Patents Issued in August 12, 2008
  • Patent number: 7410850
    Abstract: To provide a method and a device for subjecting a film to be treated to a heating treatment effectively by a lamp annealing process, ultraviolet light is irradiated from the upper face side of a substrate where the film o be treated is formed and infrared light is irradiated from the lower face side by which the lamp annealing process is carried out. According to such a constitution, the efficiency of exciting the film to be treated is significantly promoted since electron excitation effect by the ultraviolet light irradiation is added to vibrational excitation effect by the infrared light irradiation and strain energy caused in the film to be treated by the lamp annealing process is removed or reduced by a furnace annealing process.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: August 12, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani
  • Patent number: 7410851
    Abstract: A power semiconductor switching device such as a power MOSFET that includes breakdown voltage enhancement regions formed by self-alignment.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: August 12, 2008
    Assignee: International Rectifier Corporation
    Inventors: Timothy Henson, Jianjun Cao
  • Patent number: 7410852
    Abstract: An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: August 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: Scott D. Allen, Cyril Cabral, Jr., Kevin K. Dezfulian, Sunfei Fang, Brian J. Greene, Rajarao Jammy, Christian Lavoie, Zhijiong Luo, Hung Ng, Chun-Yung Sung, Clement H. Wann, Huilong Zhu
  • Patent number: 7410853
    Abstract: In a method of forming a nanowire in a semiconductor device, a trench is formed by partially etching a bulk semiconductor substrate. An insulation layer pattern is formed on the substrate to fill up the trench. The insulation layer pattern covers a first region of the substrate where the nanowire is formed, and additionally covers a second region of the substrate connected to the first region. An opening is formed by etching an exposed portion of the substrate by the insulation layer pattern. A spacer is formed on sidewalls of the opening and the insulation layer pattern. The nanowire connected to the second region is formed by anisotropically etching a portion of the substrate exposed by the opening until a portion of the insulation layer pattern formed in the trench is exposed.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: August 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Joon Ahn, Choong-Ho Lee, Chul Lee
  • Patent number: 7410854
    Abstract: Generally disclosed is a method of a device comprising forming a polysilicon stack including a first and a second polysilicon layer with an intervening etch stop layer, wherein the first polysilicon layer height is at least one third a height of the polysilicon stack height, removing the second polysilicon layer and the etch stop layer, and reacting the first polysilicon layer with a metal to fully silicide the first polysilicon layer. Fully silicided (FUSI) gates can hence be formed with uniform gate height. The thin first polysilicon layer allows for siliciding with a lower thermal budge and with better uniformity of the silicide concentration throughout the layer.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: August 12, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liang-Gi Yao, Hun-Jan Tao, Shih-Chang Chen, Mong-Song Liang
  • Patent number: 7410855
    Abstract: A semiconductor device includes a semiconductor substrate, an nMISFET formed on the substrate, the nMISFET including a first dielectric formed on the substrate and a first metal gate electrode formed on the first dielectric and formed of one metal element selected from Ti, Zr, Hf, Ta, Sc, Y, a lanthanoide and actinide series and of one selected from boride, silicide and germanide compounds of the one metal element, and a pMISFET formed on the substrate, the pMISFET including a second dielectric formed on the substrate and a second metal gate electrode formed on the second dielectric and made of the same material as that of the first metal gate electrode, at least a portion of the second dielectric facing the second metal gate electrode being made of an insulating material different from that of at least a portion of the first dielectric facing the first metal gate electrode.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: August 12, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Reika Ichihara, Yoshinori Tsuchiya, Masato Koyama, Akira Nishiyama
  • Patent number: 7410856
    Abstract: A vertical transistor forming method includes forming a first pillar above a first source/drain and between second and third pillars, providing a first recess between the first and second pillars and a wider second recess between the first and third pillars, forming a gate insulator over the first pillar, forming a front gate and back gate over opposing sidewalls of the first pillar by depositing a gate conductor material within the first and second recesses and etching the gate conductor material to substantially fill the first recess, forming the back gate, and only partially fill the second recess, forming the front gate, forming a second source/drain elevationally above the first source/drain, and providing a transistor channel in the first pillar. The channel is operationally associated with the first and second sources/drains and with the front and back gates to form a vertical transistor configured to exhibit a floating body effect.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: August 12, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Kris K. Brown
  • Patent number: 7410857
    Abstract: After an ONO film in which a silicon nitride film (22) formed by a plasma nitriding method using a plasma processor having a radial line slot antenna is sandwiched by silicon oxide films (21), (23), a bit line diffusion layer (17) is formed in a memory cell array region (11) by an ion implantation as a resist pattern (16) taken as a mask, then lattice defects are given to the silicon nitride film (22) by a further ion implantation. Accordingly, a highly reliable semiconductor memory device can be realized, in which a high quality nitride film is formed in a low temperature condition, in addition, the nitride film can be used as a charge trap film having a charge capture function sufficiently adaptable for a miniaturization and a high integration which are recent demands.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: August 12, 2008
    Assignee: Spansion LLC.
