the other end; and
- the second tube is provided as silicone tubing which is coupled to the needle access port at one end and is capable of being floated within the vein at the other end.
6. The Squitieri hemodialysis and vascular access system of claim 1, wherein:
- the first tube is inserted within an outer silicone tubing at the inlet to the needle access port.
7. The Squitieri hemodialysis and vascular access system of claim 1, further including:
- an adjustable band mounted about the first tube at the inlet to the needle access port to regulate blood flow.
8. The Squitieri hemodialysis and vascular access system of claim 4, wherein:
- a second needle access port is mounted to the needle access port, said ports having a single frame and a conduit extending longitudinally therethrough to the outlet tubing.
9. A Squitieri hemodialysis and vascular access system to shunt blood between a vein and an artery, the system including:
- (a) a first tube having a first end adapted to be connected to the artery;
- (b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end;
- (c) a needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path; and
- a quick coupler for joining the first tube to the needle access port comprising a port member projecting outwardly from the frame inlet and having a circumferential slot extending thereabout, a cooperating member having an outer portion extending concentrically with the first tube and a portion extending outwardly therefrom and an outwardly sloped portion extending over the projecting port member and having an inner circumferential projection which engages the circumferential slot, and wherein the first tube extends over the port member to be engaged by the projecting portion of the cooperating member within the slot and a removable coupling which snaps over the cooperating member forcing it into a sealed engagement with the port member.
10. A Squitieri hemodialysis and vascular access system to shunt blood between a vein and an artery, the system including:
- (a) a first tube having a first end adapted to be connected to the artery;
- (b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end; and
- (c) a needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path, wherein the needle access port comprises: a first member having a base, walls extending upwardly therefrom to form an enclosed area, and outwardly extending couplings on opposite walls thereof at the inlet and outlet of said port; a second member having a top including an upper aperture, downwardly extending side walls engaging the walls of the first member and having a conduit extending from the inlet to the outlet and a silicone member projecting form the upper aperture to provide needle access; and a tube mounted over each coupling and a coupler which fits over each tube to seal the tubes to the couplings.
11. The Squitieri hemodialysis and vascular access system of claim 1, wherein:
- the second tube is capable of being floated within a vein at the one end and the plurality of apertures in the second tube are distant from the site where the second tube is inserted into the vein, said second tube not being fixed to the vein wall.
12. A hemodialysis and vascular access system comprising:
- an arterialized indwelling venous catheter having a graft section provided from a material which is biocompatible with an artery, has a nonthrombogenic characteristic, which is adapted for long term attachment to an artery and which includes a region for repeated needle access and a catheter section, with a first end of said graft section adapted to be coupled to an artery and a portion of the catheter section adapted to be inserted within a vein at an insertion site, said catheter section portion having at least one opening in an end thereof with at least one of the at least one openings in the catheter section portion adapted to be within the vein itself and wherein the at least one opening is distant from the insertion site such that blood flows from the artery through the catheter and is returned to the vein through the at least one opening while providing laminar blood flow between the artery and the vein.
13. The hemodialysis and vascular access system of claim 12, further comprising:
- at least one needle having a first end coupled to a hemodialysis device and having a second end adapted for insertion directly into said graft section of the catheter to shunt the blood flow through the dialysis device.
14. The hemodialysis and vascular access system of claim 13 wherein said graft section is provided from a first tube and said catheter section is provided from a second tube comprising multiple layers and a first end of said first tube is coupled to a first end of said second tube.
15. The hemodialysis and vascular access system of claim 14 wherein said first and second tubes are adapted for percutaneously placement.
16. The hemodialysis and vascular access system of claim 14 wherein the end of said second tube which is coupled to the first tube includes an enlarged portion in which the first end of said first tube is disposed.
