Optimized thin film capacitors
At least an embodiment of the present technology provides a capacitor, comprising a substrate, a first solid electrode disposed on the substrate, a second electrode broken into subsections, the subsections connected by a bus line and separated from the first electric by a dielectric medium. The second electrode broken into subsections may have a lower resistance than the first solid electrode and by changing the width and length of the sides of the subsections, the resistance of the first electrode is modifiable.
Latest BlackBerry Limited Patents:
This application is a continuation in part of application Ser. No. 10/938,898 entitled “TUNABLE MICROWAVE DEVICES WITH AUTO-ADJUSTING MATCHING CIRCUIT” filed 10 Sep. 2004 now abandoned, which was a continuation of application Ser. No. 10/455,901 entitled “TUNABLE MICROWAVE DEVICES WITH AUTO-ADJUSTING MATCHING CIRCUIT” filed 6 Jun. 2003 now U.S. Pat. No. 6,864,757, which was a divisional of application Ser. No. 09/909,187 filed Jul. 19, 2001, now U.S. Pat. No. 6,590,468, entitled “TUNABLE MICROWAVE DEVICES WITH AUTO-ADJUSTING MATCHING CIRCUIT” which claimed the benefit of U.S. provisional application No. 60/219,500 filed Jul. 20, 2000.
BACKGROUND OF THE TECHNOLOGYWireless communications is a rapidly growing segment of the communications industry, with the potential to provide high-speed high-quality information exchange between portable devices located anywhere in the world. Potential applications enabled by this technology include multimedia internet-enabled cell phones, smart homes, appliances, automated highway systems, distance learning, and autonomous sensor networks, just to name a few. Supporting these applications using wireless techniques poses significant technical challenge. As handsets move to meet broadband, the requirements of components are more astringent. Electrical communication systems demand new more efficient low loss devices that can be used at higher frequency ranges.
Recent advances in tunable ferroelectric materials have allowed for relatively low capacitance varactors that can operate at temperatures above those necessary for superconduction and at bias voltages less than those required for existing planar varactor structures, while maintaining high tenability and high Q factors. Even though these materials work in their paraelectric phase above the Curie temperature, they are conveniently called “ferroelectric” because they exhibit spontaneous polarization at temperatures below the Curie temperature. Tunable ferroelectric materials including barium-strontium titanate BaxSrl-x TiO3 (BST) or BST composites have been the subject of several patents. Dielectric materials including BST are disclosed by Sengupta, et al. in U.S. Pat. No. 5,312,790; U.S. Pat. No. 5,427,988; U.S. Pat. No. 5,486,491; U.S. Pat. No. 5,846,893; U.S. Pat. No. 5,635,434; U.S. Pat. No. 5,830,591; U.S. Pat. No. 5,766,697; U.S. Pat. No. 5,693,429; U.S. Pat. No. 6,074,971; U.S. Pat. No. 6,801,104 B2 and U.S. Pat. No. 5,635,433. These patents are hereby incorporated by reference. The permittivity (more commonly called dielectric constant) of these materials can be varied by varying the strength of an electric field to which the materials are subjected. These materials allow for thin-film ferroelectric composites of low overall dielectric constant that takes advantage of the high tunability and at the same time having high dielectric constants.
BST thin films have been used in microwave circuit applications because of their high dielectric constant, high tunability, low loss, and fast switching speed. Tunable BST films have been demonstrated as an attractive technology to low cost agile mobile circuits, such as tunable filters, tunable matching networks at a high tunable frequency range. Most of these technologies have focused on material quality, choice of electrodes, and deposition or processing techniques. As the technology matures, several issues have arisen due to the deposition methods and limited choice of electrode materials available due to the extreme deposition temperatures. Quality factor, resonance frequency and breakdown voltage are important factors for determining which applications BST thin films will work best in. High-frequency device losses consist of material-related losses in the film and at the electrode-film interface, as well as the resistive losses in the electrodes. First, thermal strain on the interface between the ferroelectric thinfilm and the metal electrode due to the creation of oxide films and crystalline microstructure. This interface is generally the cause of losses at high frequencies and premature breakdown at low voltages. Second, the designs on current devices are limited by traditional design guidelines that create resistive losses due to design constraints.
