Patents Issued in July 8, 2008
  • Patent number: 7396689
    Abstract: The invention features a method of adjusting the concentration of at least one but not all of a plurality of analytes in a fluid sample to match a known working range of detection of an analyte assay system, where each of the plurality of analytes may or may not be present within an expected initial concentration range having a high end and a low end, and at least one analyte has a high end expected concentration range that exceeds the high end of the working range of the assay system. The expected concentration of the high concentration analyte is adjusted by a proportional scaling constant, ?, so that the high end of the adjusted expected concentration range is less than or equal to the high end of the working range, without adjusting the expected concentration range of at least one other of the plurality of analytes.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: July 8, 2008
    Assignee: Decision Biomarkers Incorporated
    Inventors: Roger Dowd, Jeffrey G. Donahue
  • Patent number: 7396690
    Abstract: A method for treating magnetic particles present in a solution in a container by redispersion, rinsing or displacement, the particles having novel characteristics under the effect of a specific magnet and being associated or not with biological entities. The magnetic particles undergo at least one low-intensity magnetization where they are disposed in filaments oriented according to the north-south axis of the magnet; the magnetization source and/or container is/are displaced while the magnetic effect is maintained on the magnetic particles; the magnetization source and/or container is/are displaced or the, magnetization is stopped, in order to suppress the magnetic field on the magnetic particles. Preferably, the invention can be used in the field of biology.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: July 8, 2008
    Assignee: BioMerieux S.A.
    Inventor: Bruno Colin
  • Patent number: 7396691
    Abstract: The present invention relates to a method for detecting and/or measuring the concentration of fluoride (F?) or hydrogen fluoride (HF) in a sample, comprising the steps consisting of bringing said sample, in aqueous solution, into contact with a silylated organic compound in order to obtain a measurement solution, with said silylated organic compound being desilylated when it is in the presence of hydrofluoric acid or a fluoride, with the silylated organic compound and the desilylated organic compound being able to be detected and/or measured separately from each other; and detecting and/or measuring, in said measurement solution, the appearance of the desilylated against compound or the disappearance of the silylated organic compound, which takes place if fluoride or hydrogen fluoride is present in the sample. The method enables the presence of hydrogen fluoride or of fluorine to be detected very easily and expediently at concentrations of 10?2 l of HF/106 l of air (10 ppb) or else of 0.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: July 8, 2008
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Eric Ezan, Marie-Astrid Sagot, Philippe Pradelles
  • Patent number: 7396692
    Abstract: Methods for improving the net remnant polarization of a polymer memory cell are disclosed. In one embodiment, the polymer material is heated above the Curie temperature of the polymer material, and the domains of the polymer material are aligned with an externally applied electric field.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: July 8, 2008
    Assignee: Intel Corporation
    Inventors: Hitesh Windlass, Ebrahim Andideh, Daniel C. Diana
  • Patent number: 7396693
    Abstract: A method for testing a semiconductor wafer using an in-line process control, e.g., within one or more manufacturing processes in a wafer fabrication facility and/or test/sort operation. The method includes transferring a semiconductor wafer to a test station. The method includes applying an operating voltage on a gate of a test pattern on a semiconductor wafer using one or more probing devices. The method includes measuring a first leakage current associated with the operating voltage. If the measured first current is higher than a first predetermined amount, the device is an initial failure. If the measured first current is below the first predetermined amount, the device is subjected to a second voltage. The method includes applying the second voltage on the gate of the test pattern on the semiconductor wafer and measuring a second leakage current associated with the second voltage. If the second measured leakage current is higher than a second predetermined amount, the device is an extrinsic failure.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: July 8, 2008
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Atman Zhao, Summer Tseng, W. T. Kary Chien, Excimer Gong
  • Patent number: 7396694