    Inventors: Masahiko Higashi, Manabu Nakamura, Kentaro Sera, Hiroyuki Nansei, Yukihiro Utsuno, Hideo Takagi, Tatsuya Kajita
  • Patent number: 7410858
    Abstract: An apparatus and methods for modifying isolation structure configurations for MOS devices to either induce or reduce tensile and/or compressive stresses on an active area of the MOS devices. The isolation structure configurations according to the present invention include the use of low-modulus and high-modulus, dielectric materials, as well as, tensile stress-inducing and compressive stress-inducing, dielectric materials, and further includes altering the depth of the isolation structure and methods for modifying isolation structure configurations, such as trench depth and isolation materials used, to modify (i.e., to either induce or reduce) tensile and/or compressive stresses on an active area of a semiconductor device.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 12, 2008
    Assignee: Intel Corporation
    Inventors: Qing Ma, Jin Lee, Harry Fujimoto, Changhong Dai, Shiuh-Wuu Lee, Travis Eiles, Krishna Seshan
  • Patent number: 7410859
    Abstract: A stressed MOS device and a method for its fabrication are provided. The MOS device comprises a substrate having a surface, the substrate comprising a monocrystalline semiconductor material having a first lattice constant. A channel region is formed of the monocrystalline silicon material adjacent the surface. A stress inducing monocrystalline semiconductor material having a second lattice constant greater than the first lattice constant is grown under the channel region to exert a horizontal tensile stress on the channel region.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: August 12, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Igor Peidous, Linda R. Black, Frank Wirbeleit
  • Patent number: 7410860
    Abstract: Apparatus and Methods for the self-alignment of separated regions in a lateral MOSFET of an integrate circuit. In one embodiment, a method comprising, forming a relatively thin dielectric layer on a surface of a substrate. Forming a first region of relatively thick material having a predetermined lateral length on the surface of the substrate adjacent the relatively thin dielectric layer. Implanting dopants to form a top gate using a first edge of the first region as a mask to define a first edge of the top gate. Implanting dopants to form a drain contact using a second edge of the first region as a mask to define a first edge of the drain contact, wherein the distance between the top gate and drain contact is defined by the lateral length of the first region.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: August 12, 2008
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 7410861
    Abstract: DRAM trench capacitors formed by, inter alia, deposition of conductive material into a trench or doping the semiconductor region in which the trench is defined.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: August 12, 2008
    Assignee: AmberWave Systems Corporation
    Inventors: Mayank Bulsara, Matthew T. Currie, Anthony J. Lochtefeld
  • Patent number: 7410862
    Abstract: A trench capacitor with an isolation collar in a semiconductor substrate where the substrate adjacent to the isolation collar is free of dopants caused by auto-doping. The method of fabricating the trench capacitor includes the steps of forming a trench in the semiconductor substrate; depositing a dielectric layer on a sidewall of the trench; filling the trench with a first layer of undoped polysilicon; etching away the first layer of undoped polysilicon and the dielectric layer from an upper section of the trench whereby the semiconductor substrate is exposed at the sidewall in the upper section of the trench; forming an isolation collar layer on the sidewall in the upper section of the trench; and filling the trench with a second layer of doped polysilicon.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 12, 2008
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng Cheng
  • Patent number: 7410863