There is a need in the industry to improve the efficiency of BST thinfilm capacitors by design implementation. There is a further need to create a BST thinfilm design structure that minimizes loss at the dielectric-electrode interface. There is also a further need to create BST thinfilm designs that presents and improved structure where there is minimum contact with the bottom electrodes and creates an optimized periphery with a superb quality (Q) factor and a reasonable aspect ratio range.
BRIEF SUMMARY OF THE TECHNOLOGYAt least an embodiment of the present technology provides a capacitor, comprising a substrate, a first solid electrode disposed on the substrate, a second electrode broken into subsections, the subsections connected by a bus line and separated from the first electric by a dielectric medium. The second electrode broken into subsections may have a lower resistance than the first solid electrode and by changing the width and length of the sides of the subsections, the resistance of the first electrode is modifiable.
The present technology further provides a BST thinfilm design structure that by varying the Width/Length aspect ratio it optimizes electrode structure that allows for the creation of very high “Q” (low resistance) capacitors. The design structure relates to common capacitor material structures wherein one electrode is made from a higher resistance metal than the opposite electrode. Capacitors with such material properties can be found in planar integrated capacitors, as well as discrete ceramic capacitors. The inventive structure also reduces the mechanical stresses generated in the metals and dielectric films of the capacitor.
The foregoing summary, as well as the following detailed description of the technology, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the technology, there are shown in the embodiments which are presently preferred. It should be understood, however, that the technology is not limited to the precise arrangements and instrumentalities shown. In the drawings:
It shall be understood to the person skilled in the art that “high frequency” refers to the radio spectrum between 3 MHZ to 30 GHz, which includes both the “RF” spectrum and the “microwave spectrum”. It shall be further understood that a “device” comprises multiple “components” both “passive components” and “active components” and a “3D” device may comprise multiple layers stacked vertically.
Creep is the term given to the material deformation that occurs as a result of long term exposure to levels of stress that are below the yield or ultimate strength. The rate of this damage is a function of the material properties, the exposure time, exposure temperature and the applied load (stress). Creep is usually experienced when the device is heated and cooled as a function of use or environmental temperature fluctuations. Such failures may be caused either by direct thermal loads or by electrical resistive loads, which in turn generate excessive localized thermal stresses. Depending on the magnitude of the applied stress and its duration, the deformation may become so large that it will experience brittle and/or ductile fracture, interfacial separation and creep rupture.
An embodiment of the inventive technology may comprise at least one electrode structure that allows for the creation of very high “Q” (low resistance) capacitors. The technology is particularly well suited to common capacitor material structures wherein at least one electrode is made from a higher resistance metal than the opposite electrode. High resistance electrodes comprise and are not limited to Tungsten, Platinum, Rhodium, Chrome, Titanium/Tungsten and Nickel composites. Examples of capacitors with such material properties can be found in planar integrated capacitors, as well as discrete ceramic capacitors. The inventive structure further reduces the mechanical stresses, creep and other thermal generated stresses in the metals and dielectric films of the capacitor. The broken electrode usually carries the lower resistance of the two. The broken electrode distributes the signal across the capacitor area and, through proper arrangement, increases the effective width of the signal path through the higher resistance solid electrode. The signal busses (electrical metal connections) bring in and take out the signal. The inventive technology comprises at least a broken electrode and bussing where the broken electrode can be used in all kinds of capacitors, and may find applicability in transistor structures.
The inventive structure realizes these benefits by breaking at least two of the electrodes of a pair of series capacitors into subsections. By varying the Width (W) 207 and Length (L) 206 aspect ratio of the aperture between the electrodes in the active area 205, an optimized Q value can be achieved. The sections are arranged in such that it increases the effective Width 207 of the signal path in the higher resistance electrode 204A. These subsections are then electrically connected through a bus 501 as seen in the micrograph of
The reduction in thermally induced creep occurs because the individual electrode subsections retain and create less stress than a single plate of similar area. Shear Stress is defined as the shear force per unit area applied to a section. The smaller the area of shear, the smaller the stress applied to the device. As illustrated in
A person skilled in the art may break the electrodes into many different shapes and arranged in many different ways to create the aforementioned benefit of this technology.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this technology is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present technology.