    Abstract: Detection of a profile drift of a polysilicon line is enhanced by a test structure that (1) measures a bottom width and an average width of a cross sectional area of the same polysilicon line (2) correlates the two measurements, and (3) compares such correlation with a previous correlation of bottom width to average width of cross sectional area of the same polysilicon line.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: July 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ishtiaq Ahsan, Edward P. Maciejewski
  • Patent number: 7396695
    Abstract: A thin film transistor array panel includes an insulating substrate, a gate wire formed on the insulating substrate. A gate insulating layer covers the gate wire. A semiconductor pattern is formed on the gate insulating layer. A data wire having source electrodes, drain electrodes and data lines is formed on the gate insulating layer and the semiconductor pattern. A protective layer is formed on the data wire. Pixel electrodes connected to the drain electrode via contact holes are formed on the protective layer. The gate wire and the data wire include triple layers of an adhesion layer, a Ag containing layer and a protection layer. The adhesion layer includes one of Cr, Cr alloy, Ti, Ti alloy, Mo, Mo alloy, Ta and Ta alloy, the Ag containing layer includes Ag or Ag alloy, and the protection layer includes one of IZO, Mo, Mo alloy, Cr and Cr alloy.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Beom-Seok Cho, Chang-Oh Jeong
  • Patent number: 7396696
    Abstract: An GaN light emitting diode (LED) having a nanorod (or, nanowire) structure is disclosed. The GaN LED employs GaN nanorods in which a n-type GaN nanorod, an InGaN quantum well and a p-type GaN nanorod are subsequently formed in a longitudinal direction by inserting the InGaN quantum well into a p-n junction interface of the p-n junction GaN nanorod. In addition, a plurality of such GaN nanorods are arranged in an array so as to provide an LED having much greater brightness and higher light emission efficiency than a conventional laminated-film GaN LED.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: July 8, 2008
    Assignee: Dongguk University Industry Academic Cooperation Foundation
    Inventors: Hwa-Mok Kim, Tae-Won Kang, Kwan-Soo Chung
  • Patent number: 7396697
    Abstract: A method for fabricating a semiconductor light-emitting element according to the present invention includes the steps of (A) providing a striped masking layer on a first Group III-V compound semiconductor, (B) selectively growing a second Group III-V compound semiconductor over the entire surface of the first Group III-V compound semiconductor except a portion covered with the masking layer, thereby forming a current confining layer that has a striped opening defined by the masking layer, (C) selectively removing the masking layer, and (D) growing a third Group III-V compound semiconductor to cover the surface of the first Group III-V compound semiconductor, which is exposed through the striped opening, and the surface of the current confining layer.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: July 8, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshiaki Hasegawa, Toshiya Yokogawa, Atsushi Yamada
  • Patent number: 7396698
    Abstract: A method for fabricating a MEMS device having a top cap and an upper sense plate is described. The method includes producing a device wafer including an etched substrate, etched MEMS device components, and interconnect metal, a portion of the interconnect metal being bond pads and adding a metal wraparound layer to a back side, edges, and a portion of a front side of the device wafer. The method also includes producing an upper wafer including an etched substrate and interconnect metal, bonding the device wafer and the upper wafer, and dicing the bonded upper wafer and device wafer into individual MEMS devices.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: July 8, 2008
    Assignee: Honeywell International Inc.
    Inventors: Robert D. Horning, Jeffrey A. Ridley
  • Patent number: 7396699
    Abstract: A first conductive electrode material is formed on a substrate. Chalcogenide comprising material is formed thereover. The chalcogenide material comprises AxSey. A silver comprising layer is formed over the chalcogenide material. The silver is irradiated effective to break a chalcogenide bond of the chalcogenide material at an interface of the silver comprising layer and chalcogenide material and diffuse at least some of the silver into the chalcogenide material. After the irradiating, the chalcogenide material outer surface is exposed to an iodine comprising fluid effective to reduce roughness of the chalcogenide material outer surface from what it was prior to the exposing. After the exposing, a second conductive electrode material is deposited over the chalcogenide material, and which is continuous and completely covering at least over the chalcogenide material, and the second conductive electrode material is formed into an electrode of the device.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: July 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kristy A. Campbell, John T. Moore
