Component Of Blood Removed (i.e., Pheresis) Patents (Class 604/6.01)
  • Patent number: 10426886
    Abstract: The object of the invention is to provide a blood separation device that can reduce the total time for drawing blood to obtain high-concentration platelet liquid, thereby reducing the binding time of the blood donor. The device includes a temporary storage bag (Y2) (also serves as a buffy coat bag) which is a whole blood bag for storing whole blood drawn from a blood donor. The controlling unit of the device controls the device to draw whole blood from the blood donor in parallel with at least either a circulation flow step or an acceleration step, thereby storing the drawn whole blood in the temporary storage bag (Y2).
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: October 1, 2019
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Shigeyuki Kimura, Takemi Kobayashi
  • Patent number: 10329530
    Abstract: A fluid circuit for cell washing is provided that comprises a spinning membrane separator and a fluid management system comprising a cassette that defines the fluid pathways, and including internally mechanical valving, pressure sensing and air sensing for controlling flow through the fluid pathways, thus minimizing the volume of the fluid circuit. Additionally, the fluid circuit comprises syringes that are acted on by syringe pumps associated with the hardware component of the system to provide pressure for moving fluid through the circuit. Preferably, the syringes are connected directly to the cassette, or formed integrally within the cassette housing, thus further minimizing the volume of the fluid circuit.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: June 25, 2019
    Assignee: Fenwal, Inc.
    Inventor: Christopher J. Wegener
  • Patent number: 10220132
    Abstract: Apparatus, system and method are provided for controlling flow through a biological fluid processing device. Pressure of fluid flow through a flow path is monitored and flow rate in the flow path is increased or decreased based on sensed pressure levels for selected periods of time. This has particular application in controlling flow in an infusion or return flow path of an apheresis device that separates whole blood into one or more blood components.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: March 5, 2019
    Assignee: Fenwal, Inc.
    Inventors: Amit J. Patel, Samantha M. Planas, Kathleen M. Higginson, Melissa A. Thill, Courtney Moore
  • Patent number: 10124113
    Abstract: Apparatus are provided for infusion devices and related operating methods. An exemplary device includes a sensing arrangement to provide an output indicative of a characteristic that is influenced by operation of the device, and a control module that is coupled to the sensing arrangement to apply a matched filter corresponding to a condition associated with the operation of the device to the output of the sensing arrangement and detect that condition based on the filtered output. In one example, the device includes a motor coupled to a plunger of a reservoir and operable to displace the plunger, wherein the characteristic is a force opposing displacement of the plunger and the control module detects an occlusion condition in a fluid path from the reservoir based on filtered force measurements.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: November 13, 2018
    Assignee: Medtronic MiniMed, Inc.
    Inventors: R. Marie Tieck, Juan M. Alderete, Jr., Matthew I. Haller
  • Patent number: 10039877
    Abstract: Methods and systems for obtaining platelets are disclosed. Platelets are collected in a pre-determined volume of plasma and a determined amount of a combined storage medium including the pre-determined amount of plasma and a volume of a synthetic additive solution.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: August 7, 2018
    Assignee: FENWAL, INC.
    Inventors: Katherine Radwanski, Kyungyoon Min
  • Patent number: 9987411
    Abstract: Methods and systems for priming biological fluid processing systems are disclosed. In accordance with such methods and systems, the disposable fluid processing circuit is primed by introducing a first priming solution into a portion of the circuit and a second priming solution into a portion of the circuit. The amount of citrate returned to the biological flood source is minimized.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: June 5, 2018
    Assignee: FENWAL, INC.