17. A method for providing hemodialysis and vascular access, comprising:
- providing an indwelling venous catheter, having: a graft section provided from a material which is biocompatible with an artery, has a nonthrombogenic characteristic, which is configured for long term attachment to an artery and which includes a first end of said graft section configured to be coupled to an artery and a region for repeated needle access; and a catheter section, with a portion of the catheter section configured to be inserted within a vein at an insertion site, said catheter section portion having at least one opening in an end thereof with at least one of the at least one openings in the catheter section portion configured to be within the vein itself;
- arterializing the indwelling venous catheter by attaching the graft section to an artery to form an arterialized indwelling venous catheter;
- implanting the region for repeated needle access so that it is entirely subcutaneous;
- inserting the catheter section into a vein through a side wall of the vein at the insertion site, such that the at least one opening is distant from the insertion site such that blood flows from the artery through the catheter section and is returned to the vein through the at least one opening while providing laminar blood flow between the artery and the vein; and
- providing continuous fluid flow between the graft section and the catheter section at least when the region for repeated needle access is not being accessed.
18. The method for providing vascular access as in claim 17, wherein the catheter and graft sections are separable components at least prior to the step of providing continuous fluid flow.
19. The method for providing vascular access as in claim 18, further comprising connecting the catheter section and the graft section using a connector.
20. The method for providing vascular access as in claim 19, wherein the connector is a quick-couple connector.
21. The method for providing vascular access as in claim 17, wherein the at least one opening is free floating within the vein.
22. The method for providing vascular access as in claim 17, further comprising percutaneously accessing the vein.
23. The method for providing vascular access as in claim 22, wherein percutaneously accessing the vein comprises accessing the vein by Seldinger technique.
24. The method for providing vascular access as in claim 17, further comprising accessing the vein using an open cut down procedure.
25. The method for providing vascular access as in claim 24, further comprising placing a purse string suture about the insertion site of the vein.
26. The method for providing vascular access as in claim 17, further comprising floating said catheter section portion downstream from the insertion site of the vein.
27. The method for providing vascular access as in claim 17, wherein the vein is a neck vein.
28. The method for providing vascular access as in claim 27, wherein inserting the catheter section into the vein comprises inserting the catheter section into the neck vein and advancing the catheter section toward the right atrium.
29. The method for providing vascular access as in claim 17, further comprising subcutaneously tunneling an implantation site for at least a portion of the indwelling venous catheter.
30. The method for providing vascular access as in claim 17, wherein the catheter section is inserted into the vein before the graft section is arterialized to the artery.
31. The method for providing vascular access as in claim 30, further comprising attaching a free end of the graft section to a wall of the artery while the end of the catheter section having been inserted in the vein in such a way that the at least one opening in the end thereof is downstream of the site where the catheter section enters the vein.
32. The method for providing vascular access as in claim 17, wherein the catheter section is not fixed to the vein wall.
33. The method for providing vascular access as in claim 17, wherein the method avoids creating a venous anastomosis.
34. The method for providing vascular access as in claim 17, wherein the catheter section comprises a long, flexible plastic tube.
35. The method for providing vascular access as in claim 34, wherein the end is beveled.
36. The method for providing vascular access as in claim 17, comprising implanting a vascular access system comprising the catheter section and the graft section and implanting the system so that is entirely subcutaneous.
37. The method for providing vascular access as in claim 17, wherein the region for repeated needle access comprises needles receiving site(s) and comprises an internal chamber that is tubular in shape.
38. The method for providing vascular access as in claim 17, wherein the region for repeated needle access comprises self sealing material.
39. The method for providing vascular access as in claim 17, wherein the graft section comprises a PTFE section.
40. The method for providing vascular access as in claim 17, wherein the catheter section comprises a silicone section.
41. The method for providing vascular access as in claim 40, wherein the silicone section is lined with PTFE.
42. The method for providing vascular access as in claim 17, wherein the region for repeated needle access comprises multiple layers.
43. The method for providing vascular access as in claim 42, wherein the multiple layers comprise PTFE on the inside and silicone on the outside.
44. The method for providing vascular access as in claim 42, wherein the multiple layers comprise PTFE on the inside and silicone disposed outside of the PTFE.
45. The method for providing vascular access as in claim 17, wherein the material providing the graft section comprises a thrombus resistant coating.
46. The method for providing vascular access as in claim 45, wherein the thrombus resistant coating comprises heparin.
47. The method for providing vascular access as in claim 17, wherein a nonthrombenic characteristic is provided by continuous flow of blood through at least the graft section.