  • Patent number: 7396700
    Abstract: A method for fabricating a thermally enhanced semiconductor device. A support plate having at least one opening is mounted on a heat sink. At least one chip is mounted on the heat sink and received in the opening. An insulating layer is formed over the chip and the support plate and filled in the opening. A plurality of vias are formed in the insulating layer to expose electrode pads on the chip. A conductive layer is deposited on the insulating layer and the exposed electrode pads. A resist layer is formed on the conductive layer and patterned to expose a predetermine part on the conductive layer. Then, a patterned circuit layer is deposited on the exposed part of the conductive layer by electroplating. The patterned resist layer and the conductive layer underneath the patterned resist layer are removed. A plurality of conductive elements are formed on the circuit layer.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: July 8, 2008
    Assignee: Phoenix Precision Technology Corporation
    Inventor: Shih-Ping Hsu
  • Patent number: 7396701
    Abstract: A technique that makes it possible to enhance the reliability of a module using PCB as its module substrate is provided. Solder connection of a single-chip component 43, an integrated chip component 44, and a semiconductor chip IC2 by Pb-free solder is carried out by heat treatment at a temperature below 280° C. using a heat block. Solder connection of a semiconductor chip IC1 by high-melting point solder is carried out by heat treatment at a temperature of 280° C. or higher using a hot jet. Thus, the semiconductor chip IC1 can be solder connected to PCB 38 using high-melting point solder without the following troubles: damage to the PCB 38 due to heat, for example, burning of solder resist; and peeling of prepreg from a core material. Therefore, the semiconductor chip IC1 can be mounted over the PCB 38 with high connection strength.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: July 8, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Kunio Shigemura, Kenji Hanada, Masaki Nakanishi, Takafumi Nishita, Masayoshi Shinoda, Seiichi Tomoi
  • Patent number: 7396702
    Abstract: Ball grid array packages that can be stacked to form highly dense components and the method for stacking ball grid arrays are disclosed. The ball grid array packages comprise flexible or rigid substrates. The ball grid array packages additionally comprise an arrangement for the substantial matching of impedance for the circuits connected to the semiconductor devices.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: July 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Walter L. Moden, Leonard E. Mess, Larry D. Kinsman
  • Patent number: 7396703
    Abstract: A method of making a semiconductor chip assembly includes providing a metal base, a routing line, a bumped terminal and a filler, wherein the routing line contacts the bumped terminal and the filler, then mechanically attaching a semiconductor chip to the metal base, the routing line, the bumped terminal and the filler, then forming an encapsulant, then etching the metal base to expose the bumped terminal, and then grinding the bumped terminal to expose the filler.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 8, 2008
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Cheng-Chung Chen
  • Patent number: 7396704
    Abstract: This method of manufacturing a lid made of a transparent resin comprises a step of introducing a resin into a cavity for molding a protrusion continuous with a cavity for molding a lid in a die; a step of forming a molded body including a lid and a protrusion continuous with the lid by solidifying the resin in the cavity for molding a lid and the cavity for molding a protrusion, respectively; a step of separating the molded body from the die by ejecting an ejector pin to the protrusion; and a step of separating the protrusion from the lid.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: July 8, 2008
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Mitsuo Maeda, Tomohiro Sato, Shigehide Yoshida
  • Patent number: 7396705
    Abstract: A method for manufacturing a thin film transistor (TFT) includes the steps of: providing a substrate (1); and forming a TFT circuit on the substrate using laser-induced chemical vapor deposition (LCVD). Detailedly, the method includes providing the bare substrate, cleaning the substrate with cleaning liquid, and successively forming a gate electrode (2), a gate oxide layer (3), a source electrode (5), and a drain electrode (6) on the substrate by LCVD, thus obtaining the thin film transistor. The forming steps may be controlled by one or more computer programs. The LCVD can be pyrolytic LCVD, photolytic LCVD, or photophysical LCVD. The method is simple and inexpensive.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: July 8, 2008
    Assignee: Innolux Display Corp.