Claims
1. A capacitor, comprising:
- a substrate;
- a first solid electrode disposed on said substrate;
- a second electrode broken into subsections, said subsections connected by a bus line and separated from said first electrode by a dielectric medium, wherein said subsections form polygonal, triangle, quadrilateral, or nonagon shapes with internal islands, wherein the polygonal, triangle, quadrilateral and nonagon shapes and the internal islands are connected to said bus line.
2. The capacitor of claim 1, wherein said second electrode broken into subsections has a lower resistance than said first solid electrode.
3. The capacitor of claim 1, wherein said electrode materials are selected from the group consisting of Tungsten, Platinum, Rhodium, Chrome, Titanium/Tungsten and Nickel composites.
4. The capacitor of claim 1, wherein materials for said dielectric medium are selected from the group consisting of tunable ferroelectric materials including barium-strontium titanate BaxSr1-xTiO3 (BST) and BST composites.
5. The capacitor of claim 1, wherein materials for said substrate are selected from the group consisting of Alumina (Al2O3), Aluminum Nitride (AlN), Titania (TiO2), glass-ceramic composites.
6. The capacitor of claim 1, wherein said bus line is made from materials selected from the group consisting of gold, silver, copper, aluminum, platinum, chrome composites and nickel composites.
7. The capacitor structure of claim 1, wherein said subsections form diamond shapes with internal islands.
8. The capacitor of claim 1, wherein the bus line is connected with the polygonal, triangle, quadrilateral and nonagon shapes and the internal islands of the second electrode to form at least two capacitors in series.
9. The capacitor of claim 1, wherein the bus line is connected with the polygonal, triangle, quadrilateral and nonagon shapes and the internal islands of the second electrode to form capacitors in series without capacitors in parallel.
10. The capacitor of claim 1, wherein the subsections cover a substantial portion of the dielectric medium.
11. The capacitor of claim 1, wherein the first electrode is positioned directly on the substrate.
12. A capacitor, comprising:
- a substrate;
- a first solid electrode disposed on said substrate;
- a second electrode broken into subsections, said subsections connected by a bus line and separated from said first electrode by a dielectric medium, wherein said subsections form diamonds with internal islands, wherein the diamonds are connected to said bus line.
13. The capacitor of claim 12, wherein the second electrode comprises material selected from the group consisting of Tungsten, Platinum, Rhodium, Chrome, Titanium/Tungsten and Nickel composites.
14. The capacitor of claim 12, wherein material for said dielectric medium is selected from the group consisting of tunable ferroelectric materials including barium-strontium titanate BaxSr1-xTiO3 (BST) and BST composites.
15. The capacitor of claim 12, wherein material for said substrate is selected from the group consisting of Alumina (Al2O3), Aluminum Nitride (AlN), Titania (TiO2), glass-ceramic composites.
16. The capacitor of claim 12, wherein the internal islands are connected to said bus line.
17. The capacitor of claim 12, wherein the bus line is connected with the polygonal, triangle, quadrilateral and nonagon shapes and the internal islands of the second electrode to form at least two capacitors in series.
18. The capacitor of claim 12, wherein the bus line is connected with the polygonal, triangle, quadrilateral and nonagon shapes and the internal islands of the second electrode to form capacitors in series without capacitors in parallel.