48. The method for providing vascular access as in claim 17, wherein the vein is a jugular vein.
49. The method for providing vascular access as in claim 17, wherein arterializing further comprises attaching the graft section to a side wall of an artery such that blood can flow from the artery into the graft and can flow in the artery downstream of the point of connection to the artery.
50. A hemodialysis and vascular access system to shunt blood between a vein and an artery, the system comprising:
- (a) a first tube having a first end adapted to be connected to the artery and a second end;
- (b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end; and
- (c) a needle access port configured to be subcutaneously implantable, the needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path, wherein the needle access port includes: an outer frame member having an upper surface including an aperture extending therethrough and downwardly extending walls about its periphery having inlet and outlet apertures, wherein the upper surface includes a lower portion having a plurality of teeth; a silicone member mounted within the frame having a surface engaged by the frame teeth and an upwardly protruding portion extending through the frame aperture; and a second frame member having a transverse conduit extending between the inlet and outlet apertures, an upper surface having a plurality of teeth engaging the silicone member to effect a seal and wherein the second frame member is positioned within the walls of the first frame member.
51. The hemodialysis and vascular access system of claim 50, wherein:
- the first tube corresponds to PTFE tubing;
- the second tube corresponds to silicone tubing; and
- the protruding silicone member has an oval configuration.
52. The hemodialysis and vascular access system of claim 50, wherein the first tube includes rings mounted thereabout to provide additional strength.
53. The hemodialysis and vascular access system of claim 50, further comprising:
- a second needle access port having an inlet and an outlet and silastic tubing coupling the inlet of the second needle access port to the outlet of the other needle access port and wherein the outlet of the second access port is coupled to the second end of the second tube.
54. The hemodialysis and vascular access system of claim 50, wherein:
- the first tube is provided as PTFE tubing which is adapted for attachment to the artery at one end and coupled to the access port at the other end; and
- the second tube is provided as silicone tubing which is coupled to the needle access port at one end and is capable of being floated within the vein at the other end.
55. The hemodialysis and vascular access system of claim 50, wherein:
- the first tube is inserted within an outer silicone tubing at the inlet to the needle access port.
56. The hemodialysis and vascular access system of claim 50, further including:
- an adjustable band mounted about the first tube at the inlet to the needle access port to regulate blood flow.
57. The hemodialysis and vascular access system of claim 53, wherein:
- a second needle access port is mounted to the needle access port, said ports having a single frame and a conduit extending longitudinally therethrough to the outlet tubing.
58. A hemodialysis and vascular access system to shunt blood between a vein and an artery, the system including:
- (a) a first tube having a first end adapted to be connected to the artery;
- (b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end;
- (c) a needle access port configured to provide a subcutaneous connection between the first tube and the second tube, the needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path; and
- a quick coupler for joining the first tube to the needle access port comprising a port member projecting outwardly from the frame inlet and having a circumferential slot extending thereabout, a cooperating member having an outer portion extending concentrically with the first tube and a portion extending outwardly therefrom and an outwardly sloped portion extending over the projecting port member and having an inner circumferential projection which engages the circumferential slot, and wherein the first tube extends over the port member to be engaged by the projecting portion of the cooperating member within the slot and a removable coupling which snaps over the cooperating member forcing it into a sealed engagement with the port member.
59. A hemodialysis and vascular access system to shunt blood between a vein and an artery, the system including:
- (a) a first tube having a first end adapted to be connected to the artery;
- (b) a second tube having a first end adapted to be connected to the vein and including a plurality of apertures extending therethrough and having a second end; and
- (c) a needle access port configured to be subcutaneously implantable, the needle access port having a frame including a conduit extending therethrough, said frame having an inlet connected to the second end of the first tube and an outlet connected to the second end of the second tube to provide a flow path for blood and a silicone member protruding from the frame to provide access for needles into the flow path, wherein the needle access port comprises: a first member having a base, walls extending upwardly therefrom to form an enclosed area, and outwardly extending couplings on opposite walls thereof at the inlet and outlet of said port; a second member having a top including an upper aperture, downwardly extending side walls engaging the walls of the first member and having a conduit extending from the inlet to the outlet and a silicone member projecting form the upper aperture to provide needle access; and a tube mounted over each coupling and a coupler which fits over each tube to seal the tubes to the couplings.