    Inventors: Chiang-Hung Tseng, Jia-Pang Pang, Chih-Cheng Lin, Tse Wu
  • Patent number: 7396706
    Abstract: A specially shaped laser pulse energy profile characterized by different laser wavelengths at different times of the profile provides reduced, controlled jitter to enable semiconductor device micromachining that achieves high quality processing and a smaller possible spot size.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: July 8, 2008
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Yunlong Sun, Richard Harris, William J. Jordens, Lei Sun
  • Patent number: 7396707
    Abstract: A silicon nitride film and a silicon oxide film are formed on a glass substrate. On the silicon oxide film is formed a thin film transistor T including a source region, a drain region, a channel region having a predetermined channel length, a first GOLD region having an impurity concentration lower than the impurity concentration of the source region, a second GOLD region having an impurity concentration lower than the impurity concentration of the drain region, a gate insulation film, and a gate electrode. The length of an overlapping portion in plane between the gate electrode and the second GOLD region in the direction of the channel length is set longer than the length in the direction of the channel region of an overlapping portion in plane between the gate electrode and the first GOLD region.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: July 8, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshihiko Toyoda, Takao Sakamoto, Kazuyuki Sugahara
  • Patent number: 7396708
    Abstract: An etching process of a metal layer of a display panel is provided. First, a substrate with at least one display panel region, a testing device region, and a non-device region is provided. Then, a metal layer is formed over the substrate to cover the display panel region, the testing device region, and the non-device region. Next, a mask is formed on the metal layer to expose a portion of the metal layer. The area of the metal layer exposed by the mask substantially occupies 70%˜88% of the total area of the metal layer. Thereafter, a wet etching process is performed to remove the metal layer exposed by the mask.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: July 8, 2008
    Assignee: Au Optronics Corporation
    Inventors: Shiun-Chang Jan, Yi Lu, Yi-Ming Shan, Yi-Chun Chen
  • Patent number: 7396709
    Abstract: A semiconductor device includes a thin film transistor including a semiconductor layer that includes a channel region, a source region and a drain region, a gate insulating film provided on the semiconductor layer, and a gate electrode for controlling the conductivity of the channel region, wherein the surface of the semiconductor layer includes a minute protruding portion, and the side surface inclination angle of the gate electrode is larger than the inclination angle of the protruding portion of the semiconductor layer.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: July 8, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Naoki Makita
  • Patent number: 7396710
    Abstract: A semiconductor device comprises a fin-type semiconductor region (fin) on a support substrate, having a pair of generally vertical side walls and an upper surface coupling the side walls; an insulated gate electrode structure traversing an intermediate portion of the fin and having side walls in conformity with the side walls of the fin; source/drain regions formed in the fin on both sides of the gate electrode; side wall insulating films including a first portion formed on the side walls of the conductive gate electrode and a second portion formed on the side walls of the fin and having an opening in the source/drain regions extending from an upper edge to a lower edge of each of the side walls; a silicide layer formed on each surface of the source/drain regions exposed in the opening of the second side wall insulating film; and source/drain electrodes contacting the silicide layers.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: July 8, 2008
    Assignee: Fujitsu Limited
    Inventor: Masaki Okuno
  • Patent number: 7396711
    Abstract: Embodiments of the present invention describe a method of forming a multi-cornered film. According to the embodiments of the present invention, a photoresist mask is formed on a hard mask film formed on a film. The hard mask film is then patterned in alignment with the photoresist mask to produce a hard mask. The width of the photoresist mask is then reduced to form a reduced width photoresist mask. A first portion of the film is then etched in alignment with the hard mask. The hard mask is then etched in alignment with the reduced width photoresist mask to form a reduced width hard mask. A second portion of the film is then etched in alignment with the reduced width hard mask.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: July 8, 2008
    Assignee: Intel Corporation
    Inventors: Uday Shah, Brian S. Doyle, Justin K. Brask, Robert S. Chau
  • Patent number: 7396712
    Abstract: A thin film processing method for processing the thin film by irradiating an optical beam to the thin film. A unit of the irradiation of the optical beam includes a first and a second optical pulse irradiation to the thin film, and the unit of the irradiation is carried out repeatedly to process the thin film. The first and the second optical pulse have pulse waveforms different from each other. Preferably, a unit of the irradiation of the optical beam includes the a first optical pulse irradiated to the thin film and a second optical pulse irradiated to the thin film starting substantially simultaneous with the first optical pulse irradiation. In this case, the relationship between the first and the second optical pulse satisfies (the pulse width of the first optical pulse)<(the optical pulse of the second optical pulse) and (the irradiation intensity of the first optical pulse)?(the irradiation intensity of the second optical pulse).