    Abstract: A method of filling vias for a PCRAM cell with a metal is described. A PCRAM intermediate structure including a substrate, a first conductor, and an insulator through which a via extends has a metallic material formed within the via and on a surface of the insulator. The metallic material may be deposited on the surface and within the via. A hard mask of a flowable oxide is deposited over the metallic material in the via to protect the metallic material in the via. A subsequent dry sputter etch removes the metallic material from the surface of the insulator and a portion of the hard mask. After complete removal of the hard mask, a glass material is recessed over the metallic material in the via. Then, a layer of a metal-containing material is formed over the glass material. Finally, a second conductor is formed on the surface of the insulator.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 12, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Li Li, Jiutao Li
  • Patent number: 7410864
    Abstract: A method for fabricating a trench includes providing a semiconductor substrate made of a semiconductor material. A trench is etched into a surface of the semiconductor substrate such that a trench wall is produced. At least one layer is provided on the trench wall. This step is performed in such a way that the topmost layer provided on the trench wall is constructed from a sealing material. A selective epitaxy method is carried out in such a way that a monocrystalline semiconductor layer is formed on the surface of the semiconductor substrate and preferably no semiconductor material grows directly on the sealing material. A partial trench is etched in a surface of the epitaxially grown semiconductor layer. This step is performed in such a way that at least part of the layer made of the sealing material is uncovered. An uncovered part of the layer made of the sealing material is then removed.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: August 12, 2008
    Assignee: Infineon Technologies AG
    Inventor: Dietmar Temmler
  • Patent number: 7410865
    Abstract: Disclosed herein is a method for fabricating a capacitor of a semiconductor device. The method comprises the steps of forming an interlayer insulating film on a semiconductor substrate, forming contact plugs connected to the semiconductor substrate though the interlayer insulating film, forming a first storage node oxide film include a PSG film on the contact plugs, cleaning the semiconductor substrate on which the first storage node oxide film include a PSG film is formed, using isopropyl alcohol (IPA), to remove water-soluble compounds, and forming a second storage node oxide film on the first storage node oxide film.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: August 12, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Soo Jae Lee
  • Patent number: 7410866
    Abstract: A method for forming a capacitor in a semiconductor device comprises forming an inter-layer layer on a semi-finished substrate; etching the inter-layer insulation layer to form a plurality of first contact holes; forming a first insulation layer on sidewalls of the first contact holes; forming a plurality of storage-node contact plugs filled into the first contact holes; forming a second insulation layer with a different etch rate from the first insulation layer over the storage-node contact plugs; forming a third insulation layer on the second insulation layer; sequentially etching the third insulation layer and the second insulation layer to form a plurality of second contact holes exposing the storage-node contact plugs; and forming the storage node on each of the second contact holes.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: August 12, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jun-Hyeub Sun, Sung-Kwon Lee, Sung-Yoon Cho
  • Patent number: 7410867
    Abstract: Vertical body transistors with adjacent horizontal gate layers are used to form a memory array in a high density flash electrically erasable and programmable read only memory (EEPROM) or a logic array in a high density field programmable logic array (FPLA). The transistor is a field-effect transistor (FET) having an electrically isolated (floating) gate that controls electrical conduction between source regions and drain regions. If a particular floating gate is charged with stored electrons, then the transistor will not turn on and will provide an indication of the stored data at this location in the memory array within the EEPROM or will act as the absence of a transistor at this location in the logic array within the FPLA.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: August 12, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7410868