    Inventors: Samantha M. Planas, Amit J. Patel, Melissa A. Thill, Christopher Wegener, Elizabeth Asma
  • Patent number: 9669152
    Abstract: Provided is a blood component separation device that can shorten the overall time to collect high-concentration platelet liquid for blood component donation, thereby reducing time to keep a donor for blood drawing. The blood component separation device includes a temporary storage bag (also used as a buffy coat bag) which is also used as a whole blood bag for storing whole blood drawn from the donor. A control means performs whole blood drawing from the donor in parallel with performing at least either of a circulation flow step and an acceleration step, thereby storing the collected whole blood in the temporary storage bag.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: June 6, 2017
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Shigeyuki Kimura, Ryoji Kataoka
  • Patent number: 9474679
    Abstract: A system and method for performing tissue therapy may include applying a reduced pressure to a tissue site, sensing a fluid parameter being applied to the tissue site, generating a fluid sensor signal in response to sensing the fluid parameter, and altering the fluid sensor signal in response to sensing that the fluid parameter changes. A fluid leak location mode may be entered. In response to the fluid leak location mode being entered, a graphical user interface that provides for fluid leak location functionality may be displayed. In one embodiment, the fluid leak location mode may be automatically entered in response to the sensor signal crossing a threshold value. Additionally, an alarm signal may be generated in response to determining that the fluid sensor signal crosses the threshold value.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: October 25, 2016
    Assignee: KCI Licensing, Inc.
    Inventors: Christopher Brian Locke, Mark Stephen James Beard, David Robson Blandford, Timothy Mark Robinson
  • Patent number: 9402949
    Abstract: Apparatus are provided for infusion devices and related operating methods. An exemplary device includes a sensing arrangement to provide an output indicative of a characteristic that is influenced by operation of the device, and a control module that is coupled to the sensing arrangement to apply a matched filter corresponding to a condition associated with the operation of the device to the output of the sensing arrangement and detect that condition based on the filtered output. In one example, the device includes a motor coupled to a plunger of a reservoir and operable to displace the plunger, wherein the characteristic is a force opposing displacement of the plunger and the control module detects an occlusion condition in a fluid path from the reservoir based on filtered force measurements.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: August 2, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: R. Marie Tieck, Juan M. Alderete, Jr., Matthew I. Haller
  • Patent number: 9302041
    Abstract: A blood-donation system and methods of usage are disclosed. The system includes a blood-donating chair configured to interoperate with various blood-processing apparatuses. The system further combines into a self-contained system all devices, communications pathways and power supplies for various powered devices employed during a blood-collecting session. The system may further interoperate with other blood-donation systems allowing for continuous monitoring of multiple blood-collecting sessions at a single user interface. According to another embodiment, in addition to interoperability, the system is further configured for upgradability, in which, various donor-station devices may be mounted and remounted.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 5, 2016
    Assignee: Haemonetics Corporation
    Inventor: Gary R. Stacey
  • Patent number: 9279104
    Abstract: A blood processing system and method are disclosed that comprise a leukoreduction filter for removing leukocytes from red blood cells as the red blood cells pass through the filter; and a pump for pumping an additive solution through the leukoreduction filter to flush the leukoreduction filter of red blood cells that remain in the leukoreduction filter after filtration of the red blood cells. Additive solution is flowed through the leukoreduction filter at an initial flush rate to flush remaining red blood cells from the leukoreduction filter and the pump increases the flush rate of the additive solution during flushing of the leukoreduction filter.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: March 8, 2016
    Assignee: Fenwal, Inc.
    Inventors: Benjamin Kusters, Christopher Wegener, Kyungyoon Min
  • Patent number: 9173990
    Abstract: A method is provided in a centrifugal blood processing system for adding replacement fluid without a dedicated peristaltic pump to blood components being returned to the donor. A disposable blood processing set for use in the method comprises a hermetically sealed set of blood bags, connecting tubes, needles or connectors, and supporting structures with a replacement fluid line coupled directly to a return reservoir without contact with an intervening pump.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 3, 2015
    Assignee: Terumo BCT, Inc.
    Inventors: John R. Lindner, William Sweat
  • Patent number: 9171368
    Abstract: A variation of a method for estimating a quantity of a blood component in a fluid canister includes: within an image of a canister, identifying a reference marker on the canister; selecting an area of the image based on the reference marker; correlating a portion of the selected area with a fluid level within the canister; estimating a volume of fluid within the canister based on the fluid level; extracting a feature from the selected area; correlating the extracted featured with a concentration of a blood component within the canister; and estimating a quantity of the blood component within the canister based on the estimated volume and the concentration of the blood component within the canister.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: October 27, 2015
    Assignee: Gauss Surgical
    Inventors: Siddarth Satish, Ali Zandifar, Kevin J Miller
  • Patent number: 9011769
    Abstract: A blood reservoir may be used in combination with other elements such as a heart lung machine (HLM), oxygenator, heat exchanger, arterial filter and the like to form an extracorporeal blood circuit that may be employed in a procedure such as a bypass procedure. The blood reservoir may be configured to receive, filter and store blood from a number of sources including vent blood (from within the heart), venous blood (from a major vein), purge blood (from a sampling line) and cardiotomy or suction blood (from the surgical field).