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: July 8, 2008
    Assignees: NEC Corporation, Sumitomo Heavy Industries, Ltd
    Inventors: Hiroshi Tanabe, Akihiko Taneda
  • Patent number: 7396713
    Abstract: A method for forming asymmetric spacer structures for a semiconductor device includes forming a spacer layer over at least a pair of adjacently spaced gate structures disposed over a semiconductor substrate. The gate structures are spaced such that the spacer layer is formed at a first thickness in a region between the gate structures and at a second thickness elsewhere, the second thickness being greater than said first thickness. The spacer layer is etched so as to form asymmetric spacer structures for the pair of adjacently spaced gate structures.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: July 8, 2008
    Assignee: International Business Machines Corporation
    Inventor: Haining Yang
  • Patent number: 7396714
    Abstract: A process is provided for making a PFET and an NFET. Areas in a first semiconductor region adjacent to a gate stack are recessed. A lattice-mismatched semiconductor layer is grown in the recesses to apply a strain to the channel region of the PFET adjacent thereto. A layer of the first semiconductor material can be grown over the lattice-mismatched semiconductor layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: July 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Dureseti Chidambarrao, Oleg G. Gluschenkov, An L. Steegen, Haining S. Yang
  • Patent number: 7396715
    Abstract: Patterning is performed in such a manner that an end portion fabricated of a second gate insulating film partially overlaps an end portion fabricated of a first gate insulating film. Then, a surface recovery treatment is performed in the aforementioned state where the first and second gate insulating films partially overlap each other.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: July 8, 2008
    Assignee: Fujitsu Limited
    Inventor: Kazuto Ikeda
  • Patent number: 7396716
    Abstract: The present invention provides a method of fabricating a microelectronics device. In one aspect, the method comprises forming a capping layer 610 over gate structures 230 located over a microelectronics substrate 210 wherein the gate structures 230 include sidewall spacers 515 and have a doped region 525 located between them. A protective layer 710 is placed over the capping layer 610 and the doped region 525, and a portion of the protective layer 710 and capping layer 610 that are located over the gate structures are removed to expose a top surface of the gate structures 230. A remaining portion of the protective layer 710 and capping layer 610 remains over the doped region 525. With the top surface of the gate structures 230 exposed, metal is incorporated into the gate structures to form gate electrodes 230.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: July 8, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Freidoon Mehrad, Shaofeng Yu, Joe G. Tran
  • Patent number: 7396717
    Abstract: A method of forming a MOS transistor, in which a co-implantation is performed to implant an implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect. The implant comprises carbon, a hydrocarbon, or a derivative of the hydrocarbon, such as one selected from a group consisting of C, Chd xHy+, and (CxHy)n+, wherein x is a number of 1 to 10, y is a number of 4 to 20, and n is a number of 1 to 1000.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: July 8, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Hsiang-Ying Wang, Chin-Cheng Chien, Tsai-Fu Hsiao, Ming-Yen Chien, Chao-Chun Chen
  • Patent number: 7396718
    Abstract: A technique is provided that allows the formation of contact etch stop layers having different intrinsic stress for different transistors, while substantially avoiding any device degradation owing to the partial removal of the contact etch stop layer. Hereby, an additional thin etch stop layer is provided prior to the formation of the contact etch stop layers, thereby substantially maintaining the integrity of metal silicide regions, when a portion of an initially deposited contact etch stop layer is removed.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: July 8, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kai Frohberg, Matthias Schaller, Joerg Hohage, Holger Schuehrer
  • Patent number: 7396719
    Abstract: A method of forming a high dielectric film using atomic layer deposition (ALD), and a method of manufacturing a capacitor having the high dielectric film, include supplying a precursor containing a metal element to a semiconductor substrate and purging a reactor; supplying an oxidizer and purging the reactor; and supplying a reaction source containing nitrogen and purging the reactor.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-seok Kim, Hong-bae Park, Bong-hyun Kim, Sung-tae Kim, Jong-wan Kwon, Jung-hyun Lee, Ki-chul Kim, Jae-soon Lim, Gab-jin Nam, Young-sun Kim
  • Patent number: 7396720
    Abstract: A first dielectric layer is formed over a substrate. A single layer first conductive layer that acts as a floating gate is formed over the first dielectric layer. A trough is formed in the first conductive layer to increase the capacitive coupling of the floating gate with a control gate. An intergate dielectric layer is formed over the floating gate layer. A second conductive layer is formed over the second dielectric layer to act as a control gate.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: July 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Gurtej S. Sandhu