19. The capacitor of claim 12, wherein the subsections cover a substantial portion of the dielectric medium.
20. The capacitor of claim 12, wherein the first electrode is positioned directly on the substrate.
2745067 | May 1956 | True |
3117279 | January 1964 | Ludvigson |
3160832 | December 1964 | Beitman |
3390337 | June 1968 | Beitman |
3443231 | May 1969 | Roza |
3509500 | April 1970 | McNair |
3571716 | March 1971 | Hill |
3590385 | June 1971 | Sabo |
3601717 | August 1971 | Kuecken |
3742279 | June 1973 | Kupsky et al. |
3794941 | February 1974 | Templin |
3919644 | November 1975 | Smolka |
3990024 | November 2, 1976 | Hou |
3995237 | November 30, 1976 | Brunner |
4186359 | January 29, 1980 | Kaegebein |
4201960 | May 6, 1980 | Skutta |
4227256 | October 7, 1980 | O'Keefe |
4383441 | May 17, 1983 | Willis |
4476578 | October 9, 1984 | Gaudin |
4493112 | January 8, 1985 | Bruene |
4777490 | October 11, 1988 | Sharma |
4799066 | January 17, 1989 | Deacon |
4965607 | October 23, 1990 | Wilkins |
5032805 | July 16, 1991 | Elmer |
5136478 | August 4, 1992 | Bruder et al. |
5142255 | August 25, 1992 | Chang |
5172646 | December 22, 1992 | Masters |
5177670 | January 5, 1993 | Shinohara |
5195045 | March 16, 1993 | Keane |
5200826 | April 6, 1993 | Seong |
5212463 | May 18, 1993 | Babbitt |
5243358 | September 7, 1993 | Sanford |
5258728 | November 2, 1993 | Taniyoshi |
5276912 | January 4, 1994 | Siwiak |
5298886 | March 29, 1994 | Ueki et al. |
5301358 | April 5, 1994 | Gaskill |
5307033 | April 26, 1994 | Koscica |
5310358 | May 10, 1994 | Johnson |
5312790 | May 17, 1994 | Sengupta |
5334958 | August 2, 1994 | Babbitt |
5371473 | December 6, 1994 | Trinh |
5409889 | April 25, 1995 | Das |
5427988 | June 27, 1995 | Sengupta |
5430417 | July 4, 1995 | Martin |
5446447 | August 29, 1995 | Carney |
5448252 | September 5, 1995 | Ali |
5451567 | September 19, 1995 | Das |
5451914 | September 19, 1995 | Stengel |
5457394 | October 10, 1995 | McEwan |
5472935 | December 5, 1995 | Yandrofski |
5479139 | December 26, 1995 | Koscica |
5486491 | January 23, 1996 | Sengupta |
5496795 | March 5, 1996 | Das |
5502372 | March 26, 1996 | Quan |
5524281 | June 4, 1996 | Bradley |
5561407 | October 1, 1996 | Koscica |
5564086 | October 8, 1996 | Cygan |
5593495 | January 14, 1997 | Masuda |
5635433 | June 3, 1997 | Sengupta |
5635434 | June 3, 1997 | Sengupta |
5640042 | June 17, 1997 | Koscica |
5679624 | October 21, 1997 | Das |
5689219 | November 18, 1997 | Piirainen |
5693429 | December 2, 1997 | Sengupta |
5694134 | December 2, 1997 | Barnes |
5699071 | December 16, 1997 | Urakami |
5766697 | June 16, 1998 | Sengupta |
5777581 | July 7, 1998 | Lilly |
5778308 | July 7, 1998 | Sroka |
5786727 | July 28, 1998 | Sigmon |
5812943 | September 22, 1998 | Suzuki |
5830591 | November 3, 1998 | Sengupta |
5846893 | December 8, 1998 | Sengupta |
5874926 | February 23, 1999 | Tsuru |
5880635 | March 9, 1999 | Satoh |
5886867 | March 23, 1999 | Chivukula |
5929717 | July 27, 1999 | Richardson |
5963871 | October 5, 1999 | Zhinong |
5969582 | October 19, 1999 | Boesch |
5990766 | November 23, 1999 | Zhang |
6009124 | December 28, 1999 | Smith |
6020787 | February 1, 2000 | Kim |
6029075 | February 22, 2000 | Das |
6045932 | April 4, 2000 | Jia |
6061025 | May 9, 2000 | Jackson |
6074971 | June 13, 2000 | Chiu |
6096127 | August 1, 2000 | Dimos |
6100733 | August 8, 2000 | Dortu |