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: April 21, 2015
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Claudio Silvestri, Gabriele Tommasi
  • Patent number: 9005343
    Abstract: A blood filter device comprising: a housing comprising an outer wall and a first inlet, a first outlet and a second outlet; a membrane which is capable of separating plasma from the blood, wherein the membrane forms an inner chamber; a leukocyte and oxygen and/or carbon dioxide depletion media disposed wherein the inner chamber, the leukocyte and oxygen and/or carbon dioxide depletion media is capable of depleting leukocytes and oxygen and/or carbon dioxide from the blood; an outer chamber disposed between the outer wall and the membrane, wherein the plasma which permeates through the membrane enters the outer chamber and exits the filter device via the first outlet; whereby the blood which has been depleted of oxygen and/or carbon dioxide, leukocytes and plasma exists and filter device via the second outlet.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: April 14, 2015
    Assignee: New Health Sciences, Inc.
    Inventors: Tatsuro Yoshida, Paul J. Vernucci
  • Patent number: 8986237
    Abstract: A filtering unit for removing a virucidal substance from a biological fluid including an outer casing having at least one input aperture and at least one output aperture. The outer casing including a filter medium, which separates the filtration unit into an input compartment and an output compartment. The filter medium includes at least one hydrophilic material able to absorb or adsorb the virucidal substance. The at least one hydrophilic material includes either porous non-woven material or a porous membrane.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: March 24, 2015
    Assignee: Macopharma
    Inventors: Francis Goudaliez, Thierry Verpoort
  • Patent number: 8979787
    Abstract: This invention uses “targeted apheresis” to treat pregnant women who are at risk of developing eclampsia. “Targeted Apheresis” is a process whereby certain growth factor receptors (sFlt-1) circulating in the blood of a pregnant woman at risk of developing pre-eclampsia are selectively removed by passing the blood through a cartridge containing immobilized anti-sFlt-1 aptamers. The circulating sFlt-1 is bound out by the immobilized anti-sFlt-1 aptamers and the cleaned blood is returned to the patient. Removal of circulating sFlt-1 will diminish the risk of developing eclampsia during pregnancy.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: March 17, 2015
    Inventors: Henry John Smith, James Roger Smith
  • Patent number: 8961445
    Abstract: This invention provides an apparatus and methods to consistently separate and concentrate selected blood components. The system includes, e.g., a computerized fluid handling system to transfer blood components between a centrifugal blood separation disc, containers and a concentrator.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: February 24, 2015
    Assignee: Biomet Biologics, LLC
    Inventors: Douglas M. Arm, Michael Ponticiello, Surinder Mathur, Andrew G. Hood
  • Patent number: 8959617
    Abstract: Systems, methods, apparatus, and computer readable media are provided for disposable component authentication with respect to a biological fluid processing device instrument. An example instrument authentication system includes a computer facilitating configuration and operation of the biological fluid processing instrument using a disposable component. A first interface is provided by the computer and is used by a service technician to configure the biological fluid processing instrument for a number of disposable components and to provide a service technician with a validation code. A key generator is to accept the validation code from the service technician and generate an authentication key in response to the entered validation code. A second interface is provided by the computer, the second interface prompting the service technician to enter an authentication key, wherein the authentication key authorizes use of a certain number of disposable components for the biological fluid processing instrument.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Fenwal, Inc
    Inventors: Douglas Newlin, Kevin Krause, Robert Crampton, John T. Foley, Brian Case, William Cork
  • Patent number: 8945037