  • Patent number: 7396721
    Abstract: According to the present invention, there is provided a semiconductor device fabrication method comprising: forming a first insulating film on a semiconductor substrate; forming a first conductive layer on the first insulating film; forming a second insulating film on the first conductive layer in a first processing chamber isolated from an outside; performing a modification process on the second insulating film in the first processing chamber, and unloading the semiconductor substrate from the first processing chamber to the outside; annealing the second insulating film in a second processing chamber; and forming a second conductive layer on the second insulating film.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: July 8, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Isao Kamioka, Yoshio Ozawa
  • Patent number: 7396722
    Abstract: The present invention provides for a memory device comprising a bulk substrate. A first lightly doped region is formed in the bulk substrate. A first active region is formed in the first lightly doped region. A second lightly doped region is formed in the bulk substrate. A second active region is formed in the second lightly doped region. A third active region is formed in the bulk substrate. An oxide layer is disposed outwardly from the bulk substrate and a floating gate layer is disposed outwardly from the oxide layer. In a particular aspect, a memory device is provided that is a single poly electrically erasable programmable read-only memory (EEPROM) with a drain or source electrode configured to remove negative charge from the gate and erase the EEPROM, without a separate erase region.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: July 8, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Jozef Mitros, Victor Ivanov
  • Patent number: 7396723
    Abstract: A method of manufacturing an EEPROM device can reduce the cell area. The method of manufacturing an Electrically Erasable Programmable Read-Only Memory (EEPROM) includes forming a mask pattern over a semiconductor substrate; forming a gate oxide layer over a top of the semiconductor substrate exposed through the mask pattern; forming access gates which are self-aligned with both side walls of the mask pattern, over a top of the gate oxide layer; removing the mask pattern; forming first dielectric spacers to be attached to side walls of the access gates; forming an insulating layer adapted to cover the access gates and the first dielectric spacers; and forming two cell gates, which are self-aligned with opposite side walls of the two access gates, respectively, each first dielectric spacer being interposed between a corresponding cell gate and a corresponding access gate, the cell gates separately arranged over a top of the insulating layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 8, 2008
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Dong-Oog Kim
  • Patent number: 7396724
    Abstract: Methods of fabricating a semiconductor device including a dual-hybrid liner in which an underlying silicide layer is protected from photoresist stripping chemicals by using a hard mask as a pattern during etching, rather than using a photoresist. The hard mask prevents exposure of a silicide layer to photoresist stripping chemicals and provides very good lateral dimension control such that the two nitride liners are well aligned.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 8, 2008
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing Ltd.
    Inventors: Victor Chan, Haining S. Yang, Yong M. Lee, Eng H. Lim
  • Patent number: 7396725
    Abstract: A method of manufacturing a semiconductor device includes forming an insulating layer, a first conductive layer, a dielectric layer and a capping conductive layer over a semiconductor substrate in which a cell region is defined. The capping conductive layer and the dielectric layer is etched to form contact holes in a first region of a drain select line and a source select line region of the cell region. A second conductive layer, a tungsten silicide layer and a hard mask layer are formed over the semiconductor substrate including the contact holes. The hard mask layer, the tungsten silicide layer, the second conductive layer, the capping conductive layer, the dielectric layer and the first conductive layer are etched to form a cell gate. The hard mask layer, the tungsten silicide layer, the second conductive layer and the first conductive layer of the first region are etched to form a drain select line and a source select line.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: July 8, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Soo Jin Kim
  • Patent number: 7396726
    Abstract: An elongate stacked semiconductor structure is formed on a substrate. The stacked semiconductor structure includes a second semiconductor material region disposed on a first semiconductor material region. The first semiconductor material region is selectively doped to produce spaced-apart impurity-doped first semiconductor material regions and a lower dopant concentration first semiconductor material region therebetween. Etching exposes a portion of the second semiconductor material region between the impurity-doped first semiconductor material regions. The etching removes at least a portion of the lower dopant concentration first semiconductor material region to form a hollow between the substrate and the portion of the second semiconductor material region between the impurity-doped first semiconductor material regions. An insulation layer that surrounds the exposed portion of the second semiconductor material region between the impurity-doped first semiconductor material regions is formed.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Woo Oh, Dong-Gun Park, Dong-Won Kim, Sung-Young Lee