60. The hemodialysis and vascular access system of claim 59, wherein:
- the second tube is capable of being floated within a vein at the one end and the plurality of apertures in the second tube are distant from the site where the second tube is inserted into the vein, said second tube not being fixed to the vein wall.
3363926 | January 1968 | Wilson |
3490438 | January 1970 | Stupka et al. |
3683926 | August 1972 | Suzuki |
3814137 | June 1974 | Martinez |
3818511 | June 1974 | Goldberg et al. |
3826257 | July 1974 | Buselmeier |
3882862 | May 1975 | Berend |
3998222 | December 21, 1976 | Shihata |
4076023 | February 28, 1978 | Martinez |
4133312 | January 9, 1979 | Burd |
4184489 | January 22, 1980 | Burd |
4214586 | July 29, 1980 | Mericle |
4318401 | March 9, 1982 | Zimmerman |
4427219 | January 24, 1984 | Madej |
4447237 | May 8, 1984 | Frisch et al. |
4496349 | January 29, 1985 | Cosentino |
4496350 | January 29, 1985 | Cosentino |
4503568 | March 12, 1985 | Madras |
4550447 | November 5, 1985 | Seiler, Jr. |
4619641 | October 28, 1986 | Schanzer |
4655771 | April 7, 1987 | Wallsten |
4734094 | March 29, 1988 | Jacob et al. |
4753236 | June 28, 1988 | Healey |
4771777 | September 20, 1988 | Horzewski et al. |
4772268 | September 20, 1988 | Bates |
4786345 | November 22, 1988 | Wood |
4790826 | December 13, 1988 | Elftman |
4822341 | April 18, 1989 | Colone |
4848343 | July 18, 1989 | Wallsten et al. |
4850999 | July 25, 1989 | Planck |
4856938 | August 15, 1989 | Kuehn |
4877661 | October 31, 1989 | House et al. |
4898669 | February 6, 1990 | Tesio |
4917067 | April 17, 1990 | Yoshida |
4917087 | April 17, 1990 | Walsh et al. |
4919127 | April 24, 1990 | Pell |
4929236 | May 29, 1990 | Sampson |
4955899 | September 11, 1990 | Della Corna et al. |
5026513 | June 25, 1991 | House et al. |
5041098 | August 20, 1991 | Loiterman et al. |
5053023 | October 1, 1991 | Martin |
5061275 | October 29, 1991 | Wallsten et al. |
5061276 | October 29, 1991 | Tu et al. |
5064435 | November 12, 1991 | Porter |
5104402 | April 14, 1992 | Melbin |
5171227 | December 15, 1992 | Twardowski et al. |
5171305 | December 15, 1992 | Schickling et al. |
5192289 | March 9, 1993 | Jessen |
5192310 | March 9, 1993 | Herweck et al. |
5197976 | March 30, 1993 | Herweck et al. |
5330500 | July 19, 1994 | Song |
5399168 | March 21, 1995 | Wadsworth, Jr. et al. |
5405320 | April 11, 1995 | Twardowski et al. |
5405339 | April 11, 1995 | Kohnen et al. |
5454790 | October 3, 1995 | Dubrul |
5476451 | December 19, 1995 | Ensminger et al. |
5496294 | March 5, 1996 | Hergenrother et al. |
5509897 | April 23, 1996 | Twardowski et al. |
5558641 | September 24, 1996 | Glantz et al. |
5562617 | October 8, 1996 | Finch, Jr. et al. |
5562618 | October 8, 1996 | Cai et al. |
5591226 | January 7, 1997 | Trerotola et al. |
5607463 | March 4, 1997 | Schwartz et al. |
5624413 | April 29, 1997 | Markel et al. |
5631748 | May 20, 1997 | Harrington |
5637088 | June 10, 1997 | Wenner et al. |
5637102 | June 10, 1997 | Tolkoff et al. |
5647855 | July 15, 1997 | Trooskin |
5669637 | September 23, 1997 | Chitty et al. |