    Abstract: A blood purification apparatus has a dialyzer (1), an arterial blood circuit (2) with a blood pump 4, a venous blood circuit 3, a dialysate introduction line L1, a dialysate discharge line L2, a substitution line L3, and a substitution pump 9 that supplies the dialysate flowing in the substitution line L3 to the arterial blood circuit 2. A control device (11) estimates or measures the concentration of blood in a dilution channel section A. The control device (11) controls the volume of dialysate supplied by the substitution pump 9 on the basis of the estimated or measured blood concentration.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: February 3, 2015
    Assignee: Nikkiso Company Limited
    Inventors: Shinya Hasegawa, Masahiro Toyoda
  • Patent number: 8932469
    Abstract: A dialysis machine includes a blood circuit, a dialysate circuit, and a dialyzer placed in communication with the blood circuit and the dialysate circuit. The dialysis machine includes a priming sequence in which dialysate is used to prime a first portion of the dialysate circuit and a physiologically compatible solution, other than dialysate, is used to prime a second portion of the dialysate circuit, the dialyzer and the blood circuit.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: January 13, 2015
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Robert W. Childers, Thomas D. Kelly, Rodolfo Roger
  • Patent number: 8926543
    Abstract: The invention provides a way of producing a natural immunologically active state in a person by subjecting him to an apheresis procedure with bioincompatible biomaterials for about one hour. To safely control the immunological shock induced by this procedure, the person is put under general anesthesia for about six hours, including the apheresis time and at least an additional five hours thereafter. This immunological activation is useful for treating malignant tumors and diseases related to immunosuppression, such as AIDS. The invention also provides for the use of an apheresis column containing a blood perfusion filter with bioincompatible materials for treating malignant tumors and infectious diseases.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: January 6, 2015
    Assignee: Otsuka Pharmaceutical Co., Ltd.
    Inventors: Kazuhide Ohta, Hiroshi Miyamoto, Junji Takaba, Ako Nosé
  • Patent number: 8911390
    Abstract: The present invention concerns a multipart fluid system for use in CRRT, wherein the multipart fluid system comprises an anticoagulation fluid and at least one fluid from the group consisting of a dialysis fluid and an infusion fluid. According to the invention the anticoagulation fluid comprises at least 8 mM citrate, and the dialysis fluid and/or infusion fluid comprises 2-8 mM citrate and 1-5 mM total calcium. The present invention further concerns a system for regional citrate anticoagulation in an extracorporeal blood circuit.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 16, 2014
    Assignee: Gambro Lundia AB
    Inventor: Jan Sternby
  • Patent number: 8905960
    Abstract: A device for the filtration of a complex fluid composition such as blood, includes a base (12) with a bottom (18), a top (14) with a bottom (30), and a membrane (16) that is arranged between the base and the top so as to define a low chamber C1 and a high chamber C2, with an input tap (26) of the complex composition that is to be filtered emptying into the low chamber C1, an output tap (28) of the retentate with elements for adjusting the flow rate emptying into this same low chamber C1, and an output tap (36, 36-1) of the high chamber C2, whereby this output tap (36, 36-1) of the permeate is subjected to negative pressure.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: December 9, 2014
    Assignee: Direction et Priorites
    Inventors: Francis Gadrat, Bertrand Chastenet
  • Publication number: 20140350450
    Abstract: Systems and methods are provided for performing a medical procedure with respect to a subject. A data storage location of the system is pre-programmed with a plurality of subject data entries, each having subject-specific information associated with it. A user interface receives an identity input from a subject, which corresponds to the identity of the subject. A controller is associated with the database and the user interface, and is programmed to compare the identity input to the subject data entries. If the identity input corresponds to the subject-specific information of a subject data entry, the controller commands a treatment device to perform a medical procedure with respect to the subject. Otherwise, if the identity input does not correspond to the subject-specific information of any of the subject data entries, the controller generates an error signal which prevents the performance of the medical procedure with respect to the subject.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Applicant: Fenwal, Inc.
    Inventors: Brian C. Case, Lan T. Nguyen
  • Patent number: 8881600
    Abstract: In a process for testing filters (4) and (13) of treatment fluid of a hemodiafiltration apparatus (1), each filter has a wet semipermeable membrane (5, 14) which separates a gas-filled first chamber (6 and 15) from a liquid-filled second chamber (7 and 16). The first chambers are pressurised by a pump (19) supplying air, while the second chambers are placed in depression by a drainage pump (17) of used dialysis fluid. A first closed system is formed which includes the first chambers and a second closed system is formed which includes the second chambers. Two pressure gauges (P1 and P2) monitor the pressure in the two closed systems for a predetermined time. The monitoring provides indications relating to the filter integrity.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: November 11, 2014
    Assignee: Gambro Lundia AB
    Inventors: Anna Puppini, Renato Pedrazzi, Mauro Suffritti
  • Patent number: 8877062
    Abstract: The invention relates to extracorporeal blood circuits, and components thereof (e.g., hollow fiber membranes, potted bundles, and blood tubing), including 0.005% to 10% (w/w) surface modifying macromolecule. The extracorporeal blood circuits have an antithrombogenic surface and can be used in hemofiltration, hemodialysis, hemodiafiltration, hemoconcentration, blood oxygenation, and related uses.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: November 4, 2014
    Assignee: Interface Biologics, Inc.
    Inventors: Sanjoy Mullick, Weilun Chang, Hanje Chen, Mark Steedman, Roseita Esfand
  • Patent number: 8865172
    Abstract: A method for reducing the number of selected antibodies in a subject's blood, the method comprising removing blood from the subject, passing the blood along an enclosed pathway, wherein the pathway comprises one or more semi-permeable hollow fibers with one or more membranes having surfaces positioned substantially perpendicular to the length of the one or more hollow fiber and antigens specific for the antibodies immobilized on the one or more membranes, returning the treated blood to the internal circulation of the subject, wherein the returned treated blood has a reduced number of selected antibodies compared to before treatment.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 21, 2014
    Assignee: Advanced Extravascular Systems, Inc.
    Inventor: Duke K. Bristow
  • Patent number: 8852140
    Abstract: Systems and methods are provided for automatically adjusting the operational parameters of a blood separation procedure. A blood separation device has an inlet for passing fluid thereinto and an outlet for removing fluid therefrom. A pump system is provided for moving fluid into and out of the device. In use, blood is conveyed into the device, where platelets are separated from at least a portion of the blood. A controller determines the amount of platelets in the device. Based at least in part on the amount of platelets in the device, corrective action is taken to avoid platelet aggregation in the device. The corrective action may be conveying an elevated amount of anticoagulant into the blood and/or the device and may be initiated when the determined amount of platelets approaches, meets, or exceeds a threshold predicted likelihood of platelet aggregation.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 7, 2014
    Assignee: Fenwal, Inc.
    Inventors: John W. Barry, Jr., Brian C. Case, Lan T. Nguyen
  • Patent number: 8834719
    Abstract: A dialysis machine method includes in an embodiment applying a pneumatic closing pressure to a first valve chamber and arranging a compliance chamber to flex and absorb energy from the pneumatic closing pressure so as to tend to prevent the pneumatic closing pressure from opening an existing closure of a second valve chamber.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 16, 2014
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Robert W. Childers, Thomas D. Kelly, Rodolfo Roger
  • Patent number: 8834401
    Abstract: A process and apparatus are provided for managing and adjusting glucose levels in the blood of a patient during dialysis. The apparatus is a dialysis apparatus to treat patients with renal disease which includes a glucose scavenger to remove excess glucose from the blood before returning the blood to the patient and/or a device to increase blood glucose levels in the blood when the glucose level is below a threshold level. The glucose scavenger can include a glucose binding protein, boronic acid derivative, boronic ester derivative or mixture thereof bonded to the surface of a support such as a fiber bundle in a cartridge or the inner surface of tubing used in the apparatus.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: September 16, 2014
    Assignee: Becton, Dickinson and Company
    Inventors: James R. Petisce, Andrew Metters
  • Patent number: 8808217