  • Patent number: 7396727
    Abstract: A transistor which may effectively control the short channel effect with a vertical transistor structure. This structure may prevent the degradation of a transistor's performance caused by the hot carrier effect. The transistor has a source region having a concentration of implanted impurity ions on a semiconductor substrate; a channel region having a cylindrical shape over the source region; a drain region formed over the channel region; a gate insulation layer formed over the source region, a side of the channel region, and the drain region; and a gate conductor extending over an upper portion and one side of the channel region.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: July 8, 2008
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Jeong-Ho Park
  • Patent number: 7396728
    Abstract: A method forms a semiconductor device comprising isolation structures that selectively induce strain into active regions of NMOS and PMOS devices. Form a hard mask layer over a semiconductor body. A resist layer is formed on the hard mask layer that exposes and defines isolation regions. The hard mask layer is patterned and trench regions are formed using the hard mask layer as a mask. An oxide trench liner that induces compressive strain into active regions of the PMOS region is formed within trench regions of the PMOS region. A nitride trench liner that induces tensile strain into active regions of the NMOS region is formed within the NMOS trench regions.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: July 8, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Ajith Varghese, Narendra Singh Mehta, Jonathan McAulay Holt
  • Patent number: 7396729
    Abstract: A semiconductor device is formed by providing a substrate. A trench is formed in the substrate. Beveled surfaces are formed at upper portions of sidewalls of the trench opposite a bottom surface of the trench, respectively. An oxide layer is formed in the trench such that the oxide layer is thicker on the beveled surfaces of the trench than on other surfaces of the trench.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul Jeong, Wook-Hyoung Lee
  • Patent number: 7396730
    Abstract: Integrated circuit devices include an integrated circuit substrate having a channel region therein. A gate pattern is disposed on a top surface of the channel region. A depletion barrier layer covers a surface of the integrated circuit substrate adjacent opposite sides of the gate pattern and extending along a portion of a lateral face of the channel region. A source/drain layer is disposed on the depletion barrier layer and electrically contacting the lateral face of the channel region in a region not covered by the depletion barrier layer. The channel region may protrude from a surface of the substrate. The depletion barrier layer may be an L-shaped depletion barrier layer and the device may further include a device isolation layer disposed at a predetermined portion of the substrate through the source/drain layer and the depletion barrier layer. The depletion barrier layer and the device isolation layer may be formed of the same material.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ming Li
  • Patent number: 7396731
    Abstract: The present invention refers to a method for preparing a non-self-aligned heterojunction bipolar transistor comprising: preparing a patterned emitter metal on an emitter epi layer of a HBT epi structure on a substrate; preparing an emitter epitaxy below the emitter metal; applying a resist layer on the top surface covering the emitter metal and emitter epitaxy, and the base layer; applying lithography leaving the emitter epitaxy and the emitter metal covered by the resist vertically with a width pD and leaving a pattern according to the mask in the resist; depositing base metal on the entire surface; and removing the remaining resist and the base metal covering the resist defining a base metal, the base metal being spaced from the emitter epitaxy and the emitter metal by a distance xD from 0.05 ?m to 0.7 ?m. The present invention refers to a non-self-aligned heterojunction bipolar transistor as prepared by this method.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 8, 2008
    Assignee: HRL Laboratories, LLC
    Inventor: Charles H. Fields
  • Patent number: 7396732
    Abstract: A method for forming deep trench or via airgaps in a semiconductor substrate is disclosed comprising the steps of patterning a hole in the substrate, partly fill said hole with a sacrificial material (e.g. poly-Si), depositing spacers on the sidewalls of the unfilled part of the hole (e.g. TEOS) to narrow the opening, removing through said narrowed opening the remaining part of the sacrificial material (e.g. by isotropic etching) and finally sealing the opening of the airgap by depositing a conformal layer (TEOS) above the spacers. The method of forming an airgap is demonstrated successfully for use as deep trench isolation structures in BiCMOS devices.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: July 8, 2008
    Assignee: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventor: Eddy Kunnen
  • Patent number: 7396733