5669881 | September 23, 1997 | Dunshee |
5674272 | October 7, 1997 | Bush et al. |
5676346 | October 14, 1997 | Leinsing |
5743894 | April 28, 1998 | Swisher |
5755773 | May 26, 1998 | Evans et al. |
5755775 | May 26, 1998 | Trerotola et al. |
5792104 | August 11, 1998 | Speckman et al. |
5797879 | August 25, 1998 | DeCampli |
5800512 | September 1, 1998 | Lentz et al. |
5800514 | September 1, 1998 | Nunez et al. |
5800522 | September 1, 1998 | Campbell et al. |
5810870 | September 22, 1998 | Myers et al. |
5829487 | November 3, 1998 | Thomas et al. |
5830224 | November 3, 1998 | Cohn et al. |
5840240 | November 24, 1998 | Stenoien et al. |
5866217 | February 2, 1999 | Stenoien et al. |
5904967 | May 18, 1999 | Ezaki et al. |
5931829 | August 3, 1999 | Burbank et al. |
5931865 | August 3, 1999 | Silverman et al. |
5957974 | September 28, 1999 | Thompson et al. |
5997562 | December 7, 1999 | Zadno-Azizi |
6001125 | December 14, 1999 | Golds et al. |
6019788 | February 1, 2000 | Butters et al. |
6036724 | March 14, 2000 | Lentz et al. |
6102884 | August 15, 2000 | Squitieri |
6156016 | December 5, 2000 | Maginot |
6167765 | January 2, 2001 | Weitzel |
6261255 | July 17, 2001 | Mullis et al. |
6338724 | January 15, 2002 | Dossa |
6398764 | June 4, 2002 | Finch et al. |
6402767 | June 11, 2002 | Nash et al. |
6428571 | August 6, 2002 | Lentz et al. |
6582409 | June 24, 2003 | Squitieri |
6702781 | March 9, 2004 | Reifart et al. |
6719781 | April 13, 2004 | Kim |
6719783 | April 13, 2004 | Lentz et al. |
6730096 | May 4, 2004 | Basta |
7025741 | April 11, 2006 | Cull |
RE41448 | July 20, 2010 | Squitieri |
20020049403 | April 25, 2002 | Alanis |
20030004559 | January 2, 2003 | Lentz et al. |
20040193242 | September 30, 2004 | Lentz et al. |
20040215337 | October 28, 2004 | Hain et al. |
20050137614 | June 23, 2005 | Porter et al. |
20050203457 | September 15, 2005 | Smego |
20050215938 | September 29, 2005 | Khan et al. |
20060064159 | March 23, 2006 | Porter et al. |
20070123811 | May 31, 2007 | Squitieri |
20070167901 | July 19, 2007 | Herrig et al. |
4418910 | July 1995 | DE |
44 18 910 | December 1995 | DE |
295 15 546 | March 1997 | DE |
57-14358 | January 1982 | JP |
58-168333 | November 1983 | JP |
62-112567 | May 1987 | JP |
04-507050 | December 1992 | JP |
05-212107 | August 1993 | JP |
06-105798 | April 1994 | JP |
09-84871 | March 1997 | JP |
WO 84/03036 | August 1984 | WO |
WO 95/19200 | July 1995 | WO |
WO 96/24399 | August 1996 | WO |
- U.S. Appl. No. 08/835,316 including its prosecution history and U.S. Appl. No. 10/219,998: Prosecution Events: Office Actions: May 9, 2003; Apr. 27, 2004; Oct. 19; 2004; Apr. 9, 2007; Oct. 7, 2008; Mar. 23, 2010; Amendments: Nov. 10, 2003; Aug. 30, 2004; Jan. 31, 2005; May 23, 2005; Sep. 10, 2007; Nov. 3, 2008; Jun. 16, 2009.
- U.S. Appl. No. 10/962,200 and its prosecution history including the Office Actions mailed Feb. 14, 2007, Jun. 11, 2007, Nov. 26, 2007, Nov. 26, 2007, Aug. 12, 2009, Dec. 17, 2009, May 5, 2010 and the Amendments filed Mar. 13, 2007, Jul. 27, 2007, Feb. 26, 2008, Jan. 12, 2010.