    Abstract: A method and apparatus for collecting plasma reduced platelets potentially suspended in a synthetic solution from a donor. Whole blood is drawn from the donor and introduced into a separation chamber. Platelets are extracted from the separation chamber into a container, using, for example, surge (with anticoagulated plasma or a synthetic solution) or push methodologies. The remaining blood components in the separation chamber are returned back to the donor. The steps of drawing whole blood and introducing the whole blood into the separation chamber, extracting platelets from the separation chamber into the container, and returning the remaining components in the chamber back to the donor are repeated. The sequestered platelets in the container are reintroduced into the separation chamber, whereupon a plasma reduced platelet product is extracted.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: August 19, 2014
    Assignee: Haemonetics Corporation
    Inventors: Toshiyasu Ohashi, Etienne Pagès, Dominique Uhlmann, Pascal Maillard, Michael Ragusa
  • Patent number: 8764695
    Abstract: The invention is directed to the removal of serum gal-3 from circulation by plasmapheresis using gal-3 binding agents in either a fixed bed, or in a form easily removed, such as by being complexed with magnetic particles. This method, on its own, brings a sharp reduction and relief from the inflammation and fibroses that can be induced by circulating gal-3. The process may be combined with the administration of gal-3 binding agents, such as modified citrus pectin, to further lower unbound gal-3 levels, to the point where gal-3 in the tissues may be addressed. This method may also be combined with removal of TNF receptors to provide an effective treatment for cancer.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 1, 2014
    Inventor: Isaac Eliaz
  • Publication number: 20140148750
    Abstract: A blood processing device includes a venous-access device, a blood component separation device, a return line, a draw line, a first pressure sensor, a second pressure sensor, and a first pump. The first pressure sensor is located on the return line between the blood component separation device and the venous-access device, and determines a first pressure. The second pressure sensor is located on the draw line between the blood component separation device and the venous-access device, and determines a second pressure. The first pump is connected to at least one of the return line and the draw line and controls a flow rate within the connected line based on a subject access pressure determined based upon the first and second pressures.
    Type: Application
    Filed: January 29, 2014
    Publication date: May 29, 2014
    Applicant: Haemonetics Corporation
    Inventors: Etienne Pagès, Michael Ragusa
  • Patent number: 8708944
    Abstract: A system for harvesting a fibrin clot and depositing that fibrin clot into a wound site during a surgical procedure, the system comprising: (i) blood drawing apparatus for drawing blood; (ii) extraction apparatus for extracting fibrin from blood so as to form a fibrin clot; (iii) configuring apparatus for molding, cutting and shaping the fibrin clot into a desired configuration; and (iv) dispensing apparatus for reliably and controllably dispensing the fibrin clot at a selected location in the body.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: April 29, 2014
    Inventors: Javin C. Pierce, Peter Kurzweil
  • Patent number: 8702637
    Abstract: A blood processing device includes a venous-access device, a blood component separation device, a return line, a draw line, a first pressure sensor, a second pressure sensor, and a first pump. The first pressure sensor is located on the return line between the blood component separation device and the venous-access device, and determines a first pressure. The second pressure sensor is located on the draw line between the blood component separation device and the venous-access device, and determines a second pressure. The first pump is connected to at least one of the return line and the draw line and controls a flow rate within the connected line based on a subject access pressure determined based upon the first and second pressures.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: April 22, 2014
    Assignee: Haemonetics Corporation
    Inventors: Etienne Pagès, Michael Ragusa
  • Patent number: 8684959
    Abstract: An extracorporeal blood treatment apparatus comprises a sensor (10) for emitting a signal indicating a change of hematic volume of an individual (7) subjected to a treatment and a weight loss system for actuating the individual's weight loss. A control unit (20) receives an effective weight value of the individual and a desired weight loss value and from these values determines a desired value of a change in hematic volume at end of treatment. The weight loss system is controlled on a basis of the hematic volume change signal and the desired value of the hematic volume change. The apparatus enables automatic control of a dialysis operation while preventing some complications arising from hypotension.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: April 1, 2014
    Assignee: Gambro Lundia AB
    Inventors: Francesco Paolini, Francesco Fontanazzi, Fabio Grandi
  • Patent number: 8647289
    Abstract: A blood processing device includes a venous-access device, a blood component separation device, a return line, a draw line, a first pressure sensor, a second pressure sensor, and a first pump. The first pressure sensor is located on the return line between the blood component separation device and the venous-access device, and determines a first pressure. The second pressure sensor is located on the draw line between the blood component separation device and the venous-access device, and determines a second pressure. The first pump is connected to at least one of the return line and the draw line and controls a flow rate within the connected line based on a subject access pressure determined based upon the first and second pressures.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: February 11, 2014