6101102 | August 8, 2000 | Brand |
6133883 | October 17, 2000 | Munson |
6172385 | January 9, 2001 | Ducombe et al. |
6215644 | April 10, 2001 | Dhuler |
6281847 | August 28, 2001 | Lee |
6309895 | October 30, 2001 | Jaing |
6343208 | January 29, 2002 | Ying |
6377142 | April 23, 2002 | Chiu |
6377217 | April 23, 2002 | Zhu |
6377440 | April 23, 2002 | Zhu |
6384785 | May 7, 2002 | Kamogawa |
6404614 | June 11, 2002 | Zhu |
6408190 | June 18, 2002 | Ying |
6414562 | July 2, 2002 | Bouisse |
6415562 | July 9, 2002 | Donaghue |
6452776 | September 17, 2002 | Chakravorty |
6461930 | October 8, 2002 | Akram |
6466774 | October 15, 2002 | Okabe |
6492883 | December 10, 2002 | Liang |
6514895 | February 4, 2003 | Chiu |
6525630 | February 25, 2003 | Zhu |
6531936 | March 11, 2003 | Chiu |
6535076 | March 18, 2003 | Partridge |
6535722 | March 18, 2003 | Rosen |
6538603 | March 25, 2003 | Chen |
6556102 | April 29, 2003 | Sengupta |
6556814 | April 29, 2003 | Klomsdorf |
6570462 | May 27, 2003 | Edmonson |
6590468 | July 8, 2003 | du Toit |
6590541 | July 8, 2003 | Schultze |
6597265 | July 22, 2003 | Liang |
6608603 | August 19, 2003 | Alexopoulos |
6624786 | September 23, 2003 | Boyle |
6657595 | December 2, 2003 | Phillips |
6661638 | December 9, 2003 | Jackson et al. |
6670256 | December 30, 2003 | Yang et al. |
6710651 | March 23, 2004 | Forrester |
6724611 | April 20, 2004 | Mosley |
6724890 | April 20, 2004 | Bareis |
6737179 | May 18, 2004 | Sengupta |
6759918 | July 6, 2004 | Du Toit |
6765540 | July 20, 2004 | Toncich |
6768472 | July 27, 2004 | Alexopoulos |
6774077 | August 10, 2004 | Sengupta |
6795712 | September 21, 2004 | Vakilian |
6825818 | November 30, 2004 | Toncich |
6839028 | January 4, 2005 | Lee |
6845126 | January 18, 2005 | Dent |
6859104 | February 22, 2005 | Toncich |
6862432 | March 1, 2005 | Kim |
6864757 | March 8, 2005 | Du Toit |
6868260 | March 15, 2005 | Jagielski |
6875655 | April 5, 2005 | Lin |
6888714 | May 3, 2005 | Shaw et al. |
6905989 | June 14, 2005 | Ellis |
6907234 | June 14, 2005 | Karr |
6920315 | July 19, 2005 | Wilcox et al. |
6922330 | July 26, 2005 | Nielsen et al. |
6943078 | September 13, 2005 | Zheng et al. |
6946847 | September 20, 2005 | Nishimori |
6949442 | September 27, 2005 | Chiu et al. |
6961368 | November 1, 2005 | Dent |
6964296 | November 15, 2005 | Memory et al. |
6964926 | November 15, 2005 | Huang et al. |
6965837 | November 15, 2005 | Vintola |
6993297 | January 31, 2006 | Smith |
6999297 | February 14, 2006 | Klee et al. |
7009455 | March 7, 2006 | Toncich |
7071776 | July 4, 2006 | Forrester |
7107033 | September 12, 2006 | du Toit |
7113614 | September 26, 2006 | Rhoads |
7151411 | December 19, 2006 | Martin |
7176634 | February 13, 2007 | Kitamura |
7176845 | February 13, 2007 | Fabrega-Sanchez |
7180467 | February 20, 2007 | Fabrega-Sanchez |
7221327 | May 22, 2007 | Toncich |
7312118 | December 25, 2007 | Kiyotoshi |
7332980 | February 19, 2008 | Zhu |
7332981 | February 19, 2008 | Matsuno |
7339527 | March 4, 2008 | Sager |
7369828 | May 6, 2008 | Shamsaifar |
7426373 | September 16, 2008 | Clingman |
7468638 | December 23, 2008 | Tsai |
7531011 | May 12, 2009 | Yamasaki |
7535312 | May 19, 2009 | McKinzie |
7539527 | May 26, 2009 | Jang |
7557507 | July 7, 2009 | Wu et al. |
7596357 | September 29, 2009 | Nakamata |
7655530 | February 2, 2010 | Hosking |
7667663 | February 23, 2010 | Hsiao |
7711337 | May 4, 2010 | McKinzie |