- U.S. Appl. No. 11/417,658 and its prosecution history including the Office Action mailed Mar. 21, 2008, the amendment filed Sep. 18, 2008 and the following Prosecution Events: Office Actions: Dec. 17, 2008; Mar. 11, 2009; Jun. 3, 2009; Aug. 10, 2009; Nov. 10, 2009; Amendments: Mar. 17, 2009; Jul. 7, 2009.
- 2007-0167901 prosecution history.
- Alan S. Coulson, M.D., Jagjit Singh, M.D., Joseph C. Moya, “Modification of Venous End of Dialysis Grafts: An Attempt to Reduce Neointimal Hyperplasia,” Dialysis & Transplantation, vol. 29, No. 1, Jan. 2000, pp. 10 to 18.
- A.S. Coulson, M.D., Ph.D, Judy Quarnstrom, I.V.N., J. Moshimia, M.D., “A Combination of the Elephant Trunk Anastomosis Technique and Vascular Clips for Dialysis Grafts,” Surgical Rounds, Nov. 1999, pp. 596 to 608.
- International Search Report for PCT Application No. PCT/US98/01939 dated May 5, 1998 in 3 pages.
- Search Report for EP Application No. 05006233.0 dated Jun. 8, 2005 in 2 pages.
- The Office Action dated Dec. 17, 2008 issued in Co-Pending U.S. Appl. No. 11/417,658 in 11 pages.
- The Amendment dated Mar. 17, 2009 filed in Co-Pending U.S. Appl. No. 11/417,658 in 12 pages.
- Interview Summary dated Mar. 11, 2009 for Co-Pending U.S. Appl. No. 11/417,658 in 4 pages.
- U.S. Appl. No. 10/219,998 including its prosecution history, Prosecution Events: Office Actions: Apr. 9, 2007; Oct. 7, 2008 Amendments: Sep. 10, 2007; Nov. 3, 2008; Jun. 16, 2009.
- L.C. Koo Seen Lin et al., “Contemporary Vascular Access Surgery for Chronic Haemodialysis”, The Royal College of Surgeons of Edinburgh, J.R. Coll. Surg. Edinb., 41, Jun. 1996, 164-169.
- Seshadri Raju, M.D., PTFE Grafts for Hemodialysis Access, “Techniques for Insertion and Management of Complications”, Ann. Surg. vol. 206, No. 5, Nov. 1987, pp. 666-673.
- Anatole Besarab et al., “Measuring the Adequacy of Hemodialysis Access”, Current Opinion in Nephrology and Hypertension, Rapid Science Publishers ISSN 1062-4821, 1996, 5:527-531.
- Melhem J.A. Sharafuddin, MD et al., Dialysis Access Intervention, “Percutaneous Balloon-assisted Aspiration Thrombectomy of Clotted Hemodialysis Access Grafts”, Journal of Vascular and Interventional Radiology, vol. 7, No. 2, Mar.-Apr. 1996, pp. 177-183.
- David A. Kumpe et al., “Angioplasty/Thrombolytic Treatment of Failing and Failed Hemodialysis Access Sites: Comparison with Surgical Treatment”, Progress in Cardiovascular Diseases, vol. XXXIV, No. 4 (Jan./Feb.), 1992: pp. 263-278.
- Robert Y. Kanterman, MD et al., Intervention Radiology, “Dialysis Access Grafts: Anatomic Location of Venous Stenosis and Results of Angioplasty”, Radiology Apr. 1995, vol. 195, No. 1, 195:135-139.
- Clinical Review of MTI, Onyx® Liquid Embolization System, available at http://www.fda.gov/ohrms/dockets/ ac/03/briefing/3975b1-02-clinical-review.pdf , accessed Aug. 29, 2005.
Type: Grant
Filed: Jan 15, 2010
Date of Patent: Dec 10, 2013
Assignee: Hemosphere, Inc. (Eden Prairie, MN)
Inventor: Rafael P. Squitieri (Wilton, CT)
Primary Examiner: Leslie Deak
Application Number: 12/688,716
International Classification: A61B 19/00 (20060101); A61M 25/00 (20060101); A61M 31/00 (20060101);