    Assignee: Haemonetics Corporation
    Inventors: Etienne Pagès, Michael Ragusa
  • Patent number: 8632486
    Abstract: An access disconnect system includes a blood processing machine having a blood pump operable with blood tubing, first and second conductive contacts located in the blood tubing on an arterial tubing side of a blood filter. The first conductive contact is located upstream of the blood pump and the second conductive contact is located downstream of the blood pump. The first and second conductive contacts are positioned and arranged to form a conductive circuit including a vascular system of a patient and the blood processing machine. The system further includes a source of electric current connected to at least one of the first and second conductive contacts and a transmitter for sending a signal indicative of an amount of current flowing through the conductive circuit when the source of electric current is applied.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: January 21, 2014
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventor: Matthew R. Muller
  • Patent number: 8628489
    Abstract: A blood processing system for collecting and exchanging blood components includes a venous-access device for drawing whole blood from a subject and returning blood components to the subject. The system may also include three lines connecting the venous access device to a blood component separation device and an anticoagulant source. A blood draw line fluidly connects to the venous-access device to the blood component separation device. An anticoagulant line introduces anticoagulant into the drawn whole blood. A return line, fluidly connected to the venous-access device and the blood component separation device, and returns uncollected blood component to the subject. Each line may have a pump that controls flow through the line. The blood component separation device separates the drawn blood into a first blood component and a second blood component, and may be configured to send the first blood component to a first blood component bag.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: January 14, 2014
    Assignee: Haemonetics Corporation
    Inventors: Etienne Pagès, Michael Ragusa
  • Patent number: 8603346
    Abstract: Disclosed is an apparatus that allows for separating and collecting a fraction of a sample. The apparatus, when used with a centrifuge, allows for the creation of at various fractions in the apparatus. A buoy system that may include a first buoy portion and a second member operably interconnected may be used to form at least three fractions from a sample during a substantially single centrifugation process. Therefore, the separation of various fractions may be substantially quick and efficient. Also selected fractions from the sample can be applied to a patient, either alone or as part of a mixture.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Biomet Biologics, LLC
    Inventors: Michael D. Leach, Joel C. Higgins
  • Patent number: 8556843
    Abstract: Methods for treating malaria are provided, the treatment comprising the step of removing malaria-infected red blood cells from the patient's blood. Blood is drawn from the patient's circulatory system and circulated through a blood purification device that selectively eliminates the infected red blood cells from all other blood's components and replaces the cleansed blood back into the patient's circulatory system. A blood purification device, which is useful to perform the therapeutic methods of the invention, is also provided. The device leverages the magnetic properties of the hemozoin contained within the infected red blood cells and comprises one or more separation chambers (4) though which blood flows through a high-gradient magnetic field generated by an array of wires (5) separated from the chambers and not in contact with the patient blood.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: October 15, 2013
    Assignee: AccelDx
    Inventors: Alberto Gandini, Roy Weinstein, Ravi-persad Sawh, Drew Parks
  • Publication number: 20130261528
    Abstract: An apheresis tubing set comprises a cryocyte bag for collecting cells separated during apheresis. The cryocyte bag may comprise a mixing compartment in fluid communication with a cell storage compartment, wherein the mixing compartment comprises a cryoprotectant port and a cell sample port and wherein the storage and mixing compartments are in fluid communication via a mix conduit.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 3, 2013
    Inventor: Glen James Wicks Delaronde-Wilton
  • Publication number: 20130244897
    Abstract: The invention relates to novel marker sequences for multiple sclerosis and to the use thereof in diagnosis as well as to a method for screening potential active ingredients for multiple sclerosis diseases the marker sequences. The invention further relates to a diagnostic device containing such marker sequences for multiple sclerosis, especially to a protein biochip and the use thereof.
    Type: Application
    Filed: October 4, 2011
    Publication date: September 19, 2013
    Applicant: Protagen AG
    Inventors: Angelika Lueking, Axel Kowald, Heike Göhler
  • Publication number: 20130240422
    Abstract: A method and apparatus for collecting plasma reduced platelets potentially suspended in a synthetic solution from a donor. Whole blood is drawn from the donor and introduced into a separation chamber. Platelets are extracted from the separation chamber into a container, using, for example, surge (with anticoagulated plasma or a synthetic solution) or push methodologies. The remaining blood components in the separation chamber are returned back to the donor. The steps of drawing whole blood and introducing the whole blood into the separation chamber, extracting platelets from the separation chamber into the container, and returning the remaining components in the chamber back to the donor are repeated. The sequestered platelets in the container are reintroduced into the separation chamber, whereupon a plasma reduced platelet product is extracted.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Applicant: Haemonetics Corporation
    Inventors: Toshiyasu Ohashi, Etienne Pagès, Dominique Uhlmann, Pascal Maillard, Michael Ragusa
  • Patent number: 8535421
    Abstract: A blood storage system. The system has a collection bag for red blood cells; an oxygen/carbon dioxide depletion device; a storage bag for red blood cells; and tubing connecting the collection bag to the depletion device and the depletion device to the storage bag. The depletion device includes a receptacle of a solid material having an inlet and an outlet adapted to receiving and expelling a flushing gas; a plurality of hollow fibers or gas-permeable films extending within the receptacle from an entrance to an exit thereof. The hollow fibers or gas-permeable films are adapted to receiving and conveying red blood cells.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: September 17, 2013
    Assignee: New Health Sciences, Inc.
    Inventors: Tatsuro Yoshida, Paul J. Vernucci
  • Patent number: 8539573
    Abstract: Systems, methods, apparatus, and computer readable media are provided for disposable component authentication with respect to a biological fluid processing device instrument. An example instrument authentication system includes a computer facilitating configuration and operation of the biological fluid processing instrument using a disposable component. A first interface is provided by the computer and is used by a service technician to configure the biological fluid processing instrument for a number of disposable components and to provide a service technician with a validation code. A key generator is to accept the validation code from the service technician and generate an authentication key in response to the entered validation code. A second interface is provided by the computer, the second interface prompting the service technician to enter an authentication key, wherein the authentication key authorizes use of a certain number of disposable components for the biological fluid processing instrument.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: September 17, 2013
    Assignee: Fenwal, Inc.
    Inventors: Douglas Newlin, Kevin Krause, Robert Crampton, John T. Foley, Brian Case, William Cork
  • Patent number: 8517967
    Abstract: The present invention provides modified platelets having a reduced platelet clearance and methods for reducing platelet clearance. Also provided are compositions for the preservation of platelets. The invention also provides methods for making a pharmaceutical composition containing the modified platelets and for administering the pharmaceutical composition to a mammal to mediate hemostasis.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 27, 2013
    Assignee: Velico Medical, Inc.
    Inventors: Keith Rosiello, Henrik Clausen
  • Patent number: RE44639
    Abstract: A hemodialysis and vascular access system comprises a subcutaneous composite PTFE silastic arteriovenous fistula having an indwelling silastic venous end which is inserted percutaneously into a vein and a PTFE arterial end which is anastomosed to an artery. Access to a blood stream within the system is gained by direct puncture of needle(s) into a needle receiving site having a tubular passage within a metal or plastic frame and a silicone upper surface through which needle(s) are inserted. In an alternate embodiment of the invention, percutaneous access to a blood stream may be gained by placing needles directly into the system (i.e. into the PTFE arterial end). The invention also proposes an additional embodiment having an arterialized indwelling venous catheter where blood flows from an artery through a tube and a port into an arterial reservoir and is returned to a vein via a port and a venous outlet tube distinct and distant from the area where the blood from the artery enters the arterial reservoir.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: December 10, 2013
    Assignee: Hemosphere, Inc.
    Inventor: Rafael P. Squitieri
  • Patent number: RE45315
    Abstract: A whole blood collection system includes an automated pump/control unit and an accompanying disposable blood set. When combined and connected to a source of anticoagulant, these elements allow automatic priming of the blood set with anticoagulant and automatic collection of anticoagulated blood product according to three different collection modes. The unit's pump and the blood set are specially designed to cooperate during the collection process to assure that the collected product has a precise blood to anticoagulant ratio. During the collection procedure, the pump/control unit automatically collects data relating to the procedure. Additional data specifically identifying components of the blood set, such as the blood collection bag, along with identification data on the donor's registration form may be scanned into the pump/controller unit by a scanner associated with the unit; this facilitates positive sample identification and tracking.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: December 30, 2014
    Assignee: Haemonetics Corporation
    Inventors: Ronald O. Gilcher, Jacques Chammas, Joseph M. Medberry, Gary R. Stacey