7714676 | May 11, 2010 | McKinzie |
7714678 | May 11, 2010 | du Toit et al. |
7728693 | June 1, 2010 | du Toit et al. |
7795990 | September 14, 2010 | du Toit |
7852170 | December 14, 2010 | McKinzie |
7865154 | January 4, 2011 | Mendolia |
7917104 | March 29, 2011 | Manssen et al. |
7969257 | June 28, 2011 | du Toit |
7991363 | August 2, 2011 | Greene |
8008982 | August 30, 2011 | McKinzie |
8072285 | December 6, 2011 | Spears |
20020191703 | December 19, 2002 | Ling |
20020193088 | December 19, 2002 | Jung |
20030060227 | March 27, 2003 | Sekine |
20030071300 | April 17, 2003 | Yashima et al. |
20030114124 | June 19, 2003 | Higuchi |
20030193997 | October 16, 2003 | Dent |
20030232607 | December 18, 2003 | Le Bars |
20040009754 | January 15, 2004 | Smith |
20040137950 | July 15, 2004 | Bolin |
20040202399 | October 14, 2004 | Kochergin |
20040257293 | December 23, 2004 | Friedrich |
20050032488 | February 10, 2005 | Pehlke |
20050042994 | February 24, 2005 | Otaka |
20050059362 | March 17, 2005 | Kalajo |
20050082636 | April 21, 2005 | Yashima et al. |
20050093624 | May 5, 2005 | Forrester et al. |
20050130608 | June 16, 2005 | Forse |
20050215204 | September 29, 2005 | Wallace |
20050282503 | December 22, 2005 | Onno |
20060003537 | January 5, 2006 | Sinha |
20060009165 | January 12, 2006 | Alles |
20060160501 | July 20, 2006 | Mendolia |
20060183433 | August 17, 2006 | Mori |
20060183442 | August 17, 2006 | Chang et al. |
20060281423 | December 14, 2006 | Caimi |
20070013483 | January 18, 2007 | Stewart |
20070042725 | February 22, 2007 | Poilasne |
20070042734 | February 22, 2007 | Ryu |
20070063788 | March 22, 2007 | Zhu |
20070080888 | April 12, 2007 | Mohamadi |
20070082611 | April 12, 2007 | Terranova et al. |
20070085609 | April 19, 2007 | Itkin |
20070142014 | June 21, 2007 | Wilcox |
20070149146 | June 28, 2007 | Hwang |
20070194859 | August 23, 2007 | Brobston |
20070197180 | August 23, 2007 | McKinzie et al. |
20070200766 | August 30, 2007 | McKinzie |
20070285326 | December 13, 2007 | McKinzie |
20080055016 | March 6, 2008 | Morris |
20080122553 | May 29, 2008 | McKinzie |
20080122723 | May 29, 2008 | Rofougaran |
20080158076 | July 3, 2008 | Walley |
20080274706 | November 6, 2008 | Blin |
20080280570 | November 13, 2008 | Blin |
20090109880 | April 30, 2009 | Kim |
20090149136 | June 11, 2009 | Rofougaran |
20100085260 | April 8, 2010 | McKinzie |
20100156552 | June 24, 2010 | McKinzie |
20100164640 | July 1, 2010 | McKinzie |
20100164641 | July 1, 2010 | McKinzie |
20110014886 | January 20, 2011 | Manssen |
20110043298 | February 24, 2011 | McKinzie |
20110053524 | March 3, 2011 | Manssen |
20110063042 | March 17, 2011 | Mendolia |
20110086630 | April 14, 2011 | Manssen |
20110227666 | September 22, 2011 | Manssen |
20110250852 | October 13, 2011 | Greene |
20110254637 | October 20, 2011 | Manssen |
20110254638 | October 20, 2011 | Manssen |
19614655 | October 1997 | DE |
0685936 | June 1995 | EP |
0909024 | April 1999 | EP |
1137192 | September 2001 | EP |
1298810 | April 2006 | EP |
03276901 | March 1990 | JP |
10209722 | August 1998 | JP |
2000124066 | April 2000 | JP |
2009/064968 | May 2009 | WO |
2011/044592 | April 2011 | WO |
2011/133657 | October 2011 | WO |
2011028453 | October 2011 | WO |
- Ali Tombak, Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications. IEEE Microwave and Wireles Components Letters, vol. 12, Jan. 2002.