    Abstract: In a method for fabricating a nonvolatile memory element a substrate is provided, a nanomask structure is fabricated on the substrate and a self-assembled monolayer of an organic memory molecule is grown on the substrate on a region not covered by the nanomask structure. A surface of the substrate is patterned by means of an electrode beam in order to form regions with organic memory molecules and regions without organic memory molecules and a top contact is applied to the monolayer formed from the organic memory molecules and the nanomask.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: August 12, 2008
    Assignee: Infineon Technologies AG
    Inventor: Klaus-Dieter Ufert
  • Patent number: 7410869
    Abstract: In a method of manufacturing a semiconductor device such as a flash memory device, an insulating pattern having an opening is formed to partially expose a surface of a substrate. A first silicon layer is formed on the exposed surface portion of the substrate and the insulating pattern. The first silicon layer has an opened seam overlying the previously exposed portion of the substrate. A heat treatment on the substrate is performed at a temperature sufficient to induce silicon migration so as to cause the opened seam to be closed via the silicon migration. A second silicon layer is then formed on the first silicon layer. Thus, surface profile of a floating gate electrode obtained from the first and second silicon layers may be improved.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: August 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun-Hyeoung Leam, Hyeon-Deok Lee, Young-Sub You, Won-Jun Jang, Woong Lee, Jung-Hyun Park, Sang-Kyoung Lee, Jung-Geun Jee, Sang-Hoon Lee
  • Patent number: 7410870
    Abstract: Methods of forming non-volatile memory devices include steps to define features that enhance shielding of electronic interference between adjacent floating gate electrodes and improve leakage current and threshold voltage characteristics. These features also support improved leakage current and threshold voltage characteristics in string selection transistors that are coupled to non-volatile memory cells.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: August 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Won Kim, Jong-Ho Park, Yong-Seok Kim
  • Patent number: 7410871
    Abstract: A split gate type flash memory device and a method of manufacturing the split gate type flash memory device are disclosed. The split gate type flash memory device includes a silicon epitaxial layer formed in an active region of a bulk silicon substrate and a disturbance-preventing insulating film formed in the bulk silicon substrate between a source region and a drain region of the device. According to selected embodiments of the invention, the disturbance-preventing insulating film is formed using a Shallow Trench Isolation (STI) forming process.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: August 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jin-kuk Chung
  • Patent number: 7410872
    Abstract: A method for sealing electronic devices formed on a semiconductor substrate includes forming a plurality of first electronic devices adjacent a first portion of the semiconductor substrate, with each first electronic device including a first region comprising at least one first conductive layer projecting from the semiconductor substrate. A first sealing layer is formed adjacent the first regions for sealing the plurality of first electronic devices. A protective layer is formed adjacent the first sealing layer. The protective layer is etched to form protective spacers adjacent sidewalls of the first regions. The method further includes forming a plurality of second electronic devices adjacent a second portion of the semiconductor substrate, with each second electronic device including a second region comprising a second conductive layer projecting from the semiconductor substrate.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: August 12, 2008
    Assignee: STMicroelectronics S.r.l.
    Inventor: Alfonso Maurelli
  • Patent number: 7410873
    Abstract: A method of forming a semiconductor device uses an anneal technique to planarize and round corners of a trench formed in a substrate. The substrate is annealed under a normal pressure in an inert atmosphere, such as an atmosphere containing one of argon, helium, and neon, or an atmosphere of a gas mixture of hydrogen of 4% or less and one of argon, helium, and neon at a temperature of between 900° C. and 1050° C. for a time of between 30 seconds and 30 minutes to round the trench corners and planarize the trench side walls. Alternatively, after removing a mask for forming the trench, the substrate can be annealed in the inert atmosphere. This provides easy and inexpensive way of planarizing the trench side walls, as well as rounding of the trench corners. Moreover, by removing the mask for forming the trench before annealing enables the semiconductor device to have a highly reliable gate insulator film with good reproducibility.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: August 12, 2008
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventor: Hitoshi Kuribayashi
  • Patent number: 7410874
    Abstract: A method for forming TGO structures includes providing a substrate containing regions of first, second and third kinds in which devices with respective first, second and third gate oxide layers of different thicknesses are to be formed. The second gate oxide layer is formed over the substrate and then removed from regions of the first kind where the first gate oxide layer is subsequently grown. A first conductive layer is deposited over the substrate. The first conductive layer and second gate oxide layer are subsequently removed from regions of the third kind. The third gate oxide layer followed by deposition of a second conductive layer is formed over the substrate and then removed except from over regions of the third kind.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: August 12, 2008
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Purakh Raj Verma, Sanford Chu, Hwee Ngoh Chua
  • Patent number: 7410875
    Abstract: A method for fabricating a semiconductor structure is described. A substrate is provided, having thereon a gate structure and a spacer on the sidewall of the gate structure and having therein an S/D extension region beside the gate structure. An opening is formed in the substrate beside the spacer, and then an S/D region is formed in or on the substrate at the bottom of the opening. A metal silicide layer is formed on the S/D region and the gate structure, and then a stress layer is formed over the substrate.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: August 12, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Li-Shian Jeng, Tzyy-Ming Cheng
  • Patent number: 7410876
    Abstract: A method for making a semiconductor device, comprising (a) providing a structure comprising a gate electrode (207) disposed on a substrate (203); (b) creating first (213) and second (214) pre-amorphization implant regions in the substrate such that the first and second pre-amorphization implant regions are asymmetrically disposed with respect to said gate electrode; (c) creating first (219) and second (220) spacer structures adjacent to first and second sides of the gate electrode, wherein the first and second spacer structures overlap the first and second pre-amorphization implant regions; and (d) creating source (217) and drain (218) regions in the substrate adjacent, respectively, to the first and second spacer structures.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: August 12, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Byoung W. Min, Jon D. Cheek, Venkat R. Kolagunta
  • Patent number: 7410877
    Abstract: A method for manufacturing a SIMOX wafer includes: heating a silicon wafer, implanting oxygen ions so as to form a high oxygen concentration layer; implanting oxygen ions into the silicon wafer obtained by the forming of the high oxygen concentration layer to form an amorphous layer; and heat-treating the silicon wafer to form a buried oxide layer, wherein in the forming of the amorphous layer, the implantation of oxygen ions is carried out after preheating the silicon wafer to a temperature lower than the heating temperature of the forming of the high oxygen concentration layer. Alternatively, the method for manufacturing a SIMOX wafer includes: in the formation of the high oxygen concentration layer, implanting oxygen ions while heating a silicon wafer at a temperature of 300° C. or more; and in the formation of the amorphous layer, implanting oxygen ions after preheating the silicon wafer to a temperature of less than 300° C.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: August 12, 2008
    Assignee: Sumco Corporation
    Inventors: Yoshiro Aoki, Riyuusuke Kasamatsu, Hideki Nishihata, Seiichi Nakamura
  • Patent number: 7410878
    Abstract: A method of forming a polysilicon film having smooth surface using a lateral growth and a step-and-repeat laser process. Amorphous silicon formed in a first irradiation region of a substrate is crystallized to form a first polysilicon region by a first laser shot. Then, the substrate is moved a predetermined distance, and irradiated by a second laser shot. The polysilicon region is then recrystallized and locally planarized by subsequent laser shots. After multiple repetitions of the irradiation procedure, the amorphous silicon film formed on a substrate is completely transformed into a polysilicon film. The polysilicon film includes lateral growth crystal grains and nano-trenches formed in parallel on the surface of the polysilicon film. A longitudinal direction of the nano-trenches is substantially perpendicular to a lateral growth direction of the crystal grains.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: August 12, 2008
    Assignee: AU Optronics Corp.
    Inventors: Chih-Wei Gordon Chao, Ming-Wei Sun
  • Patent number: 7410879
    Abstract: A buried thin film resistor having end caps defined by a dielectric mask is disclosed. A thin film resistor is formed on an integrated circuit substrate. A resistor protect layer is formed over the thin film resistor. First and second portions of a first dielectric material are formed over the resistor protect layer over the first and second ends of the thin film resistor. The resistor protect layer is then wet etched using the first and second portions of the first dielectric material as a hard mask. Then a second dielectric layer is deposited. A first via mask and etch process is used to etch vias down to the underlying portions of the resistor protect layer over the ends of the thin film resistor. A second via mask and etch process is used to etch substrate vias to an underlying conductor layer.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: August 12, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Rodney Hill, Victor Torres, Michael Burger, Terry L. Lines
  • Patent number: 7410880
    Abstract: In a method for measuring the bonding quality of bonded substrates, such as bonded SOI wafers, a plurality of marks are created at a first side of a top substrate after, or before, the bonding of the top substrate onto a bottom substrate. Then, the positions of the plurality of marks are measured using a metrology tool. Next, for each of the marks, a difference between a measured position and an expected position is calculated. These differences can be used to determine delamination between the top substrate and the bottom substrate. By displaying a vector field representing the differences, and by not showing vectors that exceed a certain threshold, the delamination areas can be made visible.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: August 12, 2008
    Assignee: ASML Netherlands B.V.
    Inventors: Keith Frank Best, Joseph J. Consolini, Alexander Friz
  • Patent number: 7410881
    Abstract: A method of manufacturing a flash memory device includes etching an insulating layer provided over a substrate to form a contact hole to define a contact hole exposing a junction region formed on the substrate. The contact hole is filled with a first conductive material, the first conductive material contacting the junction region and extending above an upper surface of the contact hole. The first conductive material is etched to partly fill the contact hole, so that the first conductive material fills a lower portion of the contact hole, wherein an upper portion of the contact hole remains not filled due to the etching of the first conductive material, wherein the etched first conductive material defines a contact plug. A first dielectric layer and a second dielectric layer are formed over the contact plug, thereby filling the upper portion of the contact hole. Part of the first and second dielectric layers is etched to expose the contact plug and the upper portion of the contact hole.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 12, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sun Mi Park, Yoo Nam Jeon, Nam Kyeong Kim, Se Jun Kim
  • Patent number: 7410882
    Abstract: According to various exemplary embodiments of this invention, a method of producing a semiconductor structure is provided that includes providing a layered structure on a first substrate, the layered structure including a silicon layer that is provided over a first dielectric layer, a first dielectric layer that is provided over an etch-stop layer, the etch-stop layer provided over a buffer layer, the buffer layer provided over a sacrificial layer, and a sacrificial layer provided over a first substrate. Moreover, various exemplary embodiments of the methods of this invention provide for a second substrate over the layered structure, separating the first substrate and the sacrificial layer from the buffer layer, separating the buffer layer and the etch-stop layer from the first dielectric layer and providing a drain electrode and a source electrode over the layered structure.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: August 12, 2008
    Assignee: Palo Alto Research Center Incorporated
    Inventors: William S. Wong, Jeng-Ping Lu, Robert A. Street
  • Patent number: 7410883
    Abstract: Methods and apparatus provide for: a semiconductor wafer; at least one porous layer in the semiconductor wafer; an epitaxial semiconductor layer directly or indirectly on the porous layer; and a glass substrate bonded to the epitaxial semiconductor layer via electrolysis.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: August 12, 2008
    Assignee: Corning Incorporated
    Inventor: Kishor Purushottam Gadkaree
  • Patent number: 7410884
    Abstract: Backside connections for 3D integrated circuits and methods to fabricate thereof are described. A stack of a first wafer over a second wafer that has a substrate of the first wafer on top of the stack, is formed. The substrate of the first wafer is thinned. A first dielectric layer is deposited on the thinned substrate. First vias extending through the substrate to the first wafer are formed in the first dielectric layer. A conductive layer is deposited in the first vias and on the first dielectric layer to form thick conductive lines. Second dielectric layer is formed on the conductive layer. Second vias extending to the conductive lines are formed in the second dielectric layer. Conductive bumps extending into the second vias and offsetting the first vias are formed on the second dielectric layer.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: August 12, 2008
    Assignee: Intel Corporation
    Inventors: Shriram Ramanathan, Sarah E. Kim, Patrick R. Morrow
  • Patent number: 7410885
    Abstract: By performing at least one additional wet chemical etch process in the edge region and in particular on the bevel of a substrate during the formation of a metallization layer, the dielectric material, especially the low-k dielectric material, may be reliably removed from the bevel prior to the formation of any barrier and metal layers. Moreover, an additional wet chemical etch process may be performed after the deposition of the metal to remove any unwanted metal and barrier material from the edge region and the bevel. Accordingly, defect issues and contamination of substrates and process tools may be efficiently reduced.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: August 12, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Holger Schuehrer, Christin Bartsch, Carsten Hartig
  • Patent number: 7410886
    Abstract: A method of fabricating protective caps for protecting devices on wafer surface includes: (a) providing a non-metal cap substrate and forming a metal layer on the non-metal cap substrate; (b) forming a plurality of cavities on a surface of the metal layer, wherein the location of each cavity corresponds to each of the devices on the wafer surface; and (c) forming a protective cap in each cavity and forming a plurality of bonding media around the cavities.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: August 12, 2008
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Wei-Chung Wang
  • Patent number: 7410887
    Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 12, 2008
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Nathan W. Cheung
  • Patent number: 7410888
    Abstract: In accordance with a particular embodiment of the present invention, a method for manufacturing strained silicon is provided. In one embodiment, the method for manufacturing strained silicon includes inducing a curvature in a silicon wafer, depositing an epitaxial layer of silicon upon an upper surface of the silicon water while the silicon wafer is under the induced curvature, and releasing the silicon wafer from the induced curvature, after depositing the epitaxial layer, such that a strain is induced in the epitaxial layer.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: August 12, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Richard L. Knipe, Grady L. Endsley
  • Patent number: 7410889
    Abstract: A silicon layer and a heat-retaining layer are formed on a substrate in turn, and a laser beam with a sharp energy density gradient is next utilized to perform a laser heating process for inducing super lateral growth crystallization occurred in part of the Si layer. The heat-retaining layer provides additional heating-enhancement function for the Si layer in crystallization so as to increase the super lateral growth length. Then, the laser beam is repeatedly moved to irradiate the substrate to finish the crystallization process for the full substrate.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: August 12, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Cheng Chen, Jia-Xing Lin, Hung-Tse Chen
  • Patent number: 7410890
    Abstract: Method of forming one or more doped regions in a semiconductor substrate and semiconductor junctions formed thereby, using gas cluster ion beams.
    Type: Grant
    Filed: June 11, 2005
    Date of Patent: August 12, 2008
    Assignee: TEL Epion Inc.
    Inventors: Allen R. Kirkpatrick, Sean Kirkpatrick, Martin D. Tabat, Thomas G. Tetreault, John O. Borland, John J. Hautala, Wesley J. Skinner
  • Patent number: 7410891
    Abstract: A partially manufactured semiconductor device includes a semiconductor substrate. The device includes a first oxide layer formed on the substrate, with a mask placed over the oxide-covered substrate, a plurality of first trenches and at least one second trench etched through the oxide layer forming mesas. The at least one second trench is deeper and wider than each of the first trenches. The device includes a second oxide layer that is disposed over an area of mesas and the plurality of first trenches. The device includes a layer of masking material that is deposited over a an area of an edge termination region adjacent to an active region. The area of mesas and first trenches not covered by the masking layer is etched to remove the oxidant seal. The device includes an overhang area that is formed by a wet process etch.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: August 12, 2008
    Assignee: Third Dimension (3D) Semicondcutor, Inc.
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7410892
    Abstract: An integrated circuit device, e.g., a memory device, includes a substrate, a first insulation layer on the substrate, and a contact pad disposed in the first insulation layer in direct contact with the substrate. A second insulation layer is disposed on the first insulation layer. A conductive pattern, e.g., a damascene bit line, is disposed in the second insulation layer. A conductive plug extends through the second insulation layer to contact the contact pad and is self-aligned to the conductive pattern. An insulation film may separate the conductive pattern and the conductive plug. A glue layer may be disposed between the conductive pattern and the second insulation layer. The device may further include a third insulation layer on the second insulation layer and the conductive pattern, and the conductive plug may extend through the second and third insulation layers.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: August 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Sook Park, Gil-Heyun Choi, Sang-Bom Kang, Kwang-Jin Moon, Hyun-Su Kim, Seung-Gil Yang
  • Patent number: 7410893
    Abstract: A method for depositing a seed layer for a controllable electric pathway on a substrate includes selectively dispensing a seed material from an inkjet material dispenser onto said substrate.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: August 12, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Niranjan Thirukkovalur, Thomas J. Lindner
  • Patent number: 7410894
    Abstract: A method of forming a semiconductor structure, and the semiconductor structure so formed, wherein a transmission line, such as an inductor, is formed on a planar level above the surface of a last metal wiring level.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: August 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John E. Florkey, Jeffrey P. Gambino, Zhong-Xiang He, Anthony K. Stamper, Kunal Vaed
  • Patent number: 7410895
    Abstract: A method for forming an interconnect structure. A substrate is provided with a low-k dielectric layer thereon. At least one conductive feature is then formed in the low-k dielectric layer. A cap layer is formed overlying the low-k dielectric layer, and the conductive feature and the low-k dielectric layer is then subjected to an energy source to reduce a dielectric constant thereof.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: August 12, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Keng-Chu Lin, Chung-Chi Ko, Yi-Chi Liao
  • Patent number: 7410896
    Abstract: A low-k dielectric film is formed on an entire surface of a substrate having a pad region and a circuit region. A resist pattern is formed on the low-k dielectric film, and an opening is formed in the low-k dielectric film of the pad region using the resist pattern as a mask. A silicon oxide film having strength higher than the low-k dielectric film is formed in the opening using liquid-phase deposition method. Wirings are formed in the silicon oxide film of the pad region and in the low-k dielectric film of the circuit region using damascene method.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: August 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hong-Jae Shin
  • Patent number: 7410897
    Abstract: A semiconductor device has anisotropically formed via holes through a PMD layer. The anisotropic geometry of the via holes results in the diameter of a via hole over a gate structure being equal to the diameter of a via hole not over the gate structure. The via holes are formed by depositing a silicon layer and an antireflective layer over the PMD layer. The silicon layer and the antireflective layer are etched to have holes with a regular taper. The holes through the PMD are anisotropically etched so as to have straight walls.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: August 12, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hideyuki Kanzawa
  • Patent number: 7410898
    Abstract: In one aspect, the invention encompasses a method of fabricating an interconnect for a semiconductor component. A semiconductor substrate is provided, and an opening is formed which extends entirely through the substrate. A first material is deposited along sidewalls of the opening at a temperature of less than or equal to about 200° C. The deposition can comprise one or both of atomic layer deposition and chemical vapor deposition, and the first material can comprise a metal nitride. A solder-wetting material is formed over a surface of the first material. The solder-wetting material can comprise, for example, nickel. Subsequently, solder is provided within the opening and over the solder-wetting material.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: August 12, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Shuang Meng, Garo J. Derderian
  • Patent number: 7410899
    Abstract: Methods and compositions for electrolessly depositing Co, Ni, or alloys thereof onto a substrate in manufacture of microelectronic devices. Grain refiners, levelers, oxygen scavengers, and stabilizers for electroless Co and Ni deposition solutions.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: August 12, 2008
    Assignee: Enthone, Inc.
    Inventors: Qingyun Chen, Charles Valverde, Vincent Paneccasio, Nicolai Petrov, Daniel Stritch, Christian Witt, Richard Hurtubise