    Abstract: A method for manufacturing a semiconductor substrate, including: forming a first semiconductor layer on a semiconductive base; forming a second semiconductor layer, having a smaller etching selection ratio than that of the first semiconductor layer, on the first semiconductor layer; removing part of the first semiconductor layer and the second semiconductor layer in the vicinity of device region, so as to form a support hole that exposes the semiconductive base; forming a support forming layer on the semiconductive base, so that the support hole is buried and the second semiconductor layer is covered; leaving an region that includes the support hole and the element region, etching the rest, so that an exposed surface is formed, where a part of edges of a support, the first semiconductor layer, and of the second semiconductor layer located at the lower side of the support are exposed; forming a cavity between the second semiconductor layer and the semiconductive base by etching the first semiconductor layer th
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: July 8, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Kei Kanemoto
  • Patent number: 7396734
    Abstract: In a method of manufacturing a bonded substrate stack by bonding the bonding surfaces of the first and second substrates, a bonding surface having a hydrophobic region and a hydrophilic region is formed by partially processing at least one of the bonding surfaces of the first and second substrates, and then the bonding surfaces of the first and second substrates are bonded to each other.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: July 8, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventor: Ryuji Moriwaki
  • Patent number: 7396735
    Abstract: A semiconductor element heat dissipating member is provided which has excellent heat dissipation characteristics and adhesion characteristics and enables production of a semiconductor device at a low cost. A semiconductor device using the same, and a method of producing the same are also provided. The semiconductor element heat dissipating member has a conductive substrate and an electrically insulating amorphous carbon film containing hydrogen, and the electrically insulating amorphous carbon film is formed at least on a region of the conductive substrate on which region a semiconductor element is to be mounted.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: July 8, 2008
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusyo
    Inventors: Kazuyuki Nakanishi, Tadashi Oshima, Hideo Hasegawa, Hiroyuki Mori, Hideo Tachikawa, Yukio Miyachi, Yasushi Yamada, Hiroyuki Ueda, Masayasu Ishiko
  • Patent number: 7396736
    Abstract: A magnetic sensor includes a thin deformable membrane made of a conductive material forming a first plate of a capacitor which conducts an electric current therethrough. A second capacitor plate of the capacitor includes a doped region of a semiconductor substrate. A layer of a gaseous dielectric separates the two plates. The membrane deforms due to the effect of the Lorentz force generated by a magnetic field lying in the plane of the membrane and perpendicular to the lines of current being conducted therethrough. In addition, a process for fabricating this magnetic sensor is also provided as well as a device for measuring a magnetic field using the magnetic sensor.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: July 8, 2008
    Assignee: STMicroelectronics SA
    Inventors: Hervé Jaouen, Thomas Skotnicki, Malgorzata Jurczak
  • Patent number: 7396737
    Abstract: A method of manufacturing a semiconductor device including forming a pad oxide layer on a semiconductor substrate, forming a spacer oxide layer pattern on sidewalls of the pad oxide layer, and forming a nitride layer on the pad oxide layer. The method further includes forming a groove in the nitride layer by selectively removing the spacer oxide layer pattern, forming a trench in a region where the groove is formed, and filling the trench with a thermal oxide layer so as to form a shallow trench isolation (STI) layer. In the method, the line width of the STI layer depends on the thickness of the spacer oxide layer, and so the STI layer can be formed to a line width W smaller than a design rule.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: July 8, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jong-Woon Choi
  • Patent number: 7396738
    Abstract: A method of forming a semiconductor memory device includes providing a semiconductor substrate having a cell region and a peripheral region. A gate dielectric layer is formed over the semiconductor substrate in the peripheral region. An insulating layer is formed over the gate dielectric layer. An isolation trench is formed in the peripheral region, the isolation trench defining first and second trenches having different opening widths. A first gap-fill layer is provided over the isolation trench and on the step. The first gap-fill layer has a first portion on a sidewall of the insulating layer, a second portion on a sidewall of the gate dielectric layer, and a third portion at least partly filling the second trench of the isolation trench, the second portion being thicker than the first portion. A wet etch is performed to remove at least part of the first gap-fill layer. A second gap-fill layer is provided over the first gap-fill layer in the isolation trench to form an isolation structure.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: July 8, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Jung Lee