- N.K. Pervez et al. High Tunability barium strontium titanate thin films for RF circuit applications. Applied Physics Letters, 2004 American Institute of Physics.
- S. Hyun et al. Effects of strain on the dielectric properties oftunable dielectric SrTi03 thin films. Applied Physics Letters, 2004 American Institute of Physics.
- Hongtao Xu et al. Tunable Microwave Integrated Circuits using BST Thin Film Capacitors with Device Structure Optimization. Integrated Ferroelectrics, Department of Electrical Engineering and Computer Engineering, University of California, 2005.
- Oakes et al. U.S. Appl. No. 13/289,194, filed Nov. 4, 2011.
- Du Toit, “Tunable Microwave Devices With Auto Adjusting Matching Circuit”, U.S. Appl. No. 13/302,617, filed Nov. 22, 2011.
- Du Toit, “Tunable Microwave Devices With Auto-Adjusting Matching Circuit”, U.S. Appl. No. 13/302,649, filed Nov. 22, 2011.
- Eiji, N., “High-Frequency Circuit and Its Manufacture”, Patent Abstracts of Japan, vol. 1998, No. 13, Nov. 30, 1998 & JP 10 209722 A (Seiko Epson Corp), Aug. 7, 1998.
- Greene, “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,463, filed May 16, 2011.
- Greene, “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,589, filed May 16, 2011.
- Hoirup, “Method and Apparatus for Radio Antenna Frequency Tuning”, U.S. Appl. No. 13/030,177, filed Feb. 18, 2011.
- Ida, I. et al., “An Adaptive Impedence Matching System and Its Application to Mobile Antennas”, TENCON 2004, IEEE Region 10 Conference, See Abstract ad p. 544, Nov. 21-24, 2004, 543-547.
- Katsuya, K. , “Hybrid Integrated Circuit Device”, Patent Abstracts of Japan, Publication No. 03-276901, Date of publication of application: Sep. 12, 1991.
- Manssen, “Method and Apparatus for Managing Interference in a Communication Device”, U.S. Appl. No. 61/326,206, filed Apr. 20, 2010.
- Manssen, “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 12/941,972, filed Nov. 8, 2010.
- Manssen, “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 13/005,122, filed Jan. 12, 2011.
- McKinzie, “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,544, filed Nov. 10, 2011.
- McKinzie, “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,550, filed Nov. 10, 2011.
- McKinzie, “Method and Apparatus for Adaptive Impedance Matching”, U.S. Appl. No. 13/217,748, filed Aug. 25, 2011.
- Mendolia, “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/035,417, filed Feb. 25, 2011.
- Paratek Microwave, Inc., “Method and Appartus for Tuning Antennas in a Communication Device”, International Application No. PCT/US11/59620; Filed Nov. 7, 2011.
- Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/046241, Mar. 2, 2011.
- Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/056413, Jul. 27, 2011.
- Patent Cooperation Treaty, “International Search Report and Written Opinion”, PCT Application No. PCT/US08/005085, Jul. 2, 2008.
- Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive COMA Transceivers”, IEEE, Jan. 2005.
- Qiao, et al., “Measurement of Antenna Load Impedance for Power Amplifiers”, The Department of Electrical and Computer Engineering, University of California, San Diego, Sep. 13, 2004.
- Spears, “Methods for Tuning an Adaptive Impedance Matching Network With a Look-Up Table”, U.S. Appl. No. 13/297,951, filed Nov. 16, 2011.
- T.R. Taylor et al., Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films. Applied Physics Letters, 2002 American Institute of Physics.
- S. Hyun et al. Effects of strain on the dielectric properties of tunable dielectric SrTiO3 thin films. Applied Physics Letters, 2004 American Institute of Physics.
Type: Grant
Filed: Mar 9, 2012
Date of Patent: Jul 8, 2014
Assignee: BlackBerry Limited (Waterloo, Ontario)
Inventors: James Oakes (Westford, MA), James Martin (Londonberry, NH)
Primary Examiner: Eric Thomas
Application Number: 13/416,810
International Classification: H01G 4/005 (20060101); H01G 4/228 (